
Overview of FlexRay scheduling issues

Marco Di Natale, Wei Zheng

Credits: Tom Forest –slides concepts & suggestions

FlexRay: Network topology

• FlexRay supports different interconnection topologies
– single-channel system
– dual-channel system
– dual-channel system with mixed connectivity, where some nodes

are connected to both channels while other nodes are connected
to only one

FlexRay: Schedule

• Communication on the bus is arranged according to a cyclic forever-
repeating structure, with four segments
– Static: transmission time is allocated statically. Composed of fixed-

length slots

– Dynamic (optional): time is allocated dynamically, transmission times
may vary

– Symbol Window (optional)

– Network Idle Time

• In dual channel systems, cycles and segments start at the same
time on both channels, but the schedule may be different

Static Segment Access

• All static slots/frames have the same duration
– In dual channel systems, the static slots have the same size (and

are therefore synchronized).

• TDMA access
– Each static slot is assigned to one node

– If a node owns the current slot
• If a frame is ready the node transmits the frame in the slot

• If no frame is ready, or a frame is not scheduled to transmit in the

given, node sends a special null frame (a frame -regular or null- is

always sent)

Dynamic Segment Access

• Network transmission rights are assigned using
minislotting (virtual token)
– The time is divided in minislots
– Each minislot is assigned an index, starting from 1
– Outgoing dynamic messages (of variable size) are associated with

an index
– If no message matches the minislot index, there is no transmission

and after the duration of the minislot the index is incremented
– If there is a message matching the minislot index, the message is

transmitted. All the minislots occurring during the message
transmission retain the same index. The slot is incremented only
after the message ends transmission and one minislot goes by
without activity

– In dual channel systems, minislots are aligned, but message
transmissions are not

– The dynamic segment ends after the last minislot, with a safety
margin (pLatestTx) to ensure that dynamic message transmissions
do not overlap with the following cycle
• Not all messages may have been transmitted

Dynamic Segment Example

channel A

channel B frame ID m+3

frame ID m+3

frame ID m+7

frame ID m+5
t

m

slot counter channel A

m

slot counter channel B

dynamic slot with transmission

dynamic slot without transmission

minislot 1

minislot
gNumberOfMinislots

frame ID m

dynamic segment containing gNumberOfMinislots minislots

transmission may only start within the first pLatestTx minislots of the dynamic segment

m+1 m+2 m+3 m+4 m+5 m+6 m+7 m+8

m+1 m+2 m+3 m+4 m+5

Scheduling and composition

• Composing static and dynamic segment schedules

Integration

Static segment Dynamic segment

OEM

Static segment Dynamic segment

C G

Supplier 1
Static segment Dynamic segment

A E

2 4

KI 3

Supplier 2Static segment Dynamic segment

D F J 1 5 6

A E KID F J 1C G 2 43

Application examples - schedule

• Cycle multiplexing
• The schedule table for each cycle

can be different

Cycle multiplexing can be used to
increase the number of frames that
can be transmitted in a schedule

– If processes (applications) need a

slower Tx period than defined by the

cycle time

Frames can be transmitted with a
period that is (a power of two)
multiple of the cycle time

In the same slot different frames can
be transmitted in different cycles

– Static segment:

Same node sends in same slot in

every cycle

– Dynamic segment:

Different nodes can send in same

slot (“Slot Multiplexing”)

Static vs Dynamic Segment

• Allows more efficient use of bandwidth for information that is not
sent every cycle

• Messages can be sent on event

• A message “not sent” only takes up the duration of a minislot, not
the entire duration of transmission

• Bandwidth benefit obviously a function of the ratio of minislot
duration to duration of an occupied slot

• event triggered communication is priority-based: messages with
lower slot numbers take precedence over messages with higher
slot numbers

• Can be thought of as an arbitration procedure

• Arbitration is somewhat different from CAN: time is consumed by
unused slots, it is possible that a message ready for transmission
will not be sent even though the network was idle long enough to
have allowed its transmission

FlexRay: application

• The definition of a FlexRay communication schedule
depends on many factors

– Use of Static/Dynamic/Both segments

– Communication and synchronization model: loose or tight
synchronization of task and message scheduling

– Need for standardization and reuse (planning for reuse and
extensibility)

– Protocol constraints and technology constraints
– Other issues

• Integration of event-triggered and time-triggered systems

– Other optimizations ….
• Avoiding jitter

• Minimizing latencies

• Providing time determinism

FlexRay: application

• The definition of a FlexRay communication schedule
depends on many factors

– Communication and synchronization model: loose or tight
synchronization of task and message scheduling

From fully event-based
asynchronous to fully-
synchronized.

Opportunity: reducing
latencies and jitter

From fully event-based
asynchronous to fully-
synchronized.

Opportunity: reducing
latencies and jitter

FlexRay: application

• The definition of a FlexRay communication schedule
depends on many factors

– Communication and synchronization model: loose or tight
synchronization of task and message scheduling

Possible intermediate
solution, task and
message domains are
not synchronized

Simplifies
implementation, but
loses most of the
advantages of FlexRay
at the boundary between
subsystems

Possible intermediate
solution, task and
message domains are
not synchronized

Simplifies
implementation, but
loses most of the
advantages of FlexRay
at the boundary between
subsystems

FlexRay: application

• The definition of a FlexRay communication schedule
depends on many factors

– Communication and synchronization model: loose or tight
synchronization of task and message scheduling

Possible intermediate
solution, task and
message domains are
not synchronized

Simplifies
implementation, but
loses most of the
advantages of FlexRay
at the boundary between
subsystems

Possible intermediate
solution, task and
message domains are
not synchronized

Simplifies
implementation, but
loses most of the
advantages of FlexRay
at the boundary between
subsystems

FlexRay: application

• Tight synchronization of task and message scheduling needs a
design-time characterization of the worst case execution time of tasks

– By profiling and testing with high coverage

– By static analysis

– An example: AiT tool from AbsInt or Rapita tools

FlexRay: application

• The definition of a FlexRay communication schedule
depends on many factors

– Need for standardization and reuse

Bus/Application 1Static segment Dynamic segment

Supplier 1
Static segment Dynamic segment

A E KI 3

A E KID F J 1C G 2 43

Bus/Application 2
Static segment Dynamic segment

E KD FB

Portability across
applications/buses requires
standardization of cycle and slot
sizes and planning for extensions

Portability across
applications/buses requires
standardization of cycle and slot
sizes and planning for extensions

FlexRay: application

• The definition of a FlexRay communication schedule
depends on many factors

– Protocol constraints and technology constraints

• Each slot is statically allocated to a node or unused. If a
node uses in one FlexRay cycle, other nodes cannot use
the same index in following cycles.

• Max communication cycle is 16 ms
• Other limitations on the max number of slots

• Typically, there is a tradeoff between slot size (flexibility)
and efficiency

• Adapter registers allocation (as performed by the tools)

FlexRay: An MILP scheduler

• A FlexRay communication schedule may be defined
starting from an application specification.

• The application may be described listing tasks, periods
and the signals they are exchanging.

FlexRay: An MILP scheduler

• The application model is
unrolled by listing all the task
and signal instances in the
Application cycle (e.g. the
hyperperiod or LCM of the task
periods)

FlexRay: An MILP scheduler

• The communication cycle or FlexRay cycle, is then
defined as a submultiple (power of 2) of the application

cycle

An MILP scheduling solution

• Using MILP for scheduling computation and optimization
– Task and message scheduling are synchronized

– Tasks may be scheduled by priority (OSEK) or time-triggered
(OSEKTime)

– Scheduler checks feasibility conditions

• Total size of signals transmitted in a slot <= frame size

• Precedence constraints between tasks and messages

• Period constraints

– but also allows other types of constraints

• Maximum jitter

• Worst case end-to-end latency

– Allows modeling realistic implementations

• Scheduling delays/scheduling jitter

• Copy time from application to peripheral adapter

– Allows optimization with respect to metric functions

• Latency/jitter minimization

• Possibly extensibility ?

An MILP scheduling solution

• Input: task and signal
description

• A two-stage solution.
– In the first stage the FlexRay

cycle and the slot size are
selected

– In the second stage the
scheduling is completed,
peromring the signal to slot
mapping, the slot to node
assignment and possibly the
scheduling of the tasks

• OSEK (priority) based or

• ESKTime (time-triggered)
based

• The steps can be
performed iteratively

Activation, release and deadline constraints

• Task activations are
periodic with known period

• Activation phases Φi are
optimization variables

• Tasks must complete before
the deadlines.

• fi are optimization variables,

di are system parameters

Φi Ti

ai,0 ai,1
ai,2

aj,0

Task scheduling

• OSEKTime scheduling
– Time-triggered, task start times are defined in the

scheduling table, once started they can possibly
preempt other tasks that are in execution (or be
preempted)

• OSEK scheduling

– Priority-based, at activation each task is ready and is

executed by a scheduler based on its priority

Start times and preemption

• (OSEKTime only) Order of start times and preemption

Enforce the meaning

of y

Tasks cannot mutually preempt

A task can preempt only if it starts later

Based on start times

order and on

preemption definition

order finish times

“big M” formulation

Task finish times

• OSEKTime

• OSEK

Response time computation

for preemptive, priority

based scheduling

… and its linear

approximation

Finish time, accounting

for preemption

FlexRay protocol rules

Beginning of slot k in

cycle j

If a signal is mapped into a

slot, its start and finish

times are the same as the

start and finish times of the

slot

A signal can be assigned

to one slot only

The total size of the signals

mapped into one slot

cannot exceed the slot size

Slot ownership

Data dependencies

If a signal is mapped into a slot, the ECU

of its source task must own the slot

Each slot can be owned by at most one

ECU

All the slots with the same index must be

mapped to the same ECU

Each task must finish before the start

time of the signal it produces. Each

signal must arrive before the start of the

task that consumes it (with a margin

accounting for the copy time)

Wraparound conditions

• The schedule must extend up to the application cycle
plus the maximum possible initial phase (initial period)

• However, the head and the tail of the schedule must be
kept consistent.

FlexRay: application

• Communication and synchronization model: loose or tight
synchronization of task and message scheduling

task and message

domains are

synchronized

Predictable and tight

latencies

task and message domains

are not synchronized

Simplifies implementation,

but loses most of the

advantages of FlexRay at the

boundary between

subsystems

Use of Dynamic vs Static Segment

• Allows more efficient use of bandwidth for information
that is not sent every cycle

• Messages can be sent on event

• A message “not sent” only takes up the duration of a
minislot, not the entire duration of transmission

• Bandwidth benefit obviously a function of the ratio of
minislot duration to duration of an occupied slot

• Need models for analysis and synthesis (guide the
design)

FlexRay: application

� Tight synchronization of task and message

scheduling needs a design-time characterization

of the worst case execution time of tasks
– By profiling and testing with high coverage

– By static analysis

– An example: AiT tool from AbsInt or Rapita tools

