
Introduction to CTL

Model verification

• The main purpose of a model checker is to verify the model
with respect to a requirement specification.

• Like the model, the requirement specification must be
expressed in a formally well-defined and machine readable
language.

• Several such logics exist in the scientific literature

• Uppaal uses a simplified version of CTL.

CTL

CTL: Computation Tree Logic defines about how the state of

a system can evolve over time.

CTL formulas consist of the usual atomic propositional logic

formulas, plus temporal connectives.

The propositional logic formulas are expressions about the
state of the system. The temporal connectives are

expressions about paths into the future that the state of the

system can follow.

CTL consists of path formulae and state formulae.
– State formulae describe individual states

– path formulae quantify over paths or traces of the model.

CTL

Temporal connectives are pairs of symbols. They talk about

what can happen from the current state. The "current" state is

the one being described in the formula. The future is infinite,
i.e. the computation doesn't halt, although it can stay in the

same state forever.

CTL

The first member of the pair is one of

A - meaning on all paths from the "current" state, read as
"inevitably"

E - meaning on at least one path from the "current" state, read

as "possibly"

CTL

The second member of the pair is one of

X - meaning the next state

G - meaning all future states, read as "globally"

F - meaning some future state

U - meaning until

AF AX

CTL

•Suppose that the system is in some state S. The future of S,

by definition, includes S.

•ϕ is true iff it is satisfied by the current state S.

•AX (ϕ) is true iff ϕ is true for every immediate successor to
state S

•AG (ϕ) is true iff ϕ is true for every successor to state S,

including S That is, ϕ is true for all states on all paths into the
future from S (the subtree originating from S).

•AF (ϕ) is true iff on all paths into the future from S, there is a
state where ϕ holds.

•A [ϕUθ] is true iff all paths starting in state S satisfy ϕ until the
reach a state in which θ holds.

CTL

•EX (ϕ) is true iff ϕ is true for at least one immediate
successor to state S

•EG (ϕ) if true iff there is a path from S into the future for
which ϕ holds for every state on

•the path, including S.

•EF (ϕ) is true iff there exists a path into the future from S on

which there is a state where ϕ holds.

•E [ϕUθ] is true iff there exists a path starting in state S that

satisfies ϕ until reaching a state in which θ holds.

CTL

CTL

State conditions

CTL

X – neXt state

conditions

A – for all

CTL

X – neXt state

conditions

E – exists

CTL

G – all states in the

path

A – for all paths

G “all successors” –

expressed as [] in Uppaal

CTL

G – all states in the

path

E – exists one path

CTL

F – exists a state in

the path

A – for all paths

F “some successor”–

expressed as <> in Uppaal

CTL

F – exists a state in

the path

E – exists one path

CTL

U – “eventually” if there exists a state for

which ψ, then ϕ for its successors

A – for all paths

CTL

U – “eventually” if there exists a state for

which ψ, then ϕ for its successors

E – exists one path

CTL summary

Liveness

CTL and Uppaal

Connectives can be combined using predicate logic

Safety: The protocol allows only one process to be in its critical
section at any time.

AG ! (CS[P1] & CS[P2])

Liveness: Whenever any process want to enter its critical

section, it will eventually be permitted to do so.

AG (Enter[P1] ->AF CS[P1]) & AG (Enter[P2] -> AF CS[P2])

Non-blocking: A process can always request to enter its critical
section.

AG (Idle[P1] -> EX Enter[P1]) & AG (Idle[P2] -> EX Enter[P2])

CTL and Uppaal

•Like in CTL, the query language of Uppaal consists of path

formulae and state formulae.
State formulae describe individual states

path formulae quantify over paths or traces of the model.

• Path formulae can be classified into
– reachability,

– safety and

– liveness.

CTL and Uppaal

Derived CTL operators

CTL and Uppaal

Path formulae supported by Uppaal.

AG A[] EF E<>

Reachability

“Something good will eventually happen”

whether a given state formula, ϕ, possibly can be satisfied by a
reachable state.

Or

Does there exist a path starting at the initial state, such that ϕ is
eventually satisfied along that path ?

We express that some state satisfying ϕ should be reachable

using the path formula E ◊ ϕ.

In Uppaal, we write this property using the syntax E<> ϕ.

Reachability: example

For instance, when creating a model of a communication
protocol involving a sender and a receiver, it makes sense to
ask whether it is possible for the sender to send a message at
all or whether a message can possibly be received. These

properties do not by themselves guarantee the correctness of th
protocol (i.e. that any message is eventually delivered), but they
validate the basic behaviour of the model.

Safety properties

“something bad will never happen”.

• For instance, in a model of a nuclear power plant, a safety

property might be, that the operating temperature is always
(invariantly) under a certain threshold, or that a meltdown
never occurs..

• For instance when playing a game, a safe state is one in
which we can still win the game, hence we will possibly not
loose.

• In Uppaal these properties are formulated positively, e.g.,

something good is invariantly true. Let ϕ be a state formulae.
We express that ϕ should be true in all reachable states with
the path formulae A � ϕ

• … whereas E � ϕ says that there should exist a maximal
path such that ϕ is always true. In Uppaal we write A[] ϕ and
E[] ϕ respectively.

Liveness

“something will eventually happen”

• when pressing the on button of the remote control of the

television, then eventually the television should turn on. Or
in a model of a communication protocol, any message that

has been sent should eventually be received.

• In its simple form, liveness is expressed with the path

formula A ◊ ϕ, meaning ϕ is eventually satisfied.

• The more useful form is the “leads to” or “response”

property, written ϕ ψ which is read as whenever ϕ is
satisfied, then eventually ψ will be satisfied, e.g. whenever
a message is sent, then eventually it will be received. In

Uppaal these properties are written as A<> ϕ and ϕ --> ψ,

respectively.

LTL vs CTL

• LTL: Linear Temporal Logic: talks about each possible

path into the future, but without considering branching.

– I.E. we consider one path at a time and reason on it.

• LTL is CTL without the A and E connectives, except that
you assume an A (all paths) connective in front of the LTL

specification.

LTL vs CTL

• The LTL connectives are

• X - meaning the next state

• G - meaning all future states, read as "globally"

• F - meaning some future state

• U - meaning until

LTL vs CTL

• The temporal connectives are described below. Suppose

that the system is in some state S. The future of S, by
definition, includes S. Consider all the possible paths

starting in S.

• phi is true iff it is satisfied by the current state S.

• X (phi) is true iff for all paths from S phi holds for the
immediate successor to state S

• G (phi) is true iff for all paths from S phi holds on all
states on the path

• F (phi) is true iff for all paths from S, there is a state on

the path where phi holds.

• (phi U theta) is true iff for all paths from S phi holds until

state occurs in which theta holds.

LTL vs CTL

• Things we may say using LTL and we cannot say in CTL:

• FG p - along every path from initial state S there is a state
from which p will hold forever.

• Things we may say using CTL and we cannot say in LTL:

• AG(EF p) for all paths, in all states, there exists a path on

which there is a state where p holds

