
Implementation of FSM

Implementing (hierarchical) FSMs in C++/C

From Practical Statecharts in C/C++ by Miro Samek,
CMPBooks

Implementation refers to the simple parking mater example
(modified from the one in Lee-Varaiya book)

0 1

tick/expired

2 3 4

coin100 / safe

tick / safe

coin25 / safe

tick/expired tick / safetick / safe

coin25 / safe coin25 / safe coin25 / safe

coin100 / safe

coin100 / safe

coin100 / safe

A C implementation of (some) OO programming

We will focus on a C implementation that provides support for

• Abstraction joining data and functions operating on them,

defining which functions are for public use (interface) and
which for private use

• Inheritance defining new classes based on existing classes

• Polymorphism substituting objects with matching interfaces at
run-time

This is done by using a set of conventions and idioms

A C implementation of (some) OO programming

The Approach:
think of the FILE structure in ANSII C and of file-related ops

(open, close …)

• Attributes of the class are defined with a C struct

• Methods of the class are defined as C functions. Each
function takes a pointer to the attribute structure as an
argument

• Special methods initialize and clean up the attribute structure

Abstraction

An example: pseudo-class Hsm (Hierarchical state machine)

typedef struct Hsm Hsm;

struct Hsm {

State state_;

State source_;

};

Hsm *HsmCtor_(Hsm *me, State initial);

void HsmXtor_(Hsm *me);

void HsmInit(Hsm *me);

void HsmDispatch(Hsm *me, Event const *e);

void HsmTran_(Hsm *me);

State Hsm_top(Hsm *me, Event const *e);

A C implementation of (some) OO programming

Constructors and destructors
– The constructors take the me argument when they initialize

preallocated memory, and return the pointer to the initialized object
when the attribute structure can be initialized properly, or NULL
when the initialization fails.

– The destructor takes only the me argument and returns void.

• As in C++, you can allocate objects statically, dynamically (on

the heap), or automatically (on the stack).

• However, because of C syntax limitations,
– Can't initialize objects at the definition point

– For static objects, you can't invoke a constructor at all, because
function calls aren't permitted in a static initializer.

– Automatic objects must all be defined at the beginning of a block.
At this point, you generally do not have enough initialization
information to call the constructor; therefore, you often have to
divorce object allocation from initialization.

– It's a good programming practice to explicitly call destructors for all
objects when they become obsolete or go out of scope.

A C implementation of (some) OO programming

Some helper macros

#define HsmGetState(me_) ((me_)->state_)

#define CLASS(class_) typedef struct class_ class_;\

struct class_ {

#define METHODS };

#define END_CLASS

A C implementation of (some) OO programming

allow writing a C-language pseudo-class like this

CLASS(Hsm)

State state_;

State source_;

METHODS

Hsm *HsmCtor_(Hsm *me, PState initial);

void HsmXtor_(Hsm *me);

void HsmInit(Hsm *me);

void HsmDispatch(Hsm *me, Event const *e);

void HsmTran_(Hsm *me);

State Hsm_top(Hsm *me, Event const *e);

END_CLASS

Inheritance

Extension by adding attributes and methods
(overriding not considered at this time)

• Inheritance can be implemented in a number of ways

• Single inheritance can be obtained by embedding the
parent into the child

You can pass the child pointer to any function that expects a
pointer to the Parent class (you should explicitly upcast the
pointer)

struct Parent {

…

}

struct Child {

struct Parent super;

…

}

me

Parent

attributes

Child

attributes

A C implementation of (some) OO programming

Inheritance

An example: child of pseudo-class Hsm

struct ChildHsm {

struct Hsm super;

…

}

Uses

me->super->method

((Hsm *)me)->method

A C implementation of (some) OO programming

Constructors and destructors

• Inheritance adds responsibilities to class constructors and the

destructor.

• The child constructor must initialize the portion controlled by
the parent through an explicit call to the parent's constructor.

• To avoid potential dependencies, the superclass constructor
should be called before initializing the attributes.

• Exactly the opposite holds true for the destructor. The
inherited portion should be destroyed as the last step.

A C implementation of (some) OO programming

The macro

#define SUBCLASS(class_, superclass_) \

CLASS(class_) \

superclass_ super;

allows writing

SUBCLASS(ChildHsm, Hsm)

METHODS

void ChildHsmAdditional_(ChildHsm *me);

END_CLASS

Polymorphism

(this section is really not necessary and can be skipped)

• a class can override behavior defined by its parent class
by providing a different implementation of one or more

inherited methods.

• With polymorphism, in general, the association between

an object and its methods cannot be established at
compile time. Binding must happen at run time and is

therefore called dynamic binding.

• dynamic binding always involves a level of indirection in

method invocation.

Polymorphism: dynamic binding

• In C, this indirection can be provided by function pointers grouped
into virtual tables (VTABLE).

• The function pointer stored in the VTABLE represents a method (a
virtual method in C++), which a subclass can override.

• All instances (objects) of a given class have a pointer to the VTABLE
of that class (one VTABLE per class exists).

– This pointer is called the virtual pointer (VPTR).

Polymorphism: dynamic binding

Late binding is a two−step process of

(1) dereferencing the VPTR to get to the VTABLE, and

(2) dereferencing the desired function pointer to invoke the specific
implementation.

Polymorphism: dynamic binding

• Each object involved in dynamic binding must store the
VPTR to the VTABLE of its class.

• One way to enforce this condition is to require that all
classes using polymorphism be derived, directly or

indirectly, from a common abstract base class, Object (a
loaner from Java).

• The VTABLEs themselves require a separate and
parallel class hierarchy, because the virtual methods, as

well as the attributes, need to be inherited.

• The root abstract base class for the VTABLE hierarchy is
the ObjectVTABLE class.

Polymorphism: dynamic binding

CLASS(ObjectVTABLE)

ObjectVTABLE *super__; /* pointer to superclass' VTABLE */

void (*xtor)(Object *); /* public virtual destructor */

METHODS

END_CLASS

extern ObjectVTABLE theObjectVTABLE; /* Object class VTABLE */

• The purpose of the ObjectVTABLE class is to provide an abstract

base class for the derivation of VTABLEs.

• The private attribute super__ is a pointer to the VTABLE of the

superclass.

• The second attribute is the virtual destructor, which subsequently

is inherited by all subclasses of ObjectVTABLE.

• There should be exactly one instance of the VTABLE for any given

class. The VTABLE instance for the Object class

(theObjectVTABLE) is declared in the last line.

Polymorphism: dynamic binding

1 CLASS(Object)

2 struct ObjectVTABLE *vptr__; /* private vpointer */

3 METHODS

4 /* protected constructor 'inline'... */

5 # define ObjectCtor_(_me_) ((_me_)−>vptr__= &theObjectVTABLE,(_me_))

6 /* destructor 'inline'... */

7 # define ObjectXtor_(_me_) ((void)0)

8 /* dummy implementation for abstract methods */

9 void ObjectAbstract(void);

10 /* RTTI */

11 # define ObjectIS_KIND_OF(_me_, _class_) \

12 ObjectIsKindOf__((Object*)(_me_), &the##_class_##Class)

13 int ObjectIsKindOf__(Object *me, void *class);

14 END_CLASS

15

Polymorphism: dynamic binding

SUBCLASS (touHMI, HMI) typedef struct touHMI touHMI;\

struct touHMI { ...

HMI super;

VTABLE(touHMI, HMI) };

typedef struct touHMIVTABLE touHMIVTABLE;

extern touHMIVTABLE thetouHMIVTABLE;

struct touHMIVTABLE {

HMIVTABLE super_;

void (*myMet)(Object *); void (*myMet)(Object *);

METHODS };

BEGIN_VTABLE(touHMI, HMI) touHMIVTABLE thetouHMIVTABLE;

static ObjectVTABLE *touHMIVTABLECtor(HMI *t) {

register touHMIVTABLE *me = &thetouHMIVTABLE;

*(HMIVTABLE *)me = *(HMIVTABLE *)((Object *)t)->vptr__;

VMETHOD(touHMI, xtor) = ((touHMI *)me)->xtor = (void (*)(Object *))touHMIXtor_;

(void (*)(Object *))touHMIXtor_;

VMETHOD(touHMI, myMet) = ((touHMI *)me)->myMet = (void (*)(Object *))touHMImyM_;

(void (*)(Object *))touHMImyM_;

END_VTABLE ((ObjectVTABLE*)me)−>super__ = ((Object*)t)−>vptr__;

return (ObjectVTABLE *)me; \

}

Polymorphism: dynamic binding

#define VTABLE(class_, superclass_) }; \

typedef struct class_##VTABLE class_##VTABLE; \

extern class_##VTABLE the##class_##VTABLE; \

struct class_##VTABLE { \

superclass_##VTABLE super_;

SUBCLASS (touHMI, HMI) ...

VTABLE(touHMI, HMI) };

typedef struct touHMIVTABLE touHMIVTABLE;

extern touHMIVTABLE thetouHMIVTABLE;

struct touHMIVTABLE {

HMIVTABLE super_;

METHODS };

The hierarchies of the attribute classes (rooted in the Object
class) and VTABLEs (rooted in the ObjectVTABLE class) must

be exactly parallel.

The declaration of the VTABLE hierarchy and the VTABLE
singletons can be encapsulated in the VTABLE() macro.

Polymorphism: dynamic binding

VTABLE singletons, as with all other objects, need to be
initialized through their own constructors, which the preprocessor

macros can automatically generate.

The body of the VTABLE constructor can be broken into two

parts:

(1) copying the inherited VTABLE and

(2) initializing or overriding the chosen function pointers.

The first step is generated automatically by the macro

BEGIN_VTABLE().

1 #define BEGIN_VTABLE(class_, superclass_) \

2 class_##VTABLE the##class_##VTABLE; \

3 static ObjectVTABLE *class_##VTABLECtor(class_ *t) \

4 register class_##VTABLE *me = &the##class_##VTABLE; \

5 *(superclass_##VTABLE *)me = \

6 *(superclass_##VTABLE *)((Object *)t)−>vptr__;

Polymorphism: dynamic binding

1 #define BEGIN_VTABLE(class_, superclass_) \

2 class_##VTABLE the##class_##VTABLE; \

3 static ObjectVTABLE *class_##VTABLECtor(class_ *t) \

4 register class_##VTABLE *me = &the##class_##VTABLE; \

5 *(superclass_##VTABLE *)me = \

6 *(superclass_##VTABLE *)((Object *)t)−>vptr__;

CLASS(touHMI) };

VTABLE(touHMI, HMI) typedef struct touHMIVTABLE touHMIVTABLE;

extern touHMIVTABLE thetouHMIVTABLE;

struct touHMIVTABLE {

HMIVTABLE super_;

BEGIN_VTABLE(touHMI, HMI) touHMIVTABLE thetouHMIVTABLE;

static ObjectVTABLE *touchHMIVTABLECtor(HMI *t)

register touchHMIVTABLE *me = &thetouchHMIVTABLE;

*(HMIVTABLE *)me = *(HMIVTABLE *)((Object *)t)->vptr__;

This macro first defines the ClassVTABLE instance (line 2),

then starts defining the static VTABLE constructor (line 3).

– First, the constructor makes a copy (by value) of the inherited VTABLE

(lines 5, 6).

– After adding the attributes or methods to the superclass, no manual

changes to the subclasses are required. You only have to recompile the

subclass code.

Polymorphism: dynamic binding

1 #define BEGIN_VTABLE(class_, superclass_) \

2 class_##VTABLE the##class_##VTABLE; \

3 static ObjectVTABLE *class_##VTABLECtor(class_ *t) { \

4 register class_##VTABLE *me = &the##class_##VTABLE; \

5 *(superclass_##VTABLE *)me = \

6 *(superclass_##VTABLE *)((Object *)t)−>vptr__;

METHODS };

BEGIN_VTABLE(touchHMI, HMI) touchHMIVTABLE thetouchHMIVTABLE;

/* other methods */ static ObjectVTABLE *touchHMIVTABLECtor(HMI *t) {

/* VMETHOD macro */ register touchHMIVTABLE *me = &thetouchHMIVTABLE;

*(HMIVTABLE *)me = *(HMIVTABLE *)((Object *)t)->vptr__;

This macro first defines the ClassVTABLE instance (line 2),

then starts defining the static VTABLE constructor (line 3).

– First, the constructor makes a copy (by value) of the inherited
VTABLE (lines 5, 6).

– After adding the attributes or methods to the superclass, no manual

changes to the subclasses are required. You only have to recompile the

subclass code.

Of course, if a class adds its own virtual functions, the corresponding
function pointers are not initialized during this step.

Polymorphism: dynamic binding

The second step of binding virtual functions to their implementation is
facilitated by the VMETHOD() macro.
#define VMETHOD(class_, meth_) ((class_##VTABLE *)me)−>meth_

This macro is an lvalue, and its intended use is to assign to it the appropriate
function pointer as follows.
VMETHOD(Object, xtor) = (void (*)(Object *))touchHMIXtor_;

METHODS };

BEGIN_VTABLE(touchHMI, HMI) touchHMIVTABLE thetouchHMIVTABLE;

/* other methods */ static ObjectVTABLE *touchHMIVTABLECtor(HMI *t) {

/* VMETHOD macro */ register touchHMIVTABLE *me = &thetouchHMIVTABLE;

VMETHOD(touchHMI, xtor) = *(HMIVTABLE *)me = *(HMIVTABLE *)((Object *)t)->vptr;

(void (*)(Object *))touchHMIXtor_; ((touchHMI *)me)->xtor = (void (*)(Object *))touchHMIXtor_;

Generally, to avoid compiler warnings, you must explicitly upcast the function
pointer to take the superclass me pointer (Object* in this case) rather than
the subclass pointer (touchHMI* in this case).

The explicit upcasting is necessary, because the C compiler doesn't know
that touchHMI is related to Object by inheritance and treats these types as
completely different.

Polymorphism: dynamic binding

If you don't want to provide the implementation for a given method

because it is intended to be abstract (a pure virtual in C++), you

should still initialize the corresponding function pointer with the

ObjectAbstract() dummy implementation.

An attempt to execute ObjectAbstract() aborts the execution through

a failed assertion, which helps detect unimplemented abstract

methods at run time.

Polymorphism: dynamic binding

The definition of every VTABLE constructor opened with

BEGIN_VTABLE() must be closed with the following END_VTABLE

#define END_VTABLE\

((ObjectVTABLE*)me)−>super__ =

((Object*)t)−>vptr__; \

return (ObjectVTABLE *)me; \

}

END_VTABLE ((ObjectVTABLE*)me)−>super__=((Object*)t)−>vptr__;

return (ObjectVTABLE *)me;

}

Polymorphism: dynamic binding

The attribute and virtual method class hierarchies are coupled by
the VPTR attribute, which needs to be initialized to point to the
appropriate VTABLE singleton.
The appropriate place to set up this pointer is the attribute
constructor, after the superclass constructor call to set the VPTR to
point to the VTABLE of the superclass.
If the VTABLE for the object under construction is not yet initialized,
the VTABLE constructor should be called.
These two steps are accomplished by invoking the VHOOK() macro.
1 #define VHOOK(class_) \

2 if (((ObjectVTABLE *)&the##class_##VTABLE)−−−−>super__== 0) \

3 ((Object *)me)−−−−>vptr__ = class_##VTABLECtor(me); \

4 else \

5 ((Object *)me)−−−−>vptr__ = \

6 (ObjectVTABLE *)&the##class_##VTABLE

Polymorphism: dynamic binding

1 #define VHOOK(class_) \

2 if (((ObjectVTABLE *)&the##class_##VTABLE)−−−−>super__== 0) \

3 ((Object *)me)−−−−>vptr__ = class_##VTABLECtor(me); \

4 else \

5 ((Object *)me)−−−−>vptr__ = \

6 (ObjectVTABLE *)&the##class_##VTABLE

The macro determines whether the VTABLE has been initialized. It

checks the super__ attribute. If it is NULL (initialization value in C) …

Polymorphism: dynamic binding

1 #define VHOOK(class_) \

2 if (((ObjectVTABLE *)&the##class_##VTABLE)−−−−>super__== 0) \

3 ((Object *)me)−−−−>vptr__ = class_##VTABLECtor(me); \

4 else \

5 ((Object *)me)−−−−>vptr__ = \

6 (ObjectVTABLE *)&the##class_##VTABLE

If it is NULL (initialization value in C) … then the VTABLE

constructor must be invoked before setting up the VPTR;

Polymorphism: dynamic binding

1 #define VHOOK(class_) \

2 if (((ObjectVTABLE *)&the##class_##VTABLE)−−−−>super__== 0) \

3 ((Object *)me)−−−−>vptr__ = class_##VTABLECtor(me); \

4 else \

5 ((Object *)me)−−−−>vptr__ = \

6 (ObjectVTABLE *)&the##class_##VTABLE

otherwise, just the VPTR must be set up

Polymorphism: dynamic binding

1 #define VHOOK(class_) \

2 if (((ObjectVTABLE *)&the##class_##VTABLE)−−−−>super__== 0) \

3 ((Object *)me)−−−−>vptr__ = class_##VTABLECtor(me); \

4 else \

5 ((Object *)me)−−−−>vptr__ = \

6 (ObjectVTABLE *)&the##class_##VTABLE

VHOOK(touHMI) if (((ObjectVTABLE*)&thetouHMIVTABLE)−−−−>super__== 0)

((Object *)me)−−−−>vptr__ = touHMIVTABLECtor(me);

else

((Object *)me)−−−−>vptr__ = (ObjectVTABLE *)&thetouHMIVTABLE

Polymorphism: dynamic binding

Note that because VHOOK() is invoked after the superclass
constructor, the VTABLE of the superclass is already initialized by
the same mechanism applied recursively, so the whole class
hierarchy is initialized properly.

Finally, after all the setup work is done, you are ready to use
dynamic binding. For the virtual destructor (defined in the Object
class), the polymorphic call takes the form

(*obj−>vptr__−>xtor)(obj);

where obj is assumed to be of Object* type. Note that the obj pointer
is used in this example twice: once for resolving the method and
once as the me argument.

Polymorphism: dynamic binding

In the general case, you deal with Object subclasses rather than the
Object class directly. Therefore you have to upcast the object
pointer (on type Object*) and downcast the virtual pointer vptr__ (on
the specific VTABLE type) to find the function pointer. These
operations, as well as double−object pointer referencing, are
encapsulated in the macros VPTR(), VCALL(), and END_CALL.

#define VPTR(class_, obj_) \

((class_##VTABLE *)(((Object *)(obj_))−>vptr__))
#define VCALL(class_, meth_, obj_) \

(*VPTR(class_, _obj_)−>meth_)((class_*)(obj_)
#define END_CALL)

Polymorphism: dynamic binding

The virtual destructor call on behalf of object touHMI of any subclass
of class Object takes the following form.
VCALL(Object, xtor, touHMI)

END_CALL;

If a virtual function takes arguments other than me, they should be
sandwiched between the VCALL() and END_CALL macros.
The virtual function can also return a result.
result = VCALL(Foo, myMethod, obj), 2, 3, END_CALL;

obj points to a Foo class or any subclass of Foo, and the virtual
function myMethod() is defined in touHMIVTABLE.

Note the use of the comma after VCALL().

Design options

• Now back at our original objective …

• Encoding FSMs in C++ and C

Design options

• Design decisions and trade-offs
– How do you represent events? How about events

with parameters?

– How do you represent states?

– How do you represent transitions?

– How do you dispatch events to the state machine?

• When you add state hierarchy, exit/entry actions

and transitions with guards, the design can

become quite complex

• We are going to deal first with standard (i.e. not

hierarchical) state machines and then add

hierarchy handling

Typical implementations

• Typical implementations in the C or C++ language

include
– The nested switch statement

– The state table

– The object-oriented State design pattern or …

– A combinations of the previous

Typical implementations

• Implementation of a FSM is not enough!

• State machine implementations are typically coupled with a

concurrency model and an event dispatching policy

• More about this later !!

Polling HW

for events
Int from HW

Interrupt

handler

State machine

implementation State

machine

implem.

Typical implementations

• The simplest interface for an FSM implementation

consisting of three methods
– init() takes a top-level initial transition

– dispatch() to dispatch an event to the state machine

– tran() to make an arbitrary transition

Typical implementations

Nested switch statement

• Perhaps the most popular technique

• 2 levels of switch statements

• 1st level controlled by a scalar state variable

• 2nd level controlled by an event signal variable

Or nest the switches first by event and then by state

This seems to be the option of embedded coder …

(and there may be good reasons)

Nested switch implementation

enum Signal {

SIGNAL_1, SIGNAL_2, SIGNAL_3, ...

};

enum State {

STATE_X, STATE_Y, STATE_Z, ...

};

void init() {}

void dispatch(unsigned const sig) {}

void tran(State target)

Signals and states are typically represented as

enumerations

Nested switch implementation

class Hsm1 {

private:

State myState;

...

public:

void init();

void dispatch(unsigned const sig);

void tran(State target);

...

}

C++ (class based) implementation

Each instance tracks

its own state

Each instance tracks

its own state

Nested switch implementation

void dispatch(unsigned const sig) {

switch(myState) {

case STATE_1:

switch(sig) {

case SIGNAL_1:

tran(STATE_X)

...

break;

case SIGNAL_2:

tran(STATE_Y)

...

break;

}

break;

case STATE_2:

switch(sig) {

case SIGNAL_1:

...

break;

...

}

break;

...

}

Nested switch impl.: variations

Breaking up the event handler code by moving the second
(signal) level into a specialized state handler function

void dispatch(unsigned const sig) {

switch(myState) {

case STATE_1:

ManageState1(sig);

break;

case STATE_2:

ManageState2(sig);

break;

...

}

Nested switch method

The nested switch statement method:

• Is simple

• Requires enumerating states and triggers

• Has a small (RAM) memory footprint
– 1 scalar variable required

• Does not promote code reuse

• Event dispatching time is not constant
– Increases with the number of cases O(log n)

• Implementation is not hierarchical and manual coded
entry/exit actions are prone to error and difficult to

maintain against changes in the state machine. The

code pertaining to one state (entry action) is distributed
and repeated in many places (on every transition leading

to that state)
– This is not a problem for automatic synthesis tools

The example ….

enum Signal {

TICK, COIN25, COIN100

};

enum State {

S_0, S_1, S_2, S_3, S_4

};

enum Display {

EXPIRED, SAFE

};

coin25 / safe

0 1

tick/expired

2 3 4

coin100 / safe

tick / safe

coin25 / safe

tick/expired tick / safetick / safe

coin25 / safe coin25 / safe

coin100 / safe
coin100 / safe

coin100 / safe

The example ….

CLASS(PMeter)

State state_;

METHODS

void PMeterInit(PMeter *me);

void PMeterDispatch(PMeter *me, Signal const *e);

void PMeterTran_(PMeter *me, PMeter dest);

void PMeterShow_(Display d);

END_CLASS

coin25 / safe

0 1

tick/expired

2 3 4

coin100 / safe

tick / safe

coin25 / safe

tick/expired tick / safetick / safe

coin25 / safe coin25 / safe

coin100 / safe
coin100 / safe

The example ….

void PMeterInit(PMeter *me)

{

me->state_ = S_0;

}

void PMeterTran_(PMeter *me, PMeter dest)

{

me->state_ = dest;

}

coin25 / safe

0 1

tick/expired

2 3 4

coin100 / safe

tick / safe

coin25 / safe

tick/expired tick / safetick / safe

coin25 / safe coin25 / safe

coin100 / safe
coin100 / safe

The example ….

void PMeterDispatch(PMeter *me, Signal const *s)

{

switch(me->state_) {

case S_0:

switch(sig) {

case COIN25:

PMeterShow(SAFE);

tran(S_1)

break;

case COIN100:

PMeterShow(SAFE);

tran(S_4)

break;

}

break;

case S_1:

switch(sig) {

case TICK:

PMeterShow(EXPIRED);

tran(S_0)

break;

case COIN25:

tran(S_2)

break;

case COIN100:

tran(S_4)

break;

}

break;

coin25 / safe

0 1

tick/expired

2 3 4

coin100 / safe

tick / safe

coin25 / safe

tick/expired tick / safetick / safe

coin25 / safe coin25 / safe

coin100 / safe
coin100 / safe

The State Table approach

State tables containing arrays of transitions for each state

Signals→→→→

S
ta

te
s

→→ →→

action1()

STATEX

The content of the cells are transitions, represented as pairs

{action, next state}

SIGNAL_1 SIGNAL_2 SIGNAL_3 SIGNAL_4

STATE_X

STATE_Y

STATE_Z

STATE_A

The class StateTable

class StateTable {

public:

typedef void (StateTable::*Action)();

struct Tran {

Action action;

unsigned nextState;

};

StateTable(Tran const *table, unsigned nStates, unsigned nSignals)

: myTable(table) myNsignals(nSignals), myNstates(nStates) {}

virtual ~StateTable(){}

void dispatch(unsigned const sig) {

register Tran const *t = myTable + myState*myNsignals + sig;

(this->*(t->action))();

myState = t->nextState;

}

void doNothing() {}

protected:

unsigned myState;

private:

Tran const *myTable;

unsigned myNsignals;

unsigned myNstates;

};

type Action is a pointer to a

member function of

StateTable (or a subclass)

type Action is a pointer to a

member function of

StateTable (or a subclass)

The class StateTable

class StateTable {

public:

typedef void (StateTable::*Action)();

struct Tran {

Action action;

unsigned nextState;

};

StateTable(Tran const *table, unsigned nStates, unsigned nSignals)

: myTable(table) myNsignals(nSignals), myNstates(nStates) {}

virtual ~StateTable(){}

void dispatch(unsigned const sig) {

register Tran const *t = myTable + myState*myNsignals + sig;

(this->*(t->action))();

myState = t->nextState;

}

void doNothing() {}

protected:

unsigned myState;

private:

Tran const *myTable;

unsigned myNsignals;

unsigned myNstates;

};

type Tran is the type of the

table cell

type Tran is the type of the

table cell

The class StateTable

class StateTable {

public:

typedef void (StateTable::*Action)();

struct Tran {

Action action;

unsigned nextState;

};

StateTable(Tran const *table, unsigned nStates, unsigned nSignals)

: myTable(table) myNsignals(nSignals), myNstates(nStates) {}

virtual ~StateTable(){}

void dispatch(unsigned const sig) {

register Tran const *t = myTable + myState*myNsignals + sig;

(this->*(t->action))();

myState = t->nextState;

}

void doNothing() {}

protected:

unsigned myState;

private:

Tran const *myTable;

unsigned myNsignals;

unsigned myNstates;

};

(initialization list parameter)

constructor and destructor

(initialization list parameter)

constructor and destructor

The class StateTable

class StateTable {

public:

typedef void (StateTable::*Action)();

struct Tran {

Action action;

unsigned nextState;

};

StateTable(Tran const *table, unsigned nStates, unsigned nSignals)

: myTable(table) myNsignals(nSignals), myNstates(nStates) {}

virtual ~StateTable(){}

void dispatch(unsigned const sig) {

register Tran const *t = myTable + myState*myNsignals + sig;

(this->*(t->action))();

myState = t->nextState;

}

void doNothing() {}

protected:

unsigned myState;

private:

Tran const *myTable;

unsigned myNsignals;

unsigned myNstates;

};

(simple) dispatch function(simple) dispatch function

Declaring an object, the events, states and table

Enum Event{

SIGNAL1, SIGNAL2, ..., MAX_SIG

};

Enum State {

STATE_X, STATE_Y, ..., MAX_STATE

};

class Hsm : public StateTable {

public:

Hsm() : StateTable(&myTable[0][0], MAX_STATE, MAX_SIG) {}

void init() {myState=STATE_X;}

...

private:

void action1();

void action2();

...

private:

static StateTable::Tran const myTable[MAX_STATE][MAX_SIG];

...

};

Needed for

detecting the

array size

Needed for

detecting the

array size

Declaring an object, the events, states and table

Enum Event{

SIGNAL1, SIGNAL2, ..., MAX_SIG

};

Enum State {

STATE_X, STATE_Y, ..., MAX_STATE

};

class Hsm : public StateTable {

public:

Hsm() : StateTable(&myTable[0][0], MAX_STATE, MAX_SIG) {}

void init() {myState=STATE_X;}

...

private:

void action1();

void action2();

...

private:

static StateTable::Tran const myTable[MAX_STATE][MAX_SIG];

...

};

Initialize with the

table and table

size

Initialize with the

table and table

size

Declaring an object, the events, states and table

Enum Event{

SIGNAL1, SIGNAL2, ..., MAX_SIG

};

Enum State {

STATE_X, STATE_Y, ..., MAX_STATE

};

class Hsm : public StateTable {

public:

Hsm() : StateTable(&myTable[0][0], MAX_STATE, MAX_SIG) {}

void init() {myState=STATE_X;}

...

private:

void action1();

void action2();

...

private:

static StateTable::Tran const myTable[MAX_STATE][MAX_SIG];

...

};

myTable is a static constant table (one

for all the objects crated from this

class) with elements of type Tran

myTable is a static constant table (one

for all the objects crated from this

class) with elements of type Tran

The state transition table

StateTable::Tran const Hsm::myTable[MAX_STATE][MAX_SIG] = {

{{ &StateTable::doNothing, STATEX},

{ static_cast<StateTable::Action>(&Hsm::action2), STATEY},

{ static_cast<StateTable::Action>(&Hsm::action3), STATEX}},

{{ static_cast<StateTable::Action>(&Hsm::action4), STATEZ},

{ &StateTable::doNothing, STATE_ERR},

{ static_cast<StateTable::Action>(&Hsm::action5), STATEZ}},

};

State Table implementation

void dispatch(unsigned const sig) {

register Tran const *t = myTable + myState*myNsignals + sig;

(this->*(t->action))();

myState = t->nextState;

}

Dispatch performs three steps:

• it identifies the transition to take as a state table lookup

• It executes the action

• it changes the state

Typical implementations

The state table is divided into a generic and reusable
processor part and an application-specific part

The application-specific part requires
– Enumerating states and signals

– Subclassing StateTable

– Defining the action functions

– Initializing the transition table

Typical implementations

The state table implementation has the following consequences
• it maps directly to the highly regular state table representation of a

state machine

• it requires the enumeration of triggers and states

• It provides relatively good performance for event dispatching O(1)

• It promotes code reuse of the event processor

• It requires a large state table, which is typically sparse and

wasteful. However, the table con be stored in ROM

• It requires a large number of fine grain functions representing

actions

• It requires a complicated initialization

• It is not hierarchical
– the state table can be extended to deal with state nesting, entry/exit

actions and transition guards by hardcoding into transition actions

functions

The example: basic types

typedef int (*Action)(StateTab *me);

typedef struct Tran {

Action action;

unsigned nextState;

} Tran;

CLASS (StateTab)

...

METHODS

...

END_CLASS

coin25 / safe

0 1

tick/expired

2 3 4

coin100 / safe

tick / safe

coin25 / safe

tick/expired tick / safetick / safe

coin25 / safe coin25 / safe

coin100 / safe
coin100 / safe

The Example: the State Table “class”

CLASS (StateTab)

State myState_;

Tran const *myTable__;

unsigned myNsignals__;

unsigned myNstates__;

METHODS

StateTab *StateTabCTor(StateTab *me, Tran const *table,

unsigned nStates, unsigned nSignals) {

me->myTable__ = table;

me->myNstates__ = nStates;

me->myNsignals__ = nSignals;

}

void dispatch(StateTab *me, unsigned const sig) {

Tran const *t = me->myTable__ +

me->myState_*me->myNsignals__ + sig;

t->action();

myState_ = t->nextState;

}

void doNothing() {};

END_CLASS

coin25 / safe

0 1

tick/expired

2 3 4

coin100 / safe

tick / safe

coin25 / safe

tick/expired tick / safetick / safe

coin25 / safe coin25 / safe

coin100 / safe
coin100 / safe

The example: preparing for PMeter

enum Signal {

TICK, COIN25, COIN100, MAX_SIGNAL

};

enum State {

S_0, S_1, S_2, S_3, S_4, MAX_STATE

};

coin25 / safe

0 1

tick/expired

2 3 4

coin100 / safe

tick / safe

coin25 / safe

tick/expired tick / safetick / safe

coin25 / safe coin25 / safe

coin100 / safe
coin100 / safe

The Example: the PMeter “class”

SUBCLASS(PMeter, StateTab)

METHODS

void PMeterCtor(PMeter *me) {

StateTabCtor(me, &myTable[0][0], MAX_STATE, MAX_SIGNAL);

}

void PMeterinit(PMeter *me) {me->myState_ = S_0;};

void PMeterShowSafe();

void PMeterShowExpired();

END_CLASS

coin25 / safe

0 1

tick/expired

2 3 4

coin100 / safe

tick / safe

coin25 / safe

tick/expired tick / safetick / safe

coin25 / safe coin25 / safe

coin100 / safe
coin100 / safe

An example

Tran const myTable[MAX_STATE][MAX_SIGNAL] = {

{{ &doNothing, S_0},

{ &PMeterShowSafe, S_1},

{ &PMeterShowSafe, S_4}},

{{ &PMeterShowExpired, S_0},

{ &doNothing, S_2},

{ &doNothing, S_4}},

{{ &doNothing, S_1},

{ &doNothing, S_3},

{ &doNothing, S_4}},

{{ &doNothing, S_2},

{ &doNothing, S_4},

{ &doNothing, S_4}},

{{ &doNothing, S_3},

{ &doNothing, S_4},

{ &doNothing, S_4}},

};
coin25 / safe

0 1

tick/expired

2 3 4

coin100 / safe

tick / safe

coin25 / safe

tick/expired tick / safetick / safe

coin25 / safe coin25 / safe

coin100 / safe
coin100 / safe

Typical implementations: State pattern

Led setup example

+

-

Typical implementations

State Pattern

• OO approach

State Pattern

LEDSState

onPlus()

onMinus()
Virtual
methods

min low max

Concrete
states

abstract

state

Panel

onPlus()
onMinus()
init()
tran(LEDSState
*target)
static min My_min ;
…

State->onPlus()

context

delegation

State->onMinus()

myState

curbutton

Typical implementations: State pattern

• States are represented as subclasses of an abstract
state class (LEDSState), which defines a common

interface for handling events (each event corresponds to
a virtual method).

• A context class (Panel) performs the processing and

delegates all events for processing to the current state

object (designated by the myState attribute).

• State transitions are accomplished by reassigning the
myState pointer.

• Adding new events requires adding new methods to the

abstract state class (and to the concrete classes actually
hendling them)

• Adding new states requires subclassing the abstract
state class .

Typical implementations: State pattern

• The LEDSState class provides the interface for handling
events as well as the default (do−nothing)

implementation for the actions associated with these
events.

• The min, low, med, high, max states are defined as
concrete subclasses of the abstract LEDSState class.

• State subclasses override only event−handler methods

corresponding to events that are handled in these states.

• Class Panel plays the role of the context class from the

pattern. It grants friendship to all state classes and also
declares all concrete states as static members.

Typical implementations: State pattern

• Example
class PanelState { // abstract State

public:

virtual void onPlus(Panel *context) {}

virtual void onMinus(Panel *context) {}

};

class min : public PanelState { // concrete State min

public:

virtual void onPlus(Panel *context);

virtual void onMinus(Panel *context);

};

Typical implementations: State pattern

• Example

class Panel { // Context class

friend class min;

friend class low;

...

friend class high;

static min my_min;

static min my_low;

...

static min my_high;

PanelState *myState;

public:

Panel(PanelState *initial) : myState(initial) {}

void init() { AllLedsOff(); tran(&my_min); }

void onPlus() { myState−>onPlus(this); }

void onMinus() { myState−>onMinus(this); }

protected:

void tran(PanelState *target) { myState = target; }

};

Typical implementations: State pattern

• The context class Panel duplicates the interface of the
abstract state class declaring a method for every signal

event.

• The implementation of these methods is fixed as

prescribed by the pattern.

void onEvent(args) { myState−>onEvent(this, args); }

• The context class simply delegates to the appropriate
methods of the state class, which are invoked

polymorphically.

• The specific actions are implemented inside the event

handler methods of the concrete LEDSState subclasses.

Typical implementations: State pattern

The State design pattern has the following consequences.

– It partitions state−specific behavior and localizes it in

separate classes.

– It makes state transitions efficient (reassigning one pointer).

– It provides very good performance for event dispatching

through the late binding mechanism (O(const), not taking into

account action execution).

• This performance is generally better than indexing into a state
table plus invoking a method via a function pointer, as used in
the state table technique.

• However, such performance is only possible because the
selection of the appropriate event handler is not taken into
account. Indeed, clients typically will use a switch statement
to perform such selections.

Typical implementations: State pattern

The State design pattern has the following consequences.

– It allows you to customize the signature of each event handler.

Event parameters can be made explicit.

– It is memory efficient. If the concrete state objects don't have
attributes (only methods), they can be declared static and

shared among FSMs.

– It does not require enumerating states.

– It does not require enumerating events.

– It compromises the encapsulation of the context class, which

requires granting friendship to all state classes.

– Adding states requires adding state subclasses.

– Handling new events requires adding event handlers to the

state class interface.

– The event handlers are typically of fine granularity, as in the

state table approach.

– It is not hierarchical.

Typical implementations: State pattern

• The standard State design pattern does not use the
dispatch() method for performing RTC steps, but provides

a specific (type−safe) event−handler method for every
signal event.

• However, the pattern can be modified (simplified) by
combining all event handlers of the state class into just

one, generic state handler, dispatch().

– The abstract state class then becomes generic, and its

dispatch() method becomes the generic state handler.

Demultiplexing events (by event type), however, must
be done inside the dispatch() methods of the concrete

state subclasses.

Samek’s proposal

•A mixed implementation

Typical implementations: Samek’s pattern

• The implementation combines elements from the nested switch

statement, state table, and State design pattern.

• The design hinges on class Fsm. This class plays a double role

as the context class from the state pattern and the event

processor from the table pattern.

• States are represented as function pointers, more exactly, as

handlers to methods of Fsm (actually, its concrete subclasses

like Panel).

– This means that state handlers have immediate access to all
attributes of the context class (via the this pointer) without
breaking encapsulation.

• Like the context class, Fsm keeps track of the current state by

means of the myState attribute of type Fsm::State, which is a

pointer−to−member function of the Fsm class.

typedef void (Fsm::*State)(unsigned const sig);

Typical implementations: Samek’s pattern

• LED panel implementation

class Fsm {

public:

typedef void (Fsm::*State)(unsigned const sig);

Fsm(State initial) : myState(initial) {}

virtual ~Fsm() {} // virtual xtor

void init() { dispatch(0); }

void dispatch(int sig) { (this−>*myState)(sig); }

protected:

void tran(State target) { myState = target; }

#define TRAN(target_) tran(static_cast<State>(target_))

State myState;

};

Typical implementations: Samek’s pattern

• LED panel implementation

enum Signal{ // enumeration for CParser signals

B_PLUS, B_MINUS

};

class Panel : public Fsm {

public:

Panel() : Fsm((FSM_STATE)initial) {} // ctor

private:

void initial(int); // initial pseudostate

void min(int sig); // state−handler

void low(int sig); // state−handler

void med(int sig); // state−handler

void max(int sig); // state−handler

void high(int sig); // state−handler

private:

LedDevice *LEDS; // comment character counter

};

Typical implementations: Samek’s pattern

• LED panel implementation

void Panel::initial(int) {

AllLedsOff();

TRAN(&Panel::min); // take the default transition

}

void Panel::min(int sig) {

switch (sig) {

case B_PLUS:

TRAN(&Panel::low); // transition to “low"

break;

case B_MINUS:

TRAN(&Panel::max); // transition to “max"

break;

}

}

Typical implementations: Samek’s pattern

• The corresponding C implementation is straightforward ….

Typical implementations: Samek’s pattern

This FSM design pattern has the following characteristics.

• It is simple.

• It partitions state−specific behavior and localizes it in separate

state handler methods.

• It provides direct and efficient access to state machine attributes

from state handler methods and does not require compromising

the encapsulation of the context class.

• It has a small memory footprint because only one state variable

(the myState pointer) is necessary to represent a state machine

instance.

• It promotes code reuse of an extremely small (trivial) and

generic event processor implemented in the Fsm base class.

• It makes state transitions efficient (by reassigning the myState

pointer).

more …

Typical implementations: Samek’s pattern

This FSM design pattern has the following characteristics.

• It provides good performance for event dispatching by

eliminating one level of switch from the nested switch statement

technique and replacing it with the efficient function pointer

dereferencing technique. However, the switch can be replaced
by a look−up table in selected (critical) state handlers

• It is scalable and flexible. It is easy to add both states and

events, as well as to change state machine topology, even late

in the development cycle.

• It does not require enumerating states (only events must be

enumerated).

• It is not hierarchical.

Implementing Guards, Junctions, and Choice Points

• Guards, Junctions and choice points map to plain structured

code and are therefore easy to implement in those techniques
that give program-level control of the target of a state transition,

such as the nested switch statement, the State design pattern,

and the optimal FSM pattern.

• A guard specified in the expression [guard]/action … maps

simply maps to the if statement: if(guard()) { action(); …}.

• Conditional execution is much harder to use in the state table

technique because the rigidly structured state table implicitly
selects the targets of state transitions.

• In the absence of orthogonal regions, a junction pseudostate can

have only one incoming transition segment and many outgoing

segments guarded by nonoverlapping guard expressions. This
construct maps simply to chained if–else statements:

if (guard1()) { action1();} else if (guard2()) { action2();}

Implementing Entry and Exit Actions

• The classical nonhierarchical state machines can also reap the

benefits of a guaranteed initialization of the state context through
entry actions and a guaranteed cleanup in the exit actions.

• One way of implementing entry and exit actions is to dispatch

reserved signals (e.g., ENTRY_SIG and EXIT_SIG) to the state
machine.

• The tran() method could dispatch the EXIT_SIG signal to the

current state (transition source) then dispatch the ENTRY_SIG

signal to the target as in.

void Fsm::tran(FsmState target) {

(this−>*myState)(EXIT_SIG); // EXIT signal to target

myState = target;

(this−>*myState)(ENTRY_SIG); //ENTRY signal to source

}

Implementing hierarchical behavior

The pattern for behavior inheritance addresses the following
few essential elements of HSM implementation:

– hierarchical states with full support for behavioral

inheritance,

– initialization and cleanup with state entry and exit actions,

and

– support for specializing state models via class inheritance.

Next, we will see how to realize orthogonal regions, and
transitions to history as patterns that build on top of the

fundamental behavioral inheritance implementation.

Implementing hierarchical behavior

• As in the first Samek’s FSM design …

– the state QState (quantum state) is represented as a pointer−to−member

function of the QHsm class.

– class QHsm keeps track of the active state by means of the myState

attribute.

• In addition, it uses another attribute (mySource) to keep track of the
current transition source during a state transition

– in HSMs, when a transition is inherited from a higher level superstate, the

source of this transition is different from the active state.

Implementing hierarchical behavior

• On the right side, the facilities for representing events and event
parameters.

• The QEvent class represents a Signal/Event, which can be used as−is
(for events without parameters) or can serve as a base for subclassing
(for events with parameters).

• QEvent relates to QHsm through the signature of the state handler
method

Implementing hierarchical behavior

QHsm class, provides the familiar public methods:

init() and dispatch(). You also can find the protected

tran() method for executing transitions, but this method is

not intended to be invoked directly by the clients.

Instead, QHsm provides three macros to execute state
transitions:

– Q_INIT() exclusively for initial transitions,

– Q_TRAN() for regular state transitions, and

– Q_TRAN_DYN() for state transitions in which the target can
change at run time.

Implementing hierarchical behavior

Every state hierarchy is a specific “chain of responsibility”, in
which a request (event instance) is sent down (up?) a chain of

state hierarchy in which more than one state has a chance to
handle it.

Implementing hierarchical behavior

class Hsm { // Quantum Hierarchical State Machine

public:

typedef void (Hsm::*PseudoState)(Event const *);

typedef PseudoState (Hsm::*State)(Event const*);

#define STATE Hsm::State

Hsm(PseudoState initial); // Ctor

virtual ~Hsm(); // virtual Xtor

void init(Event const *e = 0); // execute initial transition

void dispatch(Event const *e); // dispatch event

int isIn(State state) const; // "is−in−state" query

static char const *getVersion();

protected:

struct Tran { // protected inner class Tran

State myChain[8];

unsigned short myActions; // action mask (2−bits/action)

};

// CONTINUES

Implementing hierarchical behavior

PseudoState top(Event const*) { return 0; } // the "top" state

State getState() const { return myState; }

void tran(State target); // dynamic state transition

void tranStat(Tran *t, State target); // static state transition

void init_(State target) { myState = target; }

#define Q_INIT(target_) init_(Q_STATIC_CAST(State, target_))

#define Q_TRAN(target_) if (1) { \

static Tran t_; \

tranStat(&t_, Q_STATIC_CAST(State, target_));\

} else ((void)0)

#define Q_TRAN_DYN(target_) tran(Q_STATIC_CAST(State, target_))

private:

void tranSetup(Tran *t, State target);

private:

State myState; // the active state

State mySource; // source state during a transition

};

typedef Hsm::PseudoState STATE; // state−handler return type

INIT, TRAN, TRAN_DYN

#define Q_INIT(target_) init_(Q_STATIC_CAST(State, target_))

#define Q_TRAN(target_) if (1) { \

static Tran t_; \

tranStat(&t_, Q_STATIC_CAST(State, target_));\

} else ((void)0)

#define Q_TRAN_DYN(target_) tran(Q_STATIC_CAST(State, target_))

The purpose of these macros is to add a (compiler dependent)
static cast to the State type of the type PseudoQState
returned by init, tran and tranStat.
In C you’ll need similar casting …

Implementing hierarchical behavior

most of the techniques (in particular, the optimal FSM
approach) require a uniform representation of events, which

leaves essentially only two choices for passing events to the
handler methods:

(1) passing the signal and generic event parameters separately

(2) combining the two into an event object.

typedef unsigned short Signal; // Signal

struct Event { // Event

Signal sig;

. . .

};

Implementing hierarchical behavior

In contrast to a basic flat state, a hierarchical state includes
more than behavior. At a minimum, it must provide a link to its

superstate to represent state nesting.

A state handler method can provide behavior and the needed

structural link by returning the superstate.

(PseudoState is needed to avoid a recursive definition)

typedef void (Hsm::*PseudoState)(Event const *);

typedef PseudoState (Hsm::*State)(Event const *);

return type Class the

function is

member of

Name of

pointer-to-
member

Argument

list

Implementing hierarchical behavior

STATE Calc::operand1(Event const *e) { // state−handler signature

switch (e−>sig) {

case Q_ENTRY_SIG:

dispState("operand1");

return 0; // event handled

case IDC_CE:

clear();

// transition to "begin"

Q_TRAN(&Calc::begin);

return 0; // event handled

case IDC_OPER:

sscanf(myDisplay, "%lf", &myOperand1);

// downcast

myOperator = (static_cast<CalcEvt *>(e))−>keyId;

// transition to "opEntered"

Q_TRAN(&Calc::opEntered);

return 0; // event handled

}

//event not handled, return superstate

return (STATE)&Calc::calc;

}

Entry, exit and initial

enum {

Q_ENTRY_SIG = 1,

Q_EXIT_SIG,

Q_INIT_SIG,

Q_USER_SIG

};

• Define a set of reserved signals for handling entry, exit and init

actions.

• These signals take up the lowest signal IDs, which are not
available for clients.

• The public HSM interface contains the signal Q_USER_SIG,

which indicates the first signal free for client use.

• Reserved signals start with a 1. Signal 0 is also reserved (the

Empty signal Q_EMPTY_SIG), to force a state handler to return

the superstate.

Entry, exit and initial

enum MySignals {

MY_KEYPRESS_SIG = Q_USER_SIG,

MY_MOUSEMOVE_SIG,

MY_MOUSECLICK_SIG,

. . .

};

• This is how user-defined signals are declared

Entry, exit and initial

• State handlers handle these signals by defining the appropriate cases in
the switch statement.

• When the Q_INIT_SIG signal needs to be handled, state handlers should
always invoke the Q_INIT() macro to designate the initial direct substate

STATE Calc::calc(Event const *e) {

switch (e−>sig) {

case Q_ENTRY_SIG:

dispState("ready"); // entry action

return 0; // entry action executed

case Q_INIT_SIG:

clear();

Q_INIT(&Calc::ready); // initial transition

return 0; // initial transition taken

. . .

}

return (STATE)&Calc::top; // not handled, return superstate

}

Entry, exit and initial

A word of caution: the UML specification prescribes the following

transition execution sequence:

(1) exit actions from the source state configuration,

(2) actions associated with the transition, and

(3) entry actions to the target state configuration.

• Instead, the Q_TRAN() macro executes only the exit actions
from the source state configuration immediately followed by the

entry actions to the target state configuration.

• This sequence does not include actions associated with the

transition, which can either precede the change of state (if you
define them before Q_TRAN()) or follow the change of state (if

you define them after Q_TRAN()), meaning the Q_TRAN()

macro performs an atomic change of state, which cannot be

disrupted by any other actions.

The top state

• Every HSM has the (typically implicit) top state, which contains all

the other elements of the entire state machine.

• The Hsm class guarantees that the top state is available in every

state machine by providing the protected Hsm::top() state

handler inherited subsequently by all Hsm subclasses.

• The top state has no superstate, so the corresponding state

handler always returns 0.

• Clients cannot override it (Hsm::top() is not virtual).

• The only purpose, and legitimate use, of the top state is to
provide the ultimate root of a state hierarchy.

PseudoState top(Event const*) { return 0; } // the "top" state

The top state

• The top state contains the initial transition. Clients must define

the initial pseudostate handler for every state machine.

• The QHsm constructor requires a pointer to the initial

pseudostate handler as an argument, which must designate

the default state of the state machine nested inside the top

state (via the Q_INIT() macro).

– The initial transition can also specify arbitrary actions (typically
initialization). The following code is an example

void Calc::initial (Event const *) {

clear(); // perform initializations...

Q_INIT(&Calc::calc); // designate the default state

}

Summarizing …. an example

An example

Step 1:

• The first step of the implementation consists of enumerating all

signals. Remember: the user signals do not start from zero; but

from Q_USER_SIG to leave space for the reserved signals

(Q_ENTRY_SIG, Q_EXIT_SIG, and Q_INIT_SIG).

enum QHsmTstSignals {

A_SIG = Q_USER_SIG, // user signals start

B_SIG, C_SIG, D_SIG, E_SIG, F_SIG, G_SIG, H_SIG

};

An example

Step 2: Derive the concrete HSM by inheriting from QHsm

– Declare state handler methods with the predefined signature for all
states in the statechart (The example statechart has six states).

– The initial pseudostate handler must be declared.

class QHsmTst : public Hsm { // QHsmTst derives from Hsm

public:

QHsmTst() : Hsm((PseudoState)initial) {} // default Ctor

private:

void initial(Event const *e); // initial pseudostate

STATE s0(Event const *e); // state−handler

STATE s1(Event const *e); // state−handler

STATE s11(Event const *e); // state−handler

STATE s2(Event const *e); // state−handler

STATE s21(Event const *e); // state−handler

STATE s211(Event const *e); // state−handler

private: // extended state variables...

int myFoo;

};

An example

Step 3: Defining all state handler methods

void QHsmTst::initial(Event const *) {

printf("top−INIT;");

myFoo = 0; // initial extended state variable

Q_INIT(&QHsmTst::s0); // initial transition

}

STATE QHsmTst::s0(Event const *e) {

switch (e−>sig) {

case Q_ENTRY_SIG: printf("s0−ENTRY;"); return 0;

case Q_EXIT_SIG: printf("s0−EXIT;"); return 0;

case Q_INIT_SIG: printf("s0−INIT;");

Q_INIT(&QHsmTst::s1); return 0;

case E_SIG: printf("s0−E;");

Q_TRAN(&QHsmTst::s211);

return 0;

}

return (STATE)&QHsmTst::top;

}

An example

STATE QHsmTst::s1(Event const *e) {

switch (e−>sig) {

case Q_ENTRY_SIG: printf("s1−ENTRY;"); return 0;

case Q_EXIT_SIG: printf("s1−EXIT;"); return 0;

case Q_INIT_SIG: printf("s1−INIT;"); Q_INIT(&QHsmTst::s11);

return 0;

case A_SIG: printf("s1−A;"); Q_TRAN(&QHsmTst::s1); return 0;

case B_SIG: printf("s1−B;"); Q_TRAN(&QHsmTst::s11); return 0;

case C_SIG: printf("s1−C;"); Q_TRAN(&QHsmTst::s2); return 0;

case D_SIG: printf("s1−D;"); Q_TRAN(&QHsmTst::s0); return 0;

case F_SIG: printf("s1−F;"); Q_TRAN(&QHsmTst::s211); return 0;

}

return (STATE)&QHsmTst::s0;

}
Look up the state in the diagram and trace around its

state boundary.

You need to implement all transitions originating at

this boundary, as well as all internal transitions

enlisted in this state. Additionally, if an initial

transition is embedded directly in the state, you need

to implement it as well.

An example

Step 3: Defining state handler methods

STATE QHsmTst::s1(Event const *e) {

switch (e−>sig) {

case Q_ENTRY_SIG: printf("s1−ENTRY;"); return 0;

case Q_EXIT_SIG: printf("s1−EXIT;"); return 0;

case Q_INIT_SIG: printf("s1−INIT;"); Q_INIT(&QHsmTst::s11);

return 0;

case A_SIG: printf("s1−A;"); Q_TRAN(&QHsmTst::s1); return 0;

case B_SIG: printf("s1−B;"); Q_TRAN(&QHsmTst::s11); return 0;

case C_SIG: printf("s1−C;"); Q_TRAN(&QHsmTst::s2); return 0;

case D_SIG: printf("s1−D;"); Q_TRAN(&QHsmTst::s0); return 0;

case F_SIG: printf("s1−F;"); Q_TRAN(&QHsmTst::s211); return 0;

}

return (STATE)&QHsmTst::s0;

}

An example

STATE QHsmTst::s1(Event const *e) {

switch (e−>sig) {

case Q_ENTRY_SIG: printf("s1−ENTRY;"); return 0;

case Q_EXIT_SIG: printf("s1−EXIT;"); return 0;

case Q_INIT_SIG: printf("s1−INIT;"); Q_INIT(&QHsmTst::s11);

return 0;

case A_SIG: printf("s1−A;"); Q_TRAN(&QHsmTst::s1); return 0;

case B_SIG: printf("s1−B;"); Q_TRAN(&QHsmTst::s11); return 0;

case C_SIG: printf("s1−C;"); Q_TRAN(&QHsmTst::s2); return 0;

case D_SIG: printf("s1−D;"); Q_TRAN(&QHsmTst::s0); return 0;

case F_SIG: printf("s1−F;"); Q_TRAN(&QHsmTst::s211); return 0;

}

return (STATE)&QHsmTst::s0;

}

For state s1, the transitions that originate at the

boundary are transition c, d and f, internal transition

b and self−transition a. In addition, the state has an

entry action, an exit action, and an initial transition.

Coding of entry and exit actions is the simplest.

intercept the reserved signals Q_ENTRY_SIG or

Q_EXIT_SIG, enlist actions you want to execute,

and terminate the lists with return 0.

An example

STATE QHsmTst::s1(Event const *e) {

switch (e−>sig) {

case Q_ENTRY_SIG: printf("s1−ENTRY;"); return 0;

case Q_EXIT_SIG: printf("s1−EXIT;"); return 0;

case Q_INIT_SIG: printf("s1−INIT;"); Q_INIT(&QHsmTst::s11);

return 0;

case A_SIG: printf("s1−A;"); Q_TRAN(&QHsmTst::s1); return 0;

case B_SIG: printf("s1−B;"); Q_TRAN(&QHsmTst::s11); return 0;

case C_SIG: printf("s1−C;"); Q_TRAN(&QHsmTst::s2); return 0;

case D_SIG: printf("s1−D;"); Q_TRAN(&QHsmTst::s0); return 0;

case F_SIG: printf("s1−F;"); Q_TRAN(&QHsmTst::s211); return 0;

}

return (STATE)&QHsmTst::s0;

}

Regular transitions are coded in a very similar way,

except that refer to custom−defined signals (e.g.,

B_SIG), and the Q_TRAN() macro is used to

designate the target state. Again, the state handler is

exited with return 0.

An example

STATE QHsmTst::s1(Event const *e) {

switch (e−>sig) {

case Q_ENTRY_SIG: printf("s1−ENTRY;"); return 0;

case Q_EXIT_SIG: printf("s1−EXIT;"); return 0;

case Q_INIT_SIG: printf("s1−INIT;"); Q_INIT(&QHsmTst::s11);

return 0;

case A_SIG: printf("s1−A;"); Q_TRAN(&QHsmTst::s1); return 0;

case B_SIG: printf("s1−B;"); Q_TRAN(&QHsmTst::s11); return 0;

case C_SIG: printf("s1−C;"); Q_TRAN(&QHsmTst::s2); return 0;

case D_SIG: printf("s1−D;"); Q_TRAN(&QHsmTst::s0); return 0;

case F_SIG: printf("s1−F;"); Q_TRAN(&QHsmTst::s211); return 0;

}

return (STATE)&QHsmTst::s0;

}

To code the initial transition, you intercept the

reserved signal Q_INIT_SIG, enlist the actions, and

then designate the target substate through the

Q_INIT() macro, after which you exit the state

handler with return 0.

An example

Step 3: Defining state handler methods

STATE QHsmTst::s11(Event const *e) {

switch (e−>sig) {

case Q_ENTRY_SIG: printf("s11−ENTRY;"); return 0;

case Q_EXIT_SIG: printf("s11−EXIT;"); return 0;

case G_SIG: printf("s11−G;"); Q_TRAN(&QHsmTst::s211); return 0;

case H_SIG: // internal transition with a guard

if (myFoo) { // test the guard condition

printf("s11−H;");

myFoo = 0;

return 0;

}

break;

}

return (STATE)&QHsmTst::s1;

}

An example

STATE QHsmTst::s21(Event const *e) {

switch (e−>sig) {

case Q_ENTRY_SIG: printf("s21−ENTRY;"); return 0;

case Q_EXIT_SIG: printf("s21−EXIT;"); return 0;

case Q_INIT_SIG: printf("s21−INIT;"); Q_INIT(&QHsmTst::s211);

return 0;

case B_SIG: printf("s21−C;"); Q_TRAN(&QHsmTst::s211); return 0;

case H_SIG: // self transition with a guard

if (!myFoo) { // test the guard condition

printf("s21−H;");

myFoo = 1;

Q_TRAN(&QHsmTst::s21); // self transition

return 0;

}

break; // break to return the superstate

}

return (STATE)&QHsmTst::s2; // return the superstate

}

Transitions with guards are a little more involved. The custom signal (H_SIG), is

intercepted and the guard condition is checked inside an if (…) statement. The

transition actions, the call to Q_TRAN(), and return 0 are inside the TRUE branch.

When the if statement expression evaluates to FALSE the code breaks out of the

switch and returns the superstate (to indicate that the event has not been handled).

The C+ implementation

To be filled in

An example of use (through testing)

static QHsmTst test; // instantiate the QHsmTst state machine

static Event const testEvt[] = { // static event instances

{A_SIG, 0, 0}, {B_SIG, 0, 0}, {C_SIG, 0, 0}, {D_SIG, 0, 0},

{E_SIG, 0, 0}, {F_SIG, 0, 0}, {G_SIG, 0, 0}, {H_SIG, 0, 0}

};

main() {

printf("QHsmTst example, v.1.00, QHsm: %s\n", QHsm::getVersion());

test.init(); // take the initial transition

for (;;) { // for−ever

printf("\nSignal<−");

char c = getc(stdin);

getc(stdin); // discard '\n'

if (c < 'a' || 'h' < c) { // character out of range?

return 0; // terminate

}

test.dispatch(&testEvt[c − 'a']); // dispatch event

}

return 0;

}

The event processor: INIT, dispatch and TRAN

init() must be called once for a given FSM before dispatching any

events

(1) Triggers the initial transition defined in the initial pseudostate and

(2) Recursively "drills" into the state hierarchy until it reaches a leaf state.

void Hsm::init(Event const *e) {

REQUIRE(myState == top && mySource != 0); // HSM not executed yet

register State s = myState; // save myState in a temporary

(this−>*(PseudoState)mySource)(e); // top−most initial transition

// initial transition must go *one* level deep

ASSERT(s == TRIGGER(myState, Q_EMPTY_SIG));

s = myState; // update the temporary

TRIGGER(s, Q_ENTRY_SIG); // enter the state

while (TRIGGER(s, Q_INIT_SIG) == 0) { // init handled?

ASSERT(s == TRIGGER(myState, Q_EMPTY_SIG)); //1-level transition

s = myState;

TRIGGER(s, Q_ENTRY_SIG); // enter the substate

}

}

The event processor: INIT, dispatch and TRAN

It uses the TRIGGER macro

#define TRIGGER(state_, sig_) \

Q_STATE_CAST((this−>*(state_))(&pkgStdEvt[sig_]))

The goal of this macro is to present one of the reserved signals
(Q_EMPTY_SIG, Q_ENTRY_SIG, Q_EXIT_SIG, or Q_INIT_SIG) to
a given state handler, indicated by state_.
Handler method invocation is based on the pointer−to−member
function ((this−>*state_)(…)). State is not recursive and the value
returned by the state handler (of type pointer to PseudoState) must
be cast onto QState, by the Q_STATE_CAST() macro.

– Q_STATE_CAST() is compiler dependent and should be defined as
reinterpret_cast<QState>(…) for the C++ compilers that support the
new type casts and as the C−style cast (QState)(…) for the C++
compilers that don't.

The event processor: INIT, dispatch and TRAN

dispatch() must scan the state hierarchy until some state handles

the event (in which case, it returns 0) or the top state is reached (in
which case, it also returns 0).

void QHsm::dispatch(QEvent const *e) {

for (mySource = myState; mySource;

mySource = Q_STATE_CAST((this−>*mySource)(e)))

{}

}

The dispatch() method traverses the state hierarchy starting from

the currently active state myState. It advances up the state
hierarchy (i.e., from substates to superstates), invoking all the state

handlers in succession.

At each level of state nesting, it intercepts the value returned from a

state handler to obtain the superstate needed to advance to the

next level.

By using the mySource attribute, the current level of the hierarchy
(potential source of a transition) is accessible to tran() (see next section).

The event processor: INIT, dispatch and TRAN

• State transitions are performed by invoking the macro

Q_TRAN(). At the heart of this macro is the protected tranStat()
method, which actually drives state handlers to accomplish a

static state transition.

• In “static” state transitions both the source and the target of the

transition do not change at run time. This allows optimizing the
execution of such transitions by precomputing and storing the

transition chain (finding out which exit and entry actions and

initial transitions to execute).

• Some other transitions need to change their targets at run time
(e.g., transitions to history). For these, the QHsm class offers a

dynamic state transition that you code with the Q_TRAN_DYN()

macro, which invokes the protected method tran() rather than

tranStat().

The event processor: INIT, dispatch and TRAN

• Executing state transitions is the most complex part of the HSM
implementation. A transition execution sequence involves the exit of all
states up to the least Common Ancestor (LCA), then recursive entry
into the target state.

OPER

C

1

2

3

1

2
3

4
5

En↓↓↓↓

Ex↑↑↑↑

Ex↑↑↑↑

Ex↑↑↑↑

Ex↑↑↑↑

En↓↓↓↓
En↓↓↓↓

The event processor: INIT, dispatch and TRAN

• Exiting the current state configuration can be done by following

the child-parent direction of navigation through the state
hierarchy (state handlers return the superstate).

• The entry to the target requires navigating in the opposite

direction.

• The solution to this problem is to first record the exit path from

the target to the LCA, without executing any actions. This is

done by dispatching the reserved empty signal (0), which causes

every state handler to return the superstate without side effects.

• After the exit path has been recorded, it can be turned into the
entry path by playing it backwards. Instead of rediscovering the

entry path every time, we store it in a static object and

subsequently reuse the path information.

• Dynamic transitions (coded with Q_TRAN_DYN()) must
determine the transition execution sequence every time.

The event processor: INIT, dispatch and TRAN

• Hsm::tran() executes transition sequences (i.e., chains of exit

and entry actions and initial transitions) by invoking the
appropriate state handlers in the correct order using the

appropriate standard signal for each invocation.

• Unlike init() and dispatch(), which are invoked directly by clients,

tran() is protected and can be invoked only from dispatch().

• The tran() method consists of two major steps. In the first step,

tran() performs a traversal of the state hierarchy similar to that of

dispatch(), but with the objective to exit all states up to the level

in which the transition is defined. This step covers the case of an
inherited state transition — that is, the transition defined at a

level higher than the currently active state.

The event processor: INIT, dispatch and TRAN

In the case of OPER, this transition is defined at the level of ready, from
which result and begin inherit.

When a client calls dispatch() with the OPER event, dispatch() invokes the
currently active state first (result). This state does not "know" how to

handle the OPER, so it returns the superstate. The dispatch() method then
loops to ready, where OPER triggers the transition to opEntered.

However, the correct exit of the current state configuration must include
exiting result and then exiting ready (dashed line).

The figure shows the myState and mySource pointers when dispatch()
invokes tran(). myState still points to the previously active state (result),
whereas mySource points to the state handler that invoked tran() (ready).

The event processor: INIT, dispatch and TRAN

void Hsm::tran(State target) {

REQUIRE(target != top); // cannot target "top" state

State entry[8], p, q, s, *e, *lca;

for (s = myState; s != mySource;) {

ASSERT(s); // we are about to dereference s

QState t = TRIGGER(s, Q_EXIT_SIG);

if (t) { // exit action unhandled, t points to superstate

s = t;

} else { // exit action handled, elicit superstate

s = TRIGGER(s, Q_EMPTY_SIG);

}

} ...

In this first step tran() exits all states from the currently active state (myState) up

to the level in which the transition is defined (mySource) to cover the case of an

inherited state transition. While exiting the states, tran() must differentiate

between the case in which the exit action is not handled (the state handler

returns the superstate) and the case in which the exit action is executed (the

state handler returns 0). In the latter case, the state handler is triggered again

with the empty event to elicit the superstate.

The event processor: INIT, dispatch and TRAN

After exiting all states up to the source of the transition tran()

proceeds with the second step, which is execution of the transition
itself.

This step tries to optimize the workload by minimizing the number

of "probing" invocations of state handlers with empty signals (i.e.,

with the purpose of eliciting the superstate).

The optimization relies on testing directly for all the simplest

source–target state configurations, which are most likely to occur in

practice. Moreover, the strategy is to order these configurations in

such a way that the information about the state configuration
obtained from earlier steps can be used in later steps.

The event processor: INIT, dispatch and TRAN

The figure shows such ordering of state transition topologies and the

Table enlists the tests required to determine a given configuration

(a) (b)

(c) (d)

(e)

…

(f)

…

(g)

……

…

The event processor: INIT, dispatch and TRAN

In the second step, tran() executes all the actions associated with the
change of state configuration.

Although this step is rather elaborate, the most frequently used source–
target configurations are handled efficiently because only a small fraction
of the code is executed.

The method uses the automatic array entry[] to record the entry path to the
target in order to execute entry actions in the correct order.

State entry[8], p, q, s, *e, *lca;

The event processor: INIT, dispatch and TRAN

Next step: tran() detects the state configuration and

executes all necessary exit actions up to the LCA

*(e = &entry[0]) = 0;

*(++e) = target; // assume entry to target

// (a) check mySource == target (transition to self)

if (mySource == target) {

TRIGGER(mySource, Q_EXIT_SIG); // exit source

goto inLCA;

}

(a)

The event processor: INIT, dispatch and TRAN

// (b) check mySource == target−>super

p = TRIGGER(target, Q_EMPTY_SIG);

if (mySource == p) {

goto inLCA;

}

// (c) check

// mySource−>super == target−>super

// (most common)

q = TRIGGER(mySource, Q_EMPTY_SIG);

if (q == p) {

TRIGGER(mySource, Q_EXIT_SIG); // exit source

goto inLCA;

}

(b)

(c)

The event processor: INIT, dispatch and TRAN

// (d) check mySource−>super == target

if (q == target) {

TRIGGER(mySource, Q_EXIT_SIG); // exit source

−−e; // do not enter the LCA

goto inLCA;

}

// (e) check rest of

// mySource == target−>super−>super... hierarchy

*(++e) = p;

for (s = TRIGGER(p, Q_EMPTY_SIG); s;

s = TRIGGER(s, Q_EMPTY_SIG)){

if (mySource == s) {

goto inLCA;

}

*(++e) = s;

}

TRIGGER(mySource, Q_EXIT_SIG); // all the other types start

// with an exit source

(d)

(e)

…

The event processor: INIT, dispatch and TRAN

// (f) check rest of mySource−>super == target−>super−>super...

for (lca = e; *lca; −−lca) {

if (q == *lca) {

e = lca − 1; // do not enter the LCA

goto inLCA;

}

}

// (g) check each mySource−>super−>super..for each target...

for (s = q; s; s = TRIGGER(s, Q_EMPTY_SIG)) {

for (lca = e; *lca; −−lca) {

if (s == *lca) {

e = lca − 1; // do not enter the LCA

goto inLCA;

}

}

TRIGGER(s, Q_EXIT_SIG); // exit s

}

ASSERT(0); // malformed HSM – we should never get here

(f)

…

(g)

……

…

The event processor: INIT, dispatch and TRAN

Next step: tran() enters the target state configuration. Thanks to the entry
path saved in step e, this is straightforward. The assertion checks that the
automatic array entry[] does not overflow, which can happen if the transition
chain has more than seven steps.

inLCA: // now we are in the LCA of mySource and target

ASSERT(e < &entry[DIM(entry)]); // entry array must not overflow

while (s = *e−−) { // retrace the entry path in reverse order

TRIGGER(s, Q_ENTRY_SIG); // call entry action on s

}

myState = target; // update current state

The event processor: INIT, dispatch and TRAN

Finally, the target state can be composite and can have an initial

transition. Therefore, tran() iterates until it detects a leaf state (the
initial transition returns non−0) and executes initial actions (inside

init).

...

while (TRIGGER(target, Q_INIT_SIG) == 0) {

// initial transition must go *one* level deep

ASSERT(target == TRIGGER(myState, Q_EMPTY_SIG));

target = myState;

TRIGGER(target, Q_ENTRY_SIG); // enter target

}

}

Concurrent states

Proposed solution: use object composition

Concurrent states

The use of aggregation in conjunction with state machines raises

questions.

1. How does the container state machine communicate with the
component state machines?

2. How do the component state machines communicate with the
container state machine?

3. What kind of concurrency model should be used?

The composite object interacts with its aggregate parts by

synchronously dispatching events to them (by invoking dispatch()

on behalf of the components).

To communicate in the opposite direction (from a component to the

container), a component needs to post events (in the queue) to the

container. A child cannot call dispatch() on behalf of the parent

because it would violate RTC semantics.

Concurrent states

• The parent dispatches events synchronously (without queuing

them) to the children, but the children must post events

asynchronously (by queuing them) to the parent.

• This way of communication dictates a concurrency model in
which a parent shares its execution thread with the children.

• The parent dispatches an event to a child by synchronously

calling dispatch() on behalf of the child. Because this method

executes in the parent's thread, the parent cannot proceed until
dispatch() returns (i.e., until the child finishes its RTC step).

• In this way, the parent and children can safely share data without

any concurrency hazards (data sharing is also another method of

communication among them).

Concurrent states

The sample code demonstrates the typical code organization

for the Orthogonal Component state pattern, in which the
component (Alarm) is implemented in a separate module from

the container (AlarmClock).

Common signals and events

enum AlarmClockSignals {

TIME_SIG = Q_USER_SIG,

ALARM_SIG, TERMINATE

};

struct AlarmInitEvt : public QEvent {

HWND hWnd;

};

struct TimeEvt : public QEvent {

unsigned currentTime;

};

Concurrent states

Alarm (component) FSM declaration

class Alarm : public Fsm {

public:

Alarm() : Fsm((FsmState)initial) {}

private:

void initial(Event const *e);

void on(Event const *e);

void off(Event const *e);

private:

unsigned myAlarmTime; // time to trigger the alarm

HWND myHwnd; // window handle

};

Concurrent states

Alarm (component) FSM implementation

void Alarm::initial(QEvent const *e) {

myHwnd = (static_cast<AlarmInitEvt const *>(e))−>hWnd;

. . .

QFSM_TRAN(&Alarm::on);

}

void Alarm::on(QEvent const *e) {

switch (e−>sig) {

case TIME_SIG:

if ((static_cast<TimeEvt *>(e))−>currentTime == myAlarmTime) {

Beep(1000, 20);

PostMessage(myHwnd, WM_COMMAND, ALARM_SIG, 0); // notify

}

return;

case IDC_OFF:

. . .

QFSM_TRAN(&Alarm::off);

return;

}

}

Concurrent states

Alarm (component) FSM implementation

void Alarm::off(QEvent const *e) {

char buf[12];

unsigned h, m;

switch (e−>sig) {

case IDC_ON:

GetDlgItemText(myHwnd, IDC_ALARM, buf, sizeof(buf));

if (...) { // does the user input represent valid alarm time?

. . .

QFSM_TRAN(&Alarm::on);

}

return;

}

}

Concurrent states

AlarmClock (composite) HFSM implementation

#include "clock.h"

#include "alarm.h"

class AlarmClock : public Hsm { // hierarchical state machine

public:

AlarmClock() : Hsm((QPseudoState)initial) {}

private:

void initial(QEvent const *e); // initial pseudostate

STATE timekeeping(QEvent const *e); // state−handler

STATE mode12hr(QEvent const *e); // state−handler

STATE mode24hr(QEvent const *e); // state−handler

STATE final(QEvent const *e); // state−handler

private:

unsigned myCurrentTime; // current time (in minutes)

Alarm myAlarm; // reactive component Alarm

BOOL isHandled;

friend class Alarm; // grant friendship to reactive component(s)

...

};

Concurrent states

AlarmClock HFSM implementation

void AlarmClock::initial(Event const *) {

. . .

AlarmInitEvt ie; // initialization event for the Alarm component

ie.wndHwnd = myHwnd;

myAlarm.init(&ie); // initial transition in the alarm component

Q_INIT(timekeeping);

}

STATE AlarmClock::timekeeping(Event const *e) {

switch (e−>sig) {

. . .

case IDC_ON:

case IDC_OFF:

myAlarm.dispatch(e); // dispatch event to orthogonal component

return 0;

}

return (QSTATE)top;

}

Concurrent states

AlarmClock HFSM implementation

STATE AlarmClock::mode24hr(Event const *e) {

TimeEvt pe; // temporary for propagated event

switch (e−>sig) {

. . .

case WM_TIMER:

. . . // update myCurrentTime

pe.sig = TIME_SIG;

pe.currentTime = myCurrentTime;

myAlarm.dispatch(&pe); //dispatch event to orthogonal component

return 0;

}

return (STATE)timekeeping;

}

Concurrent states

The AlarmClock class container has several responsibilities toward
its components.

– The initialization of the Alarm component's state machine, which is
best accomplished in the initial transition of the container

– The explicit dispatching of events to the component(s) (lines 36, 50).
• While (explicitly) dispatching event to orthogonal regions the container can

even change the event type on the fly. For instance, AlarmClock
dispatches events ON and OFF to its myAlarm component as they arrive
(lines 34–37).

• The WM_TIMER signal is handled differently (lines 46–51). In this case,
AlarmClock synthesizes a TimeEvt event on the fly, furnishes the current
time, and dispatches this event to the Alarm component. Note that
TimeEvt can be allocated automatically (on the stack) because it is
dispatched synchronously to the component.

Concurrent states

The Orthogonal Component state pattern partitions independent islands of
behavior into separate reactive objects and has the following
consequences.

– Partitioning introduces a container component (also known as parent–child or
master–slave) relationship. The container implements the primary
functionality and delegates other (secondary) features to the components.
Both the container and the components are state machines.

– The container shares its execution thread with the components.
– Deals nicely with several components of the same type
– The container communicates with the components by directly dispatching

events to them. The components notify the container by posting events to it,
never through direct event dispatching.

– The components typically use the Reminder state pattern to notify the
container (i.e., the notification events are invented specifically for the internal
communication and are not relevant externally). If there are more
components of a given type, then the notification events must identify the
originating component (the component passes its ID in a parameter of the
notification event).

– More More More More …………

Concurrent states

– More …
– The container and components can share data. Typically, the data is an

attribute of the container (to allow multiple instances of different containers).
The container typically grants friendship to the selected components.

– The container is entirely responsible for its components. In particular, it must
explicitly trigger initial transitions in all components, as well as explicitly
dispatch events to the components. Errors may arise if the container
"forgets" to dispatch events to some components in some of its states.

– The container has full control over the dispatching of events to the
components. It can choose not to dispatch events that are irrelevant to the
components. It can also change event types on the fly and provide some
additional information to the components.

– The container can dynamically start and stop components (e.g., in certain
states of the component state machine).

History states

The solution consists in storing the most recently active substate of the
doorClosed state in the dedicated attribute myDoorClosedHistory. The
ideal place for setting this attribute is the exit action from the doorClosed
state.
Subsequently, the transition to history of the doorOpen state (transition to
the circled H*) uses the attribute as the target of the transition. Because
this target changes at run time, it is crucial to code this transition with the
Q_TRAN_DYN() macro, rather than the optimized Q_TRAN()

Outer framework

Plant
a
c
tu

a
to

rs
s
e
n

s
o

rs

P
la

tfo
rm

-s
p

e
c

ific
 S

W
 (O

s
-d

riv
e
rs

)

F
S

M
 fra

m
e
w

o
rk

Outer framework

a
c
tio

n
s

e
v
e
n

ts

(s
ig

n
a
ls

+
p

a
ra

m
e
te

rs
)

F
S

M
 fra

m
e
w

o
rk

Issues:

• How to code events

• How to execute reactions

• How to forward events

• How to synchronize the

execution of FSMs

• How to map into a task
model

• How to solve issues wrt
critical sections, timing,

priority inversion

Outer framework: some models

a
c
tio

n
s

e
v
e
n

ts

(s
ig

n
a
ls

+
p

a
ra

m
e
te

rs
)

The framework as an event
broker

It gets events from the
platform-dependent layer and
from (FSM) subsystems

It forwards events to FSM that
need to process them

Publish-subscribe model

The framework is transparent
wrt actions

F
S

M
 fra

m
e
w

o
rk

Outer framework: Asynchronous task model

• One task for each FSM

• The task is cyclic and processes

input events from a queue

• FSM communicate

asynchronously (no
synchronization among FSMs)

• Advantage: no need to protect
state variables, run-to-

completion semantics

guaranteed by tasking model

• Problems (possible) with time

behavior
– Queue is typically FIFO

• No synchronization

• Framework must coordinate

signal forwarding

F
S

M
 fra

m
e
w

o
rk

Outer framework: Asynchronous task model

• The Framework:

• Events
– Event definition/basic mngmt

• Events are dynamic, they are created,

managed and destroyed

– Event forwarding
• Collecting events from FSM components

• Sending events to FSM components

– Event processing by FSMs
• Event queuing

• Event processing

• Event generation

• Execution of reactions, tasking model for
FSMs

F
S

M
 fra

m
e
w

o
rk

Outer framework: Asynchronous task model

(Samek’s model)

• Step 1: Event definition/basic management

• Events are structures consisting of a pure signal and a

(variable, event-depending) set of data attributes

• Example: mouse click on the screen
– Signal: mouse (left/right) button down

– Attributes: (x,y) position on the screen (unsigned short, unsigned
short)

typedef unsigned short Signal; // Quantum Signal

struct Event { // Quantum Event

Signal sig;

. . .

};

(Event may be subclassed for additional attributes)

Outer framework: Asynchronous task model

Alternative model (Simulink/stateflow)

Coding of signals is separated from coding of data (events are “pure

signals”), Signals are typically extracted from data ….

An example ….

Outer framework: Asynchronous task model

Signals are extracted from data ….

(example: from rising edge – ev1 – and falling edge – ev2 -)

Outer framework: Asynchronous task model

Generated code: Chart.c

Signal/event encoding

/* Named constants for block: '<Root>/Chart' */

#define Chart_event_ev1 (1U)

#define Chart_event_ev2 (0U)

Outer framework: Asynchronous task model

Generated code: Chart.c

Main processing (extracting events from inputevents)

/* Output and update for trigger system: '<Root>/Chart' */

void Chart_Chart(void)

{

/* local block i/o variables */

int8_T rtb_inputevents[2];

{

ZCEventType trigEvent;

ZCEventType zcEvents[2] ;

/* subsystem trigger input */

trigEvent = NO_ZCEVENT;

zcEvents[0] = rt_ZCFcn(ANY_ZERO_CROSSING,&(Chart_PrevZCSigState.Chart_ZCE[0]),

Chart_U.inputevents[0]);

trigEvent = (zcEvents[0] == NO_ZCEVENT)? trigEvent : zcEvents[0];

zcEvents[1] = rt_ZCFcn(ANY_ZERO_CROSSING,&(Chart_PrevZCSigState.Chart_ZCE[1]),

Chart_U.inputevents[1]);

trigEvent = (zcEvents[1] == NO_ZCEVENT)? trigEvent : zcEvents[1];

/* conditionally execute */

if (trigEvent != NO_ZCEVENT) {

...

Outer framework: Stateflow

Generated code: Main

/* The example "main" function illustrates what is required by the application to

* initialize, execute, and terminate the generated code. Attaching rt_OneStep to

* a real-time clock is target specific. This example illustrates how to do this

*/

int_T main(int_T argc, const char_T *argv[])

{

/* Initialize model */

Controller_initialize();

/* Attach rt_OneStep to a timer or interrupt service routine with

* period 1.0 seconds (the model's base sample time) here. The

* call syntax for rt_OneStep is

*

* rt_OneStep();

*/

while (rtmGetErrorStatus(Controller_M) == NULL) {

/* Perform other application tasks here */

}

/* Disable rt_OneStep() here */

/* Terminate model */

Controller_terminate();

return 0;

}

Outer framework: Stateflow

Generated code: rt_OneStep

/* Associating rt_OneStep with a real-time clock or interrupt

* service routine is what makes the generated code "real-time".

* The function rt_OneStep is always associated with the base rate

* of the model. Subrates are managed by the base rate from

* inside the generated code. Enabling/disabling interrupts and

* floating point context switches are target specific. This

* example code indicates where these should take place relative

* to executing the generated code step function. Overrun behavior

* should be tailored to your application needs. This example

* simply sets an error status in the real-time model and returns

* from rt_OneStep.

*/

void rt_OneStep(void)

{

...

}

Outer framework: Stateflow

Generated code: rt_OneStep

void rt_OneStep(void)

{

/* Disable interrupts here */

/* Check base rate for overrun */

/* Save FPU context here (if necessary) */

/* Re-enable timer or interrupt here */

/*

* For a bare-board target (i.e., no operating system), the rates

* that execute this base step are buffered locally to allow for

* overlapping preemption. The generated code includes function

* Controller_SetEventsForThisBaseStep() which sets the rates

* that need to run this time step. The return values are 1 and 0

* for true and false, respectively.

*/

/* Set model inputs associated with base rate here */

/* Get model outputs associated with base rate here */

/* Check subrates for overrun */

/* Set model inputs associated with subrates here */

/* Get model outputs associated with subrates here */

/* Disable interrupts here */

/* Restore FPU context here (if necessary) */

/* Enable interrupts here */

}

Outer framework: Stateflow

Generated code: rt_OneStep

static boolean_T OverrunFlags[2] = { 0, 0 };

void rt_OneStep(void)

{

boolean_T eventFlags[2]; /* Model has 2 rates */

/* Check base rate for overrun */

if (OverrunFlags[0]++) {

rtmSetErrorStatus(Controller_M, "Overrun");

return;

}

Controller_SetEventsForThisBaseStep(eventFlags);

/* Set model inputs associated with base rate here */

Controller_step0();

/* Get model outputs associated with base rate here */

OverrunFlags[0]--;

/* Check subrates for overrun */

if (eventFlags[1]) {

if (OverrunFlags[1]++) {

rtmSetErrorStatus(Controller_M, "Overrun");

return;

}

/* Set model inputs associated with subrates here */

Controller_step1();

/* Get model outputs associated with subrates here */

OverrunFlags[1]--;

}

}

Outer framework: Stateflow

Generated code: rt_OneStep

static boolean_T OverrunFlags[2] = { 0, 0 };

void rt_OneStep(void)

{

boolean_T eventFlags[2]; /* Model has 2 rates */

/* Check base rate for overrun */

if (OverrunFlags[0]++) {

rtmSetErrorStatus(Controller_M, "Overrun");

return;

}

Controller_SetEventsForThisBaseStep(eventFlags);

/* Set model inputs associated with base rate here */

Controller_step0();

/* Get model outputs associated with base rate here */

OverrunFlags[0]--;

/* Check subrates for overrun */

if (eventFlags[1]) {

if (OverrunFlags[1]++) {

rtmSetErrorStatus(Controller_M, "Overrun");

return;

}

/* Set model inputs associated with subrates here */

Controller_step1();

/* Get model outputs associated with subrates here */

OverrunFlags[1]--;

}

}

Outer framework: Stateflow

Generated code: Controller_step0

void Controller_step0(void) /* Sample time: [1.0s, 0.0s] */

{

...// Data declarations

{ /* Sample time: [1.0s, 0.0s] */

rate_monotonic_scheduler();

}

...// Model execution

}

/* This function updates active task flag for each subrate and rate transition flags for tasks

* that exchagne data. The function assumes rate-monotonic multitasking scheduler.

*/

static void rate_monotonic_scheduler(void)

{

/* Data is transfered at the priority of a fast task and the frequency of the slow task.

The flags indicate when the data transfer happens. That is, a rate interaction flag is set

true when both rates will run, and false otherwise.

*/

/* tid 0 shares data with slower tid rate: 1 */

Controller_M->Timing.RateInteraction.TID0_1= (Controller_M->Timing.TaskCounters.TID[1]==0);

/* Compute which subrates run during the next base time step. The subtask counter is reset

when it reaches its limit (zero means run).

*/

if (++Controller_M->Timing.TaskCounters.TID[1] == 10) {/* Sample time: [10.0s, 0.0s] */

Controller_M->Timing.TaskCounters.TID[1] = 0;

}

}

Outer framework: Stateflow

Generated code: Controller_step0

void Controller_step0(void) /* Sample time: [1.0s, 0.0s] */

{

...

/* DataTypeConversion: '<S2>/Data Type Conversion' */

Controller_B.DataTypeConversion = (boolean_T)(rtb_Add != 0.0 ? 1U : 0U);

/* DiscretePulseGenerator: '<S1>/Pulse Generator' */

rtb_Add =

(Controller_DWork.clockTickCounter < Controller_P.PulseGenerator_Duty &&

Controller_DWork.clockTickCounter >= 0) ?

Controller_P.PulseGenerator_Amp :

0.0;

if (Controller_DWork.clockTickCounter >= Controller_P.PulseGenerator_Period-1){

Controller_DWork.clockTickCounter = 0;

} else {

(Controller_DWork.clockTickCounter)++;

}

/* DataTypeConversion: '<S1>/Data Type Conversion' */

Controller_B.DataTypeConversion_p = (boolean_T)(rtb_Add != 0.0 ? 1U : 0U);

/* trigger Stateflow Block: '<S3>/Stati_HMI' */

Controller_Stati_HMI();

...

/* Outport: '<Root>/LED_ONOFF' */

Controller_Y.LED_ONOFF = rtb_Switch22;

Outer framework: Stateflow

Generated code: Controller_step0

void Controller_step0(void) /* Sample time: [1.0s, 0.0s] */

{

...

/* DataTypeConversion: '<S2>/Data Type Conversion' */

Controller_B.DataTypeConversion = (boolean_T)(rtb_Add != 0.0 ? 1U : 0U);

/* DiscretePulseGenerator: '<S1>/Pulse Generator' */

rtb_Add =

(Controller_DWork.clockTickCounter < Controller_P.PulseGenerator_Duty &&

Controller_DWork.clockTickCounter >= 0) ? Controller_P.PulseGenerator_Amp : 0.0;

if (Controller_DWork.clockTickCounter >= Controller_P.PulseGenerator_Period-1){

Controller_DWork.clockTickCounter = 0;

} else {

(Controller_DWork.clockTickCounter)++;

}

/* DataTypeConversion: '<S1>/Data Type Conversion' */

Controller_B.DataTypeConversion_p = (boolean_T)(rtb_Add != 0.0 ? 1U : 0U);

/* trigger Stateflow Block: '<S3>/Stati_HMI' */

Controller_Stati_HMI();

...

/* Outport: '<Root>/LED_ONOFF' */

Controller_Y.LED_ONOFF = rtb_Switch22;

/* Outport: '<Root>/Resistenza' */

Controller_Y.Resistenza = rtb_LogicalOperator_e;

}

Outer framework: Stateflow

Generated code: rt_OneStep

static boolean_T OverrunFlags[2] = { 0, 0 };

void rt_OneStep(void)

{

boolean_T eventFlags[2]; /* Model has 2 rates */

/* Check base rate for overrun */

if (OverrunFlags[0]++) {

rtmSetErrorStatus(Controller_M, "Overrun");

return;

}

Controller_SetEventsForThisBaseStep(eventFlags);

/* Set model inputs associated with base rate here */

Controller_step0();

/* Get model outputs associated with base rate here */

OverrunFlags[0]--;

/* Check subrates for overrun */

if (eventFlags[1]) {

if (OverrunFlags[1]++) {

rtmSetErrorStatus(Controller_M, "Overrun");

return;

}

/* Set model inputs associated with subrates here */

Controller_step1();

/* Get model outputs associated with subrates here */

OverrunFlags[1]--;

}

}

Outer framework: Stateflow

Generated code: rt_OneStep

static boolean_T OverrunFlags[2] = { 0, 0 };

void rt_OneStep(void)

{

boolean_T eventFlags[2]; /* Model has 2 rates */

/* Check base rate for overrun */

if (OverrunFlags[0]++) {

rtmSetErrorStatus(Controller_M, "Overrun");

return;

}

Controller_SetEventsForThisBaseStep(eventFlags);

/* Set model inputs associated with base rate here */

Controller_step0();

/* Get model outputs associated with base rate here */

OverrunFlags[0]--;

/* Check subrates for overrun */

if (eventFlags[1]) {

if (OverrunFlags[1]++) {

rtmSetErrorStatus(Controller_M, "Overrun");

return;

}

/* Set model inputs associated with subrates here */

Controller_step1();

/* Get model outputs associated with subrates here */

OverrunFlags[1]--;

}

}

void Controller_SetEventsForThisBaseStep(boolean_T *eventFlags)

{

/* Task runs when counter=0, computed by rtmStepTask macro */

eventFlags[1] = rtmStepTask(Controller_M, 1);

}

define rtmStepTask(rtm, idx) ((rtm)->Timing.TaskCounters.TID[(idx)] == 0)

Outer framework: Asynchronous task model

(back to Samek’s model)

• Step 1: Event definition/basic management

• Events are managed in pools. They are “created” (allocated in the

pool), managed (see next) and “destroyed” (entry is returned to the

pool)

• We don’t see the event pool management, but this is the interface

for event creation and destruction

QEvent *QF::create(unsigned evtSize, QSignal sig)

void QF::annihilate(QEvent *e)

Outer framework: Asynchronous task model

(Samek’s model)

• Step 2: Event forwarding

• A publish-subscribe model

• FSMs register for the events they are interested in to the

framework (subscribe)

• Each time an event is produced and sent to the framework, the

framework “publishes” it in the input queues of all the subscribers.
– It actually publishes it in the input queue of the highest priority FSM

(more later).

– Each FSM has the obligation to process and then forward it to the next
priority subscriber (if any)

Outer framework: Asynchronous task model

Details of publish-subscribe

A lookup table links signals to subscriber lists

A subscriber list is a list of active objects that have subscribed to a given
signal. The list (typedef'd to QSubscrList) is a densely packed bit field storing
unique priorities of active objects.

Consequently, the QF requires that clients assign a unique priority to each
active object (through QActive::start()), even when the QF is based on an
operating system that does not support thread priorities in the preemptive,
priority−based sense

Outer framework: Asynchronous task model

void QF::subscribe(QActive *a, QSignal sig) {

register unsigned char p = a−>myPrio; // priority of active object

REQUIRE(Q_USER_SIG <= sig && sig < locMaxSignal && // boundary chk

p < QF_MAX_ACTIVE && pkgActive[p] == a); //consistency chk

QF_PROTECT(); // enter critical section

register QSubscrList sl = locSubscrList[sig];

ASSERT((sl & 0xF0000000) == 0); //must have at least one free slot

for (register int n = 0; n < 32; n += 4) { // find priority slot

if (p > ((sl >> n) & 0xF)) { // found priority slot?

sl = (sl & ~(~0 << n)) | // part of sl with priorities>p

(p << n) | // insert p at bit n

((sl << 4) & (~0 << (n + 4))); // shifted rest of sl

locSubscrList[sig] = sl; // update the subscriber−list

break; // subscriber registered (attached to the list)

}

}

QF_UNPROTECT(); // leave critical section

}

Outer framework: Asynchronous task model

void QF::unsubscribe(QActive *a, QSignal sig) {

register unsigned char p = a−>myPrio; // prio. of active object

REQUIRE(Q_USER_SIG <= sig && sig < locMaxSignal && // bndary chk

pkgActive[p] == a); // consistency check

QF_PROTECT(); // enter critical section

register QSubscrList sl = locSubscrList[sig];

for (register int n = 0; n < 32; n += 4) { // find priority slot

if (p == ((sl >> n) & 0xF)) { // found priority slot?

sl = (sl & ~(~0 << n)) | ((sl >> 4) & (~0 << n));

locSubscrList[sig] = sl; // update the subscriber−list

break; // subscription canceled (removed from the list)

}

}

QF_UNPROTECT(); // leave critical section

}

Outer framework: Asynchronous task model

Event queuing

Event queues allow to reconcile the

asynchronous production of events
with the RTC semantics of their

consumption.

An event queue makes the corresponding active object appear

always to be receptive to events, even though the internal state

machine can accept events only between RTC steps.

Additionally, the event queue provides buffer space that protects

the internal statechart from bursts in event production that can, at

times, exceed the available processing capacity.

Outer framework: Asynchronous task model

first signs of trouble …

One end of the queue − the end where producers insert events − is

obviously shared among many threads and must provide an

adequate mutual exclusion mechanism to protect the internal

consistency of the queue. The other end − the end from which the
local thread extracts events − must provide a mechanism for

blocking this thread when the queue is empty.

In addition, an event queue must manage a buffer of events,

typically organized in a FIFO structure.

Outer framework: Asynchronous task model

Event processing: event processing

Every active object in the QF executes in its

own thread of execution

void QActive::start(unsigned prio, QEvent*qSto[], unsigned qLen,

int stkSto[], unsigned stkLen) {

myPrio = prio; // store the priority in the attribute

QF::add(this); // register "this" active object by QF

// create event queue "myEqueue" of length "qLen"

// create execution thread "myThread" with priority "prio"

// and stack size "stkLen"

// postcondition: assert proper creation of event−queue and thread

}

Outer framework: Asynchronous task model

Event processing: event processing

Once started, all active objects execute the

following thread routine (i.e., all active object

threads share the following code).

/* return type, calling convention */ run(void *a, /*... */) {

((QActive *)a)−>run();

}

void QActive::run() {

QHsm::init(); // execute initial transition

for (;;) { // for−ever

QEvent *e = myEqueue−>get(); // get event; block if queue empty

dispatch(e); // dispatch event to the statechart

QF::propagate(e); // propagate event to next subscriber

}

}

Outer framework: Asynchronous task model

Event generation (publishing)

void QF::publish(QEvent *e) {

REQUIRE(e−>sig < locMaxSignal && // signal exceeding boundary

e−>useNum == 0); // event cannot be "in use"

register QSubscrList sl = locSubscrList[e−>sig]; //table look−up

if (sl) { // any subscribers?

register unsigned char p = (unsigned char)(sl & 0xF);

e−>useNum = 1; // the first use

ASSERT(pkgActive[p]); // active object must have subscribed

ALLEGE(pkgActive[p]−>enqueue(e)); // queue cannot overflow!

}

else { // no subscribers

QF::annihilate(e); // do not leak the event

}

}

Task-centric vs. event-centric

• Task are the main design entities

– Scheduling operates on tasks

– Application = set of tasks

– Tasks activated by signals

– model for the OMG SPT and used by all commercial tools

• Events are the main design entities

– Scheduler operates on events

– Application = Set of events and corresponding reactions

– Events are handled by one or more tasks

Task centric model

Activation
• event (event-based)
• time reference / clock (time based)

Task
(thread)

Response

Initialize AInitialize AInitialize A

Terminate ATerminate ATerminate A

Wait AWait AWait A

Do ADo ADo A cyclic

activation

Startup o new

execution mode

Shutdown or

preparing for

mode change

Task centric model

Activation
• event (event-based)
• time reference / clock (time based)

Task
(thread)

Response

Main design parameters:

Worst case comp. Time (C)

Release time (r)

Period / Minimum interarrival time (T)

Deadline (D)

Task centric model

• A can contains invocation of passive (protected)
objects only (HRT-HOOD/ADA Ravenscar profile
model)

Task
(thread)

Response

Event Centric Design

•• Event schedulingEvent scheduling

• Non-Preemptive

• Priority based

•• Event prioritiesEvent priorities

• Under
application
control

Process
Event

ProcessProcess

EventEvent

InitializeInitializeInitialize

TerminateTerminateTerminate

Wait for
Event

Wait forWait for

EventEvent

Events

• Schedulable entities

• Three types

– External events

• Generated outside the model

• Introduced by the run-time support (OS/interrupts)

– Time events

• Caused by progression of time

• Timer (periodic and one-shot)

– Internal events

• Generated inside the model

• Asinchronous

Events and objects

• Event Consumer objects

– Consuming events

– Each event has a destination object consuming it

– Define the application behavior

• Event Dispatching Tasks

– Forwarding events to consumers

• Control the events queue

• Implementing event scheduling (Non-Preemptive)

Two-level Scheduling

wait for
event

fetch
event

Event scheduling

Event queue

Incoming events

Thread scheduling

Two-level
scheduling

process
event

threadactive object

Event-based scheduling

• Main schedulable objects

– Events/Messagges in the task mailbox

• Scheduling algorithm

– Non-preemptive

• Run-to-completion

– Priority based

• Priorities associated to events

• Tasks inherit events priorities

Single task implementation

• Analysis of the response time for single task
implementation

– Similar to the non-preemptive model for tasks

Multitask implementation

• Motivation
– Improve response times for high priority events

• Events
– Priority-based, Non-Preemptive scheduling

• Tasks
– Preeemptive Scheduling, based on priorities

– Level 1: RTOS chooses task according to its priority

– Level 2: Event handler chooses event according ot its
priority

Problems

• Tasks

– How many?

– What is the mapping relationship between consumer objects

and tasks?

• Event scheduling

– How should priorities be assigned to events?

– How should events be scheduled?

• Task scheduling

– what are task priorities?

Static task priorities

• Fixed task priorities
• The priority with which the event is processed

depends on the priority of the task

• Problems
• Counterintuitive

• Difficult to assign priorities to tasks

• the schedulability analysis problem is very difficult
because of large priority inversions (pessimism)

• But …
• This is the actual multitask implementation for most

(all) commercial tools!

Dynamic task priorities

• Intuition: events are the elements that need

processing
• Tasks are processing actors

• Dynamic priorities for tasks
• Task priority is inherited from the priority of the event

being processed

• Task are processing “resources” shared by

events

• Standard resource sharing protocols (PCP) can

be applied

• Schedulability analysis is possible …

Schedulability analysis from behavioral diagrams

Asynchronous
message

«RTevent»

GetSpeed()

Speedometer

:Speedometer

Throttle

:Throttle

CruiseControl

:CruiseControl

«SATrigger» {Rtat=
(‘periodic’,100,’ms’)}

timeout()

«RTevent»

setThrottle
Synchronous

message

TGClock:Clock

«CRconcurrent»
«RTtimer» {Rtperiodic,
RTduration=(100,’ms’)}

«SAAction»
{RTduration=
(1.5,’ms’)}

«SASchedulable»

«SAAction»
{RTduration=
(2.0,’ms’)}

«SAAction»
{RTduration=
(0.5,’ms’)}

«SAAction»
{RTduration=
(5,’ms’)}

«SAAction»
{RTduration=
(15,’ms’)}

«SAAction»
{RTduration=
(3,’ms’)}

«SASchedulable»«SASchedulable»

«SASituation»

Schedulability analysis: definitions

• let E = {E1, E2, ..., En, En+1, ..., Em} be the set of all

events in the system,

• E1, E2, ... En denote external (asynchronous) events (the
remaining internal ones)

• Each external event Ei may originate a transaction Ti

• Associated with each event Ei is an action Ai.
• Each action is decomposed in subactions Ai = {ai,1, ai,2,

…, ai,n}

• All events and actions are part of a transaction.

• Action AΤ and event EΤ belong to transaction Τ.
• Each action Ai is characterized as either asynchronously

triggered or synchronously triggered and executes
within the context of an active object O(Ai).

• Ai is characterized by a priority πi, which is the same as
the priority of its triggering event Ei.

Schedulability analysis from behavioral diagrams

E1

T1

A1
A2

A3

O(A1) O(A2) O(A3)

Θ(A1)

Schedulability analysis: definitions

• Each action Ai (subaction ai,j) is characterized by a
computation time C(Ai) (abbreviated as Ci).

• Θ(Ak) denotes the synchronous set of Ak, that is the set
of actions that can be built starting from action Ak and
adding all actions that are called synchronously from it.

• C(Θ(Ak)) is the sum of the execution times of all the
actions in Θ(Ak).

• Each external event stream Ei is characterized by a
function Ψi(t) that gives the maximum number of event
arrivals in any interval [x, x+t)

• Ψ+
i(t) indicates the maximum number of event arrivals in

any right-closed interval [x, x+t].

• Ex: if the min. interarr. time is T, then Ψi(t) = t/T and
Ψ+

i(t) = t/T+1

Schedulability analysis: definitions

• Schedulability analysis of the general model is

carried out by computing response times of

actions.

• The response time of an action AΤ
i is derived

relative to the arrival of the external event that

triggers the transaction T.

• The analysis is based on the standard

concepts of critical instant and busy-period for

task instances with generic deadlines (adapted

to the transaction model.)

Schedulability analysis: definitions

• The analysis of the worst case response time of AΤ
i requires

computing the response times of all the instances of AΤ
i

inside the busy period.

• If rΤ
i,q is the release time of the instance q of the external

event EΤ
i, starting from the critical instant t=0, we need to

compute SΤ
i,q, the worst case start time for an instance q of

AΤ
i and its worst-case finishing time FΤ

i,q.

• The worst-case response time of action AΤ
i is given by:

• If WT
i is lower than the deadline of AT

i, then the action is
schedulable (Figure 12.11).

}{max ,,
],...,1[

T

qi

T

qi
mq

T

i rFW −=
∈

Schedulability analysis: assumptions

• Priorities are assigned to events

• Each action AΤ
i inherits its priority from the

triggering event.

• A synchronously triggered action inherits its

priority from the caller.

• Every transaction is made up of actions with

non-increasing priorities (if Aj is triggered by Ai

then πi ≥ πj)

Schedulability analysis: definitions

E
T

i,0

higher priority actions

πi-level busy period

t=0

E
T

i,q

t=r
T

i,q

S
T

i,q F
T

i,q

A
T

i,q

W
T

i,q = F
T

i,q - r
T

i,q ≤ di

Blockinglower priority actions

Interference

In computing the busy period we need to evaluate all the factors that
contribute to it:

•the interference factor

•the computation time of the action AΤ
i itself and

•the blocking factor (from events with priority < AΤ
i).

The first term can be further specialized in an interference factor from actions

belonging to the same transaction T and interference from actions belonging to

transactions other than T.

Schedulability analysis: definitions

• Single thread

• Blocking

• Since intra-task preemption is not allowed, in

single threaded implementations, any

synchronous set that starts executing must be

completed with no interruption. Hence, the

worst case blocking time of an action is bound

by the longest synchronous set of any lower

priority action that started prior to t=0.

{ }kik
k

i ACAB ππ >Θ= ::))((max)(

Schedulability analysis: definitions

• Single thread

• Critical instant

• All higher priority events arrive at the same

time of Ei (t=0)

• The event generating the worst blocking term

has just arrived (immediately prior to t=0)

• (All transactions –external events- arrive at

their maximum rate)

Schedulability analysis: definitions

• Once AT
i starts executing, no other action can

interrupt it other than any synchronous calls

that AT
i makes. Consequently, the worst-case

finish time for instance q of AT
i is

• and schedulability can be guaranteed provided

))((,

T

i

T

qi

T

i ACSF Θ+=

i

T

qi

T

qi
mq

T

i drFW ≤−=
∈

}{max ,,
],...,1[

Schedulability analysis: definitions

• We need to find an expression for ST
i,q

• we need to consider the blocking term plus

interference by all actions that can execute

(arrive) in the interval

[0, ST
i,q] before Ai,q

Schedulability analysis: definitions

• Single thread

• Interference (1) From other transactions (T’≠T)

• For each transaction T’≠T the highest arrival
rate of external events is assumed and the sum

of the computation times of all actions AT’
l∈T’

with a priority higher than πi is considered.

∑ ∑
≠

+≠ ≥⋅Ψ=
TT l

il

T

lT

T

i

TT
CSAI

'

'

'

'
])::()([)(ππ

Schedulability analysis: definitions

• Single thread

• Interference (2) From transaction T (instances from 0 to q-1

and instances after q)

• for transaction T, we need to consider the term from all
the higher priority actions in the previous q-1 instances

and the interference from the actions belonging to the

instances from q+1 to the last one that can be possibly
activated before Si,q.

• for instances from 0 to q-1 the interference term is the
same as before.

∑

∑
≥∧ →¬⋅−−Ψ+

≥⋅−=

+
l

il

T

l

T

i

T
CqAI)::()1()(

ππ

ππ

Schedulability analysis: definitions

• Single thread

• Interference (2) From transaction T (instances from 0 to q-1

and instances after q)

• For all instances ≥q, only the higher priority actions that
are not successors of Ai,q contribute to the interference.

• if Ai,q has not started execution, neither can its successors !

• let denote the condition for which there
exists a path of (call or signal) events and actions that
makes AT

l causally dependent on AT
i

T

l

pathT

i AA  →

∑ ≥∧ →¬⋅−−Ψ +

l

il

T

l

pathT

i

T

lT

l

AACqS))(::())1()((ππ

Schedulability analysis: definitions

• Single thread

• Interference (2) Combined

∑

∑
≥∧ →¬⋅−−Ψ+

≥⋅−=

+

l

il

T

l

pathT

i

T

lT

l

il

T

l

T

i

T

AACqS

CqAI

))(::())1()((

)::()1()(

ππ

ππ

Schedulability analysis: definitions

• Single thread

• Composing the terms …

Once the blocking and the interference factors are known,
the worst case start time can be computed with the
iterative formula

)()()(::min '

,

T

i

TT

i

TT

iqi AIAIABSSS ++== ≠

