
General Models for Timing Analysis

• Typical schedulability analysis setup

• Beyond the task model

• Timing Automata

• Timing Automata with Tasks



General Models for Timing Analysis

• Where can formal methods be useful

• Models: provide more sophisticated models for logical 

or time dependency

– conditional activations

– precedence constraints

• Answers: if the system is not correct formal methods 
provide counterexamples (which help guiding the test 

cases).

– Please note: this is useful even when confidence in model 
data (such as the worst case computation times) is not 
accurate.



Models for Timing Analysis

• The very basic: independent periodic tasks …

t=P / t:=0

Task1

• sporadic tasks minimum interarrival time, worst case 
based analysis …
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Models for Timing Analysis

• Multiframe (and Generalized Multiframe) models
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Models for Timing Analysis

• but even more (almost impossible to deal with with 
current schedulability theory)…

• Bursty arrival patterns



Introduction to Timed Automata (and Uppaal)

• Timed Automata

• Verification of TA



Introduction to Timed Automata

• Theory originally by Alur & Dill

• A timed automaton is a finite-state Büchi automaton

extended with a set of real-valued variables modeling 
clocks.

– Büchi accepting conditions are used to enforce progress 
properties. 

– A simplified version, namely Timed Safety Automata is 
introduced in [HNSY94] to specify progress properties using 
local invariant conditions.



Introduction to Timed Automata

• A timed automaton is essentially a finite automaton (that is a 
graph containing a finite set of nodes or locations and a finite set 
of labeled edges) extended with real-valued variables. 

• The variables model the logical clocks in the system, that are 
initialized with zero when the system is started, and then 
increase synchronously with the same rate. 

x
y



Introduction to Timed Automata

• Clock constraints i.e. guards on edges are used to restrict the 
behavior of the automaton. 

• A transition represented by an edge can be taken when the 
clocks values satisfy the guard labeled on the edge. 

• Clocks may be reset to zero when a transition is taken. 



Timed Büchi Automata or Timed Safety Automata ?

• Timed Büchi Automata A guard on an edge of an automaton is 
only an enabling condition of the transition represented by the 
edge; but it can not force the transition to be taken (the example 
automaton may stay forever in any location). In the initial work
by Alur and Dill [AD90], the problem is solved by introducing 
Büchi-acceptance conditions; a subset of the locations in the 
automaton are marked as accepting, and only those executions 
passing through an accepting location infinitely often are 
considered valid behaviors of the automaton. 

• As an example, consider the automaton in Fig. 1(a) and assume 
that end is marked as accepting. 



Timed Büchi Automata or Timed Safety Automata ?

• Timed Safety Automata A more intuitive notion of progress is 
introduced in timed safety automata [HNSY94]. Instead of 
accepting conditions, in timed safety automata, locations may 
be put local timing constraints called location invariants. An 
automaton may remain in a location as long as the clocks 
values satisfy the invariant condition of the location. 



Informal Syntax



Formal Syntax

• Finite set of real-valued variables C ranged over by x, y 
etc.standing for clocks 

• Finite alphabet Σ ranged over by a; b etc.standing for actions. 

• Clock Constraints: conjunctive formulas of atomic constraints of 

the form x ~ n or x - y ~ n for x, y ∈ C; ~ ∈ {≤; <; =; >; ≥} and n ∈
N. Clock constraints will be used as guards for timed automata. 
We use B(C) to denote the set of clock constraints. 

• Definition 1 (Timed Automaton) A timed automaton A is a tuple

〈N; l0 ; E; I〉 where 
– N is a finite set of locations (or nodes), 

– l0 ∈ N is the initial location, 

– E ⊆ N × B(C) × Σ × 2C × N is the set of edges and 

– I : N → B(C) assigns invariants to locations 



Formal Syntax: Concurrency and communication

• To model concurrent systems, timed automata can 
be extended with parallel composition. In process 
algebras, various parallel composition operators have 
been proposed to model different aspects of 
concurrency (see e.g. CCS and CSP [Mil89,Hoa78]).

• In the UPPAAL modeling language [LPY97], the CCS 
parallel composition operator [Mil89] is used, which 
allows interleaving of actions as well as hand-shake 
synchronization. 

• Essentially the parallel composition of a set of 
automata is the product of the automata. 

• Building the product automaton is an entirely 
syntactical but computationally expensive operation. 
In UPPAAL, the product automaton is computed 
on-the-fly during verification. 



x = 1
y = a

x = 0
y = b

x = 1
y = b

x = 0
y = a

Product Automaton

• Depends on the semantics

• Synchronous

• Asynchronous

• Explicit Synchronization
a?

a!



Operational Semantics

• The semantics of a timed automaton is defined as a transition 
system where a state or configuration consists of the current 

location and the current values of clocks. There are two types of 
transitions between states. The automaton may either delay for 
some time (a delay transition), or follow an enabled edge (an 
action transition).



Operational Semantics

• Clock assignment function: mapping the set of clocks 

C to real values ∈ℜ+

• Timed action: a pair (t, a), where a ∈ Σ is an action 

taken by an automaton A after t ∈ R+ time units since 
A has been started.

• t is the Time stamp of the action a

• Timed trace possibly infinite sequence of timed 

actions ξ=(t1, a1)(t2, a2)… where ti≤ti+1 for all i≥1.



Operational Semantics

• Run: of a time automaton with initial state <l0, u0> over a timed 

trace ξ=(t1, a1)(t2, a2)… is a sequence of transitions 



Verification Setting

System
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Verification Setting

• Checking a system implementation I against a 
specification of a property P in case both are 

expressed in terms of automata (homogeneous 

verification). 

• The implementation automaton AI is composed with 

the complementary automaton ¬AP expressing the 
negation of the desired property. 

• The implementation I violates the specification 

property if the product automata AI || ¬AP has some 
possible run and it is verified is the composition has 

no runs. 



Bisimulation

• Typical setting: verification of implementation

Specification
automaton (TA)

Implementation
automaton (TA)

• Problem: is the automaton I a “correct”

implementation of the specification?

I

S



Verification and Bisimulation

• Decidability

• Bisimulation

• Reachability

• Decidability of problems



Operational Semantics

• Decidability

• (for the general class of nondeterministic timed 

automata)

• The language inclusion checking problem i.e. to 

check L(A) ⊆ L(B) is undecidable

• Timed automata are not determinizable in general

• Timed automata cannot be complemented, that is, 

the complement of the timed language of a timed 
automaton may not be described as a timed 

automaton.

• But …

• The language inclusion problem is decidable if B in 

L(A) ⊆ L(B) is restricted to the class of deterministic 
TA



Operational Semantics

• Bisimulation (Decidability of timed bisimulation)

• Two automata are bisimilar iff there is a bisimulation

containing the initial states of the automata.

• Intuitively, two automata are timed bisimilar iff they 

perform the same action transition at the same time 

and reach bisimilar states.

• Timed bisimulation is decidable.



Operational Semantics

• Untimed Bisimulation

• Abstracting from timing information, we can establish 

bisimulation between actions only.

• Define s  →∈ s’ if s  →d  s’ for some real number 
d.

• Untimed bisimulation is defined by replacing the 

alphabet with Σ ∪ {∈}  in the previous definition.



Operational Semantics

• Reachability

• Question is reachability of a given final state or a set of 

final states.

• It may be used to characterize safety properties of a 

system.

• Invariant properties may be specified and checked 
using the negation of reachability properties

• Bounded liveness properties may be specified using 
clock constraints in combination with local properties 

on locations

• The reachability problem is decidable



Operational Semantics

• The reachability problem is decidable

• Apparently the transition system of a timed automaton 

is infinite, given the real-valued clocks.

• Necessary step: the concept of region equivalence 

(exploiting bisimulation properties)



Symbolic Semantics & Verification

• Regions and Zones

• The foundation for the decidability results in timed automata is
based on the notion of region equivalence over clock 
assignments

• Regions

• Basis for a finite partitioning of the state space (useful for 
proving theorems rather than in practice)



Symbolic Semantics & Verification



Symbolic Semantics & Verification

• Regions

• u∼v implies (l,u) and (l,v) are bisimilar wrt untimed bisimulation

Nodes: 

x=3 ∧∧∧∧ y=1

Open segments: 

x=2 ∧∧∧∧ 1<y ∧∧∧∧ y<2

Open regions: 

x>y+2 ∧∧∧∧ 0<y ∧∧∧∧ y<1

Open segments: 

x=y-1 ∧∧∧∧ 1<y ∧∧∧∧ y<2

the number of 
regions is 
exponential in the 
number of clocks 
and the maximal 
constants in the 
guards (the figure 
has 60 regions!)



Symbolic Semantics & Verification

• Region graph or Region automaton (of the original timed 
automaton)

• With symbolic states (regions) and transitions among them.



Symbolic Semantics & Verification

• More efficient encoding: Zones and Zone graph

• consider only “relevant” clock constraints

• zones as unions of regions (solutions of clock constraints)

• Zones are convex polyhedra



Symbolic Semantics & Verification

• An example

• Only 8 zones are necessary (instead of more than 50 regions) 



Symbolic Semantics & Verification

• Representing zones
• a zone is the solution set of a clock constraint, that is 

the maximal set of clock assignments satisfying the 
constraint. It is well-known that such sets can be 
efficiently represented and stored in memory as 
DBMs (Difference Bound Matrices) [Bel57]. For a 
clock constraint D, let [D] denote the maximal set of 
clock assignments satisfying D.



Symbolic Semantics & Verification

• Symbolic state representation based on zones
• a symbolic state is a pair <l, D> (l is a location, 

D is a zone)  representing a set of states of the 
automaton. A symbolic transition describes all 
the possible concrete transitions from the set of 
states.

• Definition
• Let D be a zone and r a set of clocks.
• D↑ = {u+d u∈D, d ∈ ℜ+} 
• r(D) = {[r→0]u u∈D }
• Let      denote the symbolic transition relation 

over symbolic states defined by the rules
• <l,D>      <l,D↑∧ I(l)>
• <l,D>      <l’,r(D∧g) ∧I(l’)> if l  → l’

g,a,r



Symbolic Semantics & Verification

• The set of zones is closed under the operations D↑ and 
r(D)

• Correspondence between symbolic semantics and 
operational semantics:

• <l,D>      <l’,D’>   implies that for all u’∈D’, <l,u>→<l’,u’> 
for some u∈D.

• Unfortunately, the relation           is infinite and the zone 
graph of a timed automaton may be infinite.



Symbolic Semantics & Verification

• An infinite zone graph



Symbolic Semantics & Verification

• Solution: k-normalization

• Intuitively: if the value of a clock is larger than the maximal clock 
constant in the automaton, it is no longer important to know the
exact value, but only the fact that it is above the constant ...



Symbolic Semantics & Verification

• Normalizing the previous example

k-normalization



Symbolic Semantics & Verification

• For automata without difference constraints in the form 
x-y ~ n (diagonal free automata), the symbolic set <l,D> 

and the transition     k resulting from k-normalization are 

sound and complete and the transition relation is finite.

• This is not true for non diagonal-free TA



Symbolic Semantics & Verification

• Counterexample ...

the non normalized
zone definition for S2 
does not allow
transition to S3

the normalized zone 
definition for S2 
incorrectly allows
transition to S3



Symbolic Semantics & Verification

• A new definition of k normalization is needed (more 
complex, may lead to partitioning of symbolic states)

• The new definition is sound, complete and the transition 
relation is finite



Symbolic Semantics & Verification

• Problems:

• Representing and storing the zones
– is there a “canonical” zone representation ?

• Operations on zones

• Computing the zones (forward and backward 

analysis)



DBMs

• A clock constraint over C is a conjunction of atomic 
constraints of the form x ∼ m ≥ m and x - y ∼ n where 
x, y ∈ C, ∼ ∈ {≤, <, =, >, ≥} and m,n ∈ N. A zone 
denoted by a clock constraint D is the maximal set of 
clock assignments satisfying D.

• introduce a reference clock 0 with the constant value 
0. Let C0 = C ∪ {0}. Then any zone D ∈ B(C) can be 
rewritten as a conjunction of constraints of the form 
x - y < n or x - y ≤ n for x, y ∈ C 0 , and n ∈ Z.
– If the rewritten zone has two constraints on the same pair of 

variables only the intersection of the two is significant. 

• A zone can be represented using at most |C0|
2 atomic 

constraints of the form x - y ≤ n such that each pair of 
clocks x y is mentioned only once. 

• The C0xC0 matrix of these elements is the DBM 
matrix



DBMs

• Example, consider the zone 

D = x-0 < 20 ∧ y-0≤20 ∧ y-x≤10 ∧ x-y ≤-10 ∧ 0-z < 5.

• If the clocks are ordered 0,x,y,z 



DBMs

• Canonical DBMs
• Usually there are an infinite number of zones sharing 

the same solution set, but there is a unique 
representation where no atomic constraint can be 
strengthened without losing solutions.

• To compute the canonical form of a given zone we 
need to derive the tightest constraint on each clock 
difference. 

• To solve this problem, we use a weighted graph 
interpretation of zones where the clocks are nodes 
and the atomic constraints are edges labeled with 
bounds. 

• A constraint in the form of x-y ≤ n will be converted to 
an edge from node y to node x labeled with (n; ≤), 
namely the distance from y to x is bounded by n.



DBMs

• Canonical DBMs: an example

• consider the zone x-0<20∧y-0≤20∧y-x≤10∧x-y≤-10

• by combining y-0≤20 and x-y≤-10  → x-0≤10

20+(-10) = 10



DBMs

• Canonical DBMs: an example

• Thus, deriving the tightest constraint on a pair of 

clocks in a zone is equivalent to finding the shortest 

path between their nodes in the graph interpretation. 

• A canonical version of a zone can be computed using 

a shortest path Floyd-Warshall algorithm.

• This algorithm is quite expensive (cubic in the 

number of clocks), hence it is desirable to produce 
DBM that are already in canonical form ( as the result 

of performing an operation on a canonical zone). 



DBMs: Practical issues

• Canonical DBMs: removing redundant constraints

• For example, in a zone containing constraints x-y<2 , 

y-z<5 and x-z<7 the last constraint is redundant.

• From [LLPY97] it is known that for each zone there is 

a minimal constraint system with the same solution 

set. 

• By computing this minimal form for all zones it is 

possible to reduce memory consumption  



DBMs: Practical issues

• Operations on Zones



DBMs: Practical issues

• Classes: property checking, transformation and zone-
normalization

• Property checking
– consistent(D)

– relation(D,D’)

– satisfied(D, x
i
-x

j
≤m) 

• Transformation
– up(D)

– down(D)

– and(D, x
i
-y

j
≤b)

– free(D,x)

– reset(D,x:=m)

– copy(D,x:=y)

– shift(D,x:=x+m)

• Transformation
– norm

k
(D)

– norm
k,G
(D)



DBMs: Practical issues

• Example of pseudocode implementing  and(D, xi-
yj≤b)



DBMs: Practical issues

• starting state
– all clock variables begin with value=0 and all advance at the 

same rate

S0

0  0  0  0

0  0  0  0

0  0  0  0

0  0  0  0

reset(x, 0)

reset(y, 0)

reset(z, 0)

free(D,x)

free(D,y)

free(D,z)

0 

∞
∞
∞

0  0  0

0  0  0

0  0  0

0  0  0



DBMs: Practical issues

• starting state

– forward analysis

S0

reset(D, z:=0)

0 

∞
∞
∞

0 0 0

0 0 0

0 0 0

0 0 0

S1

free(D,x)

free(D,y)

free(D,z)

0 

∞
∞
0

0 0

0 0

0 0

0 0

0 

∞
∞
0

0 

∞
∞
∞

0 0

0 0

0 0

0 0

0 

∞
∞
0

z:=0



Symbolic Reachability Analysis

• Model checking of two fundamental properties:

– liveness

– safety

• Safety properties can be checked using reachability analysis

• Reachability analysis consists of two basic steps:

– computing the state space of the automaton

– searching for states that satisfy or contradict given properties

• The first step can be performed prior to the search or on-the-fly 
during the search process.

• On-the-fly methods have the advantage that only the part of the 
state space that is required to prove the given property is 
generated

• but on-the-fly methods will generate the entire state space for 
proving invariants (and other properties)



Symbolic Reachability Analysis

• Here is the core of the verification engine of Uppaal



Symbolic Reachability Analysis

• Assume a timed automaton A with a set of initial states and a 
set of final states (e.g. the bad states) characterized as <l0,D0> 
and <lf, φf> respectively. 

• Assume that k is the clock ceiling defined by the maximal 
constants appearing in A and φf, and G denotes the set of 
difference constraints appearing in A and φf. Algorithm 1 can be 
used to 

• check if the initial states may evolve to any state whose location 
is lf and whose clock assignment satisfies φf. It computes the 
normalized zone-graph of the automaton on-the-fly, in search for 
symbolic states containing location lf and zones intersecting with 
φf. 

• The algorithm computes the transitive closure of  →k,G step by 
step, and at each step, checks if the reached zones intersect 
with φf. From Theorem 2, it follows that the algorithm will return 
with a correct answer. It is also guaranteed to terminate 
because →k,G is finite. 



Symbolic Reachability Analysis

• As mentioned earlier, for a given timed automaton with a fixed 
set of clocks whose maximal constants are bounded by a clock 
ceiling k, and a fixed set of diagonal constraints contained in the 
guards, the number of all possible normalized zones is bounded 
because a normalized zone can not contain arbitrarily large or 
arbitrarily small constants. In fact the smallest possible zones
are the refined regions. Thus the whole state-space of a timed 
automaton can only be partitioned into finitely many symbolic 
states and the worst case is the size of the region graph of the
automaton, induced by the refined region equivalence. 
Therefore, the algorithm is working on a finite structure and it
will terminate. 



Symbolic Reachability Analysis

• Algorithm 1 also highlights some of the issues in developing a 
model-checker for timed automata. Firstly, the representation 
and manipulation of states, primarily zones, is crucial to the 
performance of a model-checker. Note that in addition to the 
operations to compute the successors of a zone according to 

→k,G , the algorithm uses two more operations to check the 
emptiness of a zone as well as the inclusion between two 
zones. Thus, designing efficient algorithms and data-structures 
for zones is a major issue in developing a verification tool for
timed automata. Secondly, PASSED holds all encountered 
states and its size puts a limit on the size of systems we can 
verify. This raises the research challenges e.g. state 
compression [Ben02], state-space reduction [BJLY98] and 
approximate techniques [Bal96]. 


