
General Models for Timing Analysis

• Typical schedulability analysis setup

• Beyond the task model

• Timing Automata

• Timing Automata with Tasks

General Models for Timing Analysis

• Where can formal methods be useful

• Models: provide more sophisticated models for logical

or time dependency

– conditional activations

– precedence constraints

• Answers: if the system is not correct formal methods
provide counterexamples (which help guiding the test

cases).

– Please note: this is useful even when confidence in model
data (such as the worst case computation times) is not
accurate.

Models for Timing Analysis

• The very basic: independent periodic tasks …

t=P / t:=0

Task1

• sporadic tasks minimum interarrival time, worst case
based analysis …

t≥I / t:=0

Task1

P

I

Models for Timing Analysis

• Multiframe (and Generalized Multiframe) models

C1 C2 C3 C1

t≥P / t:=0

Task1

(C1)

Task2

(C2)

Task3
(C3)t≥P / t:=0

t≥P / t:=0

t≥P1 / t:=0

Task1
(C1)

Task2
(C2)

Task3

(C3)t≥P3 / t:=0

t≥P3 / t:=0

C1 C2 C3 C1

P P P

P1 P2 P3

Models for Timing Analysis

• but even more (almost impossible to deal with with
current schedulability theory)…

• Bursty arrival patterns

Introduction to Timed Automata (and Uppaal)

• Timed Automata

• Verification of TA

Introduction to Timed Automata

• Theory originally by Alur & Dill

• A timed automaton is a finite-state Büchi automaton

extended with a set of real-valued variables modeling
clocks.

– Büchi accepting conditions are used to enforce progress
properties.

– A simplified version, namely Timed Safety Automata is
introduced in [HNSY94] to specify progress properties using
local invariant conditions.

Introduction to Timed Automata

• A timed automaton is essentially a finite automaton (that is a
graph containing a finite set of nodes or locations and a finite set
of labeled edges) extended with real-valued variables.

• The variables model the logical clocks in the system, that are
initialized with zero when the system is started, and then
increase synchronously with the same rate.

x
y

Introduction to Timed Automata

• Clock constraints i.e. guards on edges are used to restrict the
behavior of the automaton.

• A transition represented by an edge can be taken when the
clocks values satisfy the guard labeled on the edge.

• Clocks may be reset to zero when a transition is taken.

Timed Büchi Automata or Timed Safety Automata ?

• Timed Büchi Automata A guard on an edge of an automaton is
only an enabling condition of the transition represented by the
edge; but it can not force the transition to be taken (the example
automaton may stay forever in any location). In the initial work
by Alur and Dill [AD90], the problem is solved by introducing
Büchi-acceptance conditions; a subset of the locations in the
automaton are marked as accepting, and only those executions
passing through an accepting location infinitely often are
considered valid behaviors of the automaton.

• As an example, consider the automaton in Fig. 1(a) and assume
that end is marked as accepting.

Timed Büchi Automata or Timed Safety Automata ?

• Timed Safety Automata A more intuitive notion of progress is
introduced in timed safety automata [HNSY94]. Instead of
accepting conditions, in timed safety automata, locations may
be put local timing constraints called location invariants. An
automaton may remain in a location as long as the clocks
values satisfy the invariant condition of the location.

Informal Syntax

Formal Syntax

• Finite set of real-valued variables C ranged over by x, y
etc.standing for clocks

• Finite alphabet Σ ranged over by a; b etc.standing for actions.

• Clock Constraints: conjunctive formulas of atomic constraints of

the form x ~ n or x - y ~ n for x, y ∈ C; ~ ∈ {≤; <; =; >; ≥} and n ∈
N. Clock constraints will be used as guards for timed automata.
We use B(C) to denote the set of clock constraints.

• Definition 1 (Timed Automaton) A timed automaton A is a tuple

〈N; l0 ; E; I〉 where
– N is a finite set of locations (or nodes),

– l0 ∈ N is the initial location,

– E ⊆ N × B(C) × Σ × 2C × N is the set of edges and

– I : N → B(C) assigns invariants to locations

Formal Syntax: Concurrency and communication

• To model concurrent systems, timed automata can
be extended with parallel composition. In process
algebras, various parallel composition operators have
been proposed to model different aspects of
concurrency (see e.g. CCS and CSP [Mil89,Hoa78]).

• In the UPPAAL modeling language [LPY97], the CCS
parallel composition operator [Mil89] is used, which
allows interleaving of actions as well as hand-shake
synchronization.

• Essentially the parallel composition of a set of
automata is the product of the automata.

• Building the product automaton is an entirely
syntactical but computationally expensive operation.
In UPPAAL, the product automaton is computed
on-the-fly during verification.

x = 1
y = a

x = 0
y = b

x = 1
y = b

x = 0
y = a

Product Automaton

• Depends on the semantics

• Synchronous

• Asynchronous

• Explicit Synchronization
a?

a!

Operational Semantics

• The semantics of a timed automaton is defined as a transition
system where a state or configuration consists of the current

location and the current values of clocks. There are two types of
transitions between states. The automaton may either delay for
some time (a delay transition), or follow an enabled edge (an
action transition).

Operational Semantics

• Clock assignment function: mapping the set of clocks

C to real values ∈ℜ+

• Timed action: a pair (t, a), where a ∈ Σ is an action

taken by an automaton A after t ∈ R+ time units since
A has been started.

• t is the Time stamp of the action a

• Timed trace possibly infinite sequence of timed

actions ξ=(t1, a1)(t2, a2)… where ti≤ti+1 for all i≥1.

Operational Semantics

• Run: of a time automaton with initial state <l0, u0> over a timed

trace ξ=(t1, a1)(t2, a2)… is a sequence of transitions

Verification Setting

System

model
extraction

System Model

Semantics

Behavior

Property ϕ

Temporal

logic formula

(CTL or LTL)

or Automaton

According to

some MoC

such as TA

Model of ϕ

Language

inclusion

problem

⊆⊆⊆⊆
L(A) L(B)

Verification Setting

• Checking a system implementation I against a
specification of a property P in case both are

expressed in terms of automata (homogeneous

verification).

• The implementation automaton AI is composed with

the complementary automaton ¬AP expressing the
negation of the desired property.

• The implementation I violates the specification

property if the product automata AI || ¬AP has some
possible run and it is verified is the composition has

no runs.

Bisimulation

• Typical setting: verification of implementation

Specification
automaton (TA)

Implementation
automaton (TA)

• Problem: is the automaton I a “correct”

implementation of the specification?

I

S

Verification and Bisimulation

• Decidability

• Bisimulation

• Reachability

• Decidability of problems

Operational Semantics

• Decidability

• (for the general class of nondeterministic timed

automata)

• The language inclusion checking problem i.e. to

check L(A) ⊆ L(B) is undecidable

• Timed automata are not determinizable in general

• Timed automata cannot be complemented, that is,

the complement of the timed language of a timed
automaton may not be described as a timed

automaton.

• But …

• The language inclusion problem is decidable if B in

L(A) ⊆ L(B) is restricted to the class of deterministic
TA

Operational Semantics

• Bisimulation (Decidability of timed bisimulation)

• Two automata are bisimilar iff there is a bisimulation

containing the initial states of the automata.

• Intuitively, two automata are timed bisimilar iff they

perform the same action transition at the same time

and reach bisimilar states.

• Timed bisimulation is decidable.

Operational Semantics

• Untimed Bisimulation

• Abstracting from timing information, we can establish

bisimulation between actions only.

• Define s →∈ s’ if s →d s’ for some real number
d.

• Untimed bisimulation is defined by replacing the

alphabet with Σ ∪ {∈} in the previous definition.

Operational Semantics

• Reachability

• Question is reachability of a given final state or a set of

final states.

• It may be used to characterize safety properties of a

system.

• Invariant properties may be specified and checked
using the negation of reachability properties

• Bounded liveness properties may be specified using
clock constraints in combination with local properties

on locations

• The reachability problem is decidable

Operational Semantics

• The reachability problem is decidable

• Apparently the transition system of a timed automaton

is infinite, given the real-valued clocks.

• Necessary step: the concept of region equivalence

(exploiting bisimulation properties)

Symbolic Semantics & Verification

• Regions and Zones

• The foundation for the decidability results in timed automata is
based on the notion of region equivalence over clock
assignments

• Regions

• Basis for a finite partitioning of the state space (useful for
proving theorems rather than in practice)

Symbolic Semantics & Verification

Symbolic Semantics & Verification

• Regions

• u∼v implies (l,u) and (l,v) are bisimilar wrt untimed bisimulation

Nodes:

x=3 ∧∧∧∧ y=1

Open segments:

x=2 ∧∧∧∧ 1<y ∧∧∧∧ y<2

Open regions:

x>y+2 ∧∧∧∧ 0<y ∧∧∧∧ y<1

Open segments:

x=y-1 ∧∧∧∧ 1<y ∧∧∧∧ y<2

the number of
regions is
exponential in the
number of clocks
and the maximal
constants in the
guards (the figure
has 60 regions!)

Symbolic Semantics & Verification

• Region graph or Region automaton (of the original timed
automaton)

• With symbolic states (regions) and transitions among them.

Symbolic Semantics & Verification

• More efficient encoding: Zones and Zone graph

• consider only “relevant” clock constraints

• zones as unions of regions (solutions of clock constraints)

• Zones are convex polyhedra

Symbolic Semantics & Verification

• An example

• Only 8 zones are necessary (instead of more than 50 regions)

Symbolic Semantics & Verification

• Representing zones
• a zone is the solution set of a clock constraint, that is

the maximal set of clock assignments satisfying the
constraint. It is well-known that such sets can be
efficiently represented and stored in memory as
DBMs (Difference Bound Matrices) [Bel57]. For a
clock constraint D, let [D] denote the maximal set of
clock assignments satisfying D.

Symbolic Semantics & Verification

• Symbolic state representation based on zones
• a symbolic state is a pair <l, D> (l is a location,

D is a zone) representing a set of states of the
automaton. A symbolic transition describes all
the possible concrete transitions from the set of
states.

• Definition
• Let D be a zone and r a set of clocks.
• D↑ = {u+d u∈D, d ∈ ℜ+}
• r(D) = {[r→0]u u∈D }
• Let denote the symbolic transition relation

over symbolic states defined by the rules
• <l,D> <l,D↑∧ I(l)>
• <l,D> <l’,r(D∧g) ∧I(l’)> if l → l’

g,a,r

Symbolic Semantics & Verification

• The set of zones is closed under the operations D↑ and
r(D)

• Correspondence between symbolic semantics and
operational semantics:

• <l,D> <l’,D’> implies that for all u’∈D’, <l,u>→<l’,u’>
for some u∈D.

• Unfortunately, the relation is infinite and the zone
graph of a timed automaton may be infinite.

Symbolic Semantics & Verification

• An infinite zone graph

Symbolic Semantics & Verification

• Solution: k-normalization

• Intuitively: if the value of a clock is larger than the maximal clock
constant in the automaton, it is no longer important to know the
exact value, but only the fact that it is above the constant ...

Symbolic Semantics & Verification

• Normalizing the previous example

k-normalization

Symbolic Semantics & Verification

• For automata without difference constraints in the form
x-y ~ n (diagonal free automata), the symbolic set <l,D>

and the transition k resulting from k-normalization are

sound and complete and the transition relation is finite.

• This is not true for non diagonal-free TA

Symbolic Semantics & Verification

• Counterexample ...

the non normalized
zone definition for S2
does not allow
transition to S3

the normalized zone
definition for S2
incorrectly allows
transition to S3

Symbolic Semantics & Verification

• A new definition of k normalization is needed (more
complex, may lead to partitioning of symbolic states)

• The new definition is sound, complete and the transition
relation is finite

Symbolic Semantics & Verification

• Problems:

• Representing and storing the zones
– is there a “canonical” zone representation ?

• Operations on zones

• Computing the zones (forward and backward

analysis)

DBMs

• A clock constraint over C is a conjunction of atomic
constraints of the form x ∼ m ≥ m and x - y ∼ n where
x, y ∈ C, ∼ ∈ {≤, <, =, >, ≥} and m,n ∈ N. A zone
denoted by a clock constraint D is the maximal set of
clock assignments satisfying D.

• introduce a reference clock 0 with the constant value
0. Let C0 = C ∪ {0}. Then any zone D ∈ B(C) can be
rewritten as a conjunction of constraints of the form
x - y < n or x - y ≤ n for x, y ∈ C 0 , and n ∈ Z.
– If the rewritten zone has two constraints on the same pair of

variables only the intersection of the two is significant.

• A zone can be represented using at most |C0|
2 atomic

constraints of the form x - y ≤ n such that each pair of
clocks x y is mentioned only once.

• The C0xC0 matrix of these elements is the DBM
matrix

DBMs

• Example, consider the zone

D = x-0 < 20 ∧ y-0≤20 ∧ y-x≤10 ∧ x-y ≤-10 ∧ 0-z < 5.

• If the clocks are ordered 0,x,y,z

DBMs

• Canonical DBMs
• Usually there are an infinite number of zones sharing

the same solution set, but there is a unique
representation where no atomic constraint can be
strengthened without losing solutions.

• To compute the canonical form of a given zone we
need to derive the tightest constraint on each clock
difference.

• To solve this problem, we use a weighted graph
interpretation of zones where the clocks are nodes
and the atomic constraints are edges labeled with
bounds.

• A constraint in the form of x-y ≤ n will be converted to
an edge from node y to node x labeled with (n; ≤),
namely the distance from y to x is bounded by n.

DBMs

• Canonical DBMs: an example

• consider the zone x-0<20∧y-0≤20∧y-x≤10∧x-y≤-10

• by combining y-0≤20 and x-y≤-10 → x-0≤10

20+(-10) = 10

DBMs

• Canonical DBMs: an example

• Thus, deriving the tightest constraint on a pair of

clocks in a zone is equivalent to finding the shortest

path between their nodes in the graph interpretation.

• A canonical version of a zone can be computed using

a shortest path Floyd-Warshall algorithm.

• This algorithm is quite expensive (cubic in the

number of clocks), hence it is desirable to produce
DBM that are already in canonical form (as the result

of performing an operation on a canonical zone).

DBMs: Practical issues

• Canonical DBMs: removing redundant constraints

• For example, in a zone containing constraints x-y<2 ,

y-z<5 and x-z<7 the last constraint is redundant.

• From [LLPY97] it is known that for each zone there is

a minimal constraint system with the same solution

set.

• By computing this minimal form for all zones it is

possible to reduce memory consumption

DBMs: Practical issues

• Operations on Zones

DBMs: Practical issues

• Classes: property checking, transformation and zone-
normalization

• Property checking
– consistent(D)

– relation(D,D’)

– satisfied(D, x
i
-x

j
≤m)

• Transformation
– up(D)

– down(D)

– and(D, x
i
-y

j
≤b)

– free(D,x)

– reset(D,x:=m)

– copy(D,x:=y)

– shift(D,x:=x+m)

• Transformation
– norm

k
(D)

– norm
k,G
(D)

DBMs: Practical issues

• Example of pseudocode implementing and(D, xi-
yj≤b)

DBMs: Practical issues

• starting state
– all clock variables begin with value=0 and all advance at the

same rate

S0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

reset(x, 0)

reset(y, 0)

reset(z, 0)

free(D,x)

free(D,y)

free(D,z)

0

∞
∞
∞

0 0 0

0 0 0

0 0 0

0 0 0

DBMs: Practical issues

• starting state

– forward analysis

S0

reset(D, z:=0)

0

∞
∞
∞

0 0 0

0 0 0

0 0 0

0 0 0

S1

free(D,x)

free(D,y)

free(D,z)

0

∞
∞
0

0 0

0 0

0 0

0 0

0

∞
∞
0

0

∞
∞
∞

0 0

0 0

0 0

0 0

0

∞
∞
0

z:=0

Symbolic Reachability Analysis

• Model checking of two fundamental properties:

– liveness

– safety

• Safety properties can be checked using reachability analysis

• Reachability analysis consists of two basic steps:

– computing the state space of the automaton

– searching for states that satisfy or contradict given properties

• The first step can be performed prior to the search or on-the-fly
during the search process.

• On-the-fly methods have the advantage that only the part of the
state space that is required to prove the given property is
generated

• but on-the-fly methods will generate the entire state space for
proving invariants (and other properties)

Symbolic Reachability Analysis

• Here is the core of the verification engine of Uppaal

Symbolic Reachability Analysis

• Assume a timed automaton A with a set of initial states and a
set of final states (e.g. the bad states) characterized as <l0,D0>
and <lf, φf> respectively.

• Assume that k is the clock ceiling defined by the maximal
constants appearing in A and φf, and G denotes the set of
difference constraints appearing in A and φf. Algorithm 1 can be
used to

• check if the initial states may evolve to any state whose location
is lf and whose clock assignment satisfies φf. It computes the
normalized zone-graph of the automaton on-the-fly, in search for
symbolic states containing location lf and zones intersecting with
φf.

• The algorithm computes the transitive closure of →k,G step by
step, and at each step, checks if the reached zones intersect
with φf. From Theorem 2, it follows that the algorithm will return
with a correct answer. It is also guaranteed to terminate
because →k,G is finite.

Symbolic Reachability Analysis

• As mentioned earlier, for a given timed automaton with a fixed
set of clocks whose maximal constants are bounded by a clock
ceiling k, and a fixed set of diagonal constraints contained in the
guards, the number of all possible normalized zones is bounded
because a normalized zone can not contain arbitrarily large or
arbitrarily small constants. In fact the smallest possible zones
are the refined regions. Thus the whole state-space of a timed
automaton can only be partitioned into finitely many symbolic
states and the worst case is the size of the region graph of the
automaton, induced by the refined region equivalence.
Therefore, the algorithm is working on a finite structure and it
will terminate.

Symbolic Reachability Analysis

• Algorithm 1 also highlights some of the issues in developing a
model-checker for timed automata. Firstly, the representation
and manipulation of states, primarily zones, is crucial to the
performance of a model-checker. Note that in addition to the
operations to compute the successors of a zone according to

→k,G , the algorithm uses two more operations to check the
emptiness of a zone as well as the inclusion between two
zones. Thus, designing efficient algorithms and data-structures
for zones is a major issue in developing a verification tool for
timed automata. Secondly, PASSED holds all encountered
states and its size puts a limit on the size of systems we can
verify. This raises the research challenges e.g. state
compression [Ben02], state-space reduction [BJLY98] and
approximate techniques [Bal96].

