Model-based testing

Marco Di Natale
Scuola Superiore S. Anna- Pisa, Italy

Taken from
Chapter 4: Conformance Testing by Angelo Gargantini
Chapter 1: Homing and Synchronizing Sequences, by Sven Sandberg
Model-based testing

Purpose of this Lesson
 – Learn methods for checking correctness in the implementation of an FSM
Model-based testing

Conformance testing between FSMs
 - typically a model and its implementation

Given a FSM specification M_S, for which we know the transition diagram, and another FSM M_I, which is the implementation and for which we can only observe the behavior, we want to know if M_I correctly implements M_S.

Also called *fault detection* or *machine verification*
Conformance testing

M_I conforms to M_S if and only if their initial states are equivalent and they will produce the same output sequence for any possible input sequence.

To prove this we need to find a set of input sequences that we can apply to M_I to prove its equivalence. Note that applying all input sequences is equivalent to applying the concatenation of all the input sequences. This concatenation is called checking sequence

A checking sequence for M_S is an input sequence that distinguishes the class of machines equivalent to M_S from other machines.
Conformance testing

Checking sequences differ for the cost to be produced, the size of the test suite (their total length) and their fault detection capability.

- They should be rather short to be practically applicable
- They should cover the implementation as much as possible and detect as many faults as possible
Model-based testing

Assumptions (requirements)

- M_S is reduced or minimal

 Q1: How to compute a minimal FSM given a specification?

- M_S is deterministic and completely specified: the state transition and the output function are defined for every state and every input symbol

- M_S is strongly connected. Every state is reachable from every other state via one or more transitions

 • At least all states must be reachable from the initial one, if a reset transition is available, allowing machines with deadlocks

- M_I does not change during testing and it has the same set of inputs and outputs as M_S.

 • Implications here (data inconsistency for incorrect concurrent implementations)
Notation

\(\lambda(s,x) = \) output function: \(s \) is the state, \(x \) the input
\(\sigma(s,x) = \) state function: \(s \) is the state, \(x \) the input
Model-based testing

- How to compute a minimal FSM given a specification

Two states s and t are equivalent iff $\lambda(s,x) = \lambda(t,x)$ for each possible input sequence $x \in I^*$. That is, for each input sequence, the machine starting in s will produce the same output as the machine starting in t.

- Possibly checked using the simulation relation

- But there is a better way ...

If states s and t are equivalent, then the machine obtained by merging the two states is equivalent to the original one. For each machine there is an equivalent one with a minimum number of states, called reduced or minimized machine.
Model-based testing

Given a machine M, the minimized machine equivalent to M can be obtained by a partition refinement procedure. A partition of S is a set $\{B_1, B_2, ..., B_n\}$ of subsets of S (also called blocks), such that $\bigcup B_i = S$ and $B_i \cap B_j = \emptyset$.

Given a mealy machine, the states of the equivalent minimized machine are the coarsest (with minimum number of elements) partition of S such that, whenever s and t are in the same block, then

- $\lambda(s,a) = \lambda(t,a)$ for each input a and
- $\sigma(s,a)$ and $\sigma(t,a)$ are in the same block for each a

The coarsest partition can be found starting from an initial partition of S where s and t are in the same block iff $\lambda(s,a) = \lambda(t,a)$.

Then, the initial partition is iteratively refined:

- Take a block B_i
- Examine $\sigma(s,a)$ for each $s \in B_i$ and $a \in I$. Partition B_i so that s and t stay in the same block iff $\sigma(s,a)$ and $\sigma(t,a)$ are in the same block of the current partition. (repeated until refinements are possible)
Initial partition (based on output)

$B_1 = \{2, 5\} \quad B_2 = \{0, 1, 3, 4\}$

Consider B_1

$\sigma(2, 1) = 3 \quad \sigma(5, 1) = 0$

0 and 3 are in the same partition

Consider B_2

$\sigma(0, 1) = 1 \quad \sigma(1, 1) = 2 \quad \sigma(3, 1) = 4 \quad \sigma(4, 1) = 5$

Refined in $B_2 = \{1, 4\}$

$B_2 = \{0, 3\}$
Model-based testing

Assumptions (not essential)

- M_S and M_I have an initial state and M_I is in its initial state before we conduct a conformance test.
 - If not, we can apply a homing sequence to M_I. The initial state is s_1.
- M_I has the same number of state as M_S.
 - Faults do not increase the number of states
 - Not included faults that create inconsistent states, such as, race conditions
 - Possible faults then can only be of two types
 - **Output faults**: the transition produces the wrong output
 - **Transfer faults**: the implementation goes to a wrong state.
Example

Faulty implementations

Output fault

Transition faults
Model-based testing

Assumptions (not essential) continues …

- M_S and M_I have a special input \textit{reset} that brings them back to the initial state without producing any output.

 • This assumption will be relaxed

- M_S and M_I have a special input \textit{status} to which they respond with an output that uniquely identifies the state in which they are. The state is not changed

 • (If in s_i, the output is s_i)

 • This assumption will be relaxed

- M_S and M_I have a special set of inputs set(s_j), such that when set(s_j) is received in the initial state, the machines move to s_j without producing any output.

 • This assumption will be relaxed
Algorithm for conformance test

Under these assumptions, this is a conformance test

For all $s \in S$, $a \in I$:

1. Apply a reset message to bring M_1 to the initial state
2. Apply set(s) message to transfer M_1 to state s
3. Apply the input value a
4. Verify that the output received conforms to $\lambda_S(s,a)$
5. Apply the status message to verify that the final state conforms to $\delta_S(s,a)$
Algorithm for conformance test

• The algorithm should also test the behavior for set, reset and status
• To test status, simply apply it twice in every state s_i after set(s_i) (first to test that it returns s_i, then to check that it does not change the state)
• Once status is tested, we can test set and reset by applying them in every state and verifying the result with status.

• The algorithm is the concatenation of reset, set(s), a and status $\forall s \in S$ and $\forall a \in I$.
• The length of the sequence is $4pn$ where $p = |I|$ and $n = |S|$
Algorithm for conformance test

- The main problem of the algorithm is the need for the set(s) input, which is typically not available.
- There is a sequence that avoids the need for set and possibly shortens the test run.
- We need a sequence that traverses every state and every transition, without restarting from the initial state after each test (and without using a set). Such a sequence is called Transition Tour (TT).
- A **Transition Tour** is an input sequence $a_1, a_2, a_3, \ldots, a_n$ that takes the machine to a sequence of states $z_1, z_2, z_3, \ldots, z_n$ such that,
 - for all $s \in S$, there exists $z_j = s$ and, (every state is visited)
 - for all $i \in I$ and $s \in S$, there exists j such that $z_j = s$ and $a_j = i$ (every transition out of every state is taken)
Algorithm for conformance test

• If a **Transition Tour** is available, simply perform the input sequence \(a_1, status, a_2, status, a_3, \ldots status, a_n \) to test conformance.
• The length of the TT sequence is at least \(2*p*n \).
• The shortest path that traverses each transition exactly once is called Euler Tour
• For connected FSMs an Euler Tour exists if they are also symmetric (every state is the source and destination of the same number of transitions)
 – And can be found in time linear in the number of transitions
• For non-symmetric FSMs, finding the shortest tour is another graph theory well-known problem (Chinese postman problem) that can be solved in polynomial time
Example

<table>
<thead>
<tr>
<th>Checking sequence</th>
<th>b</th>
<th>s</th>
<th>a</th>
<th>s</th>
<th>b</th>
<th>s</th>
<th>a</th>
<th>s</th>
<th>b</th>
<th>s</th>
<th>a</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start state</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Output</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>End state</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example

![State Transition Diagram](image)

<table>
<thead>
<tr>
<th>Checking sequence</th>
<th>b</th>
<th>s</th>
<th>a</th>
<th>s</th>
<th>b</th>
<th>s</th>
<th>a</th>
<th>s</th>
<th>b</th>
<th>s</th>
<th>a</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start state</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Output</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1 (_{0})</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>End state</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
The Transition Tour method

- The TT method without the status message achieves only **transition coverage** (not status coverage)

- A test that visits all the states but not all transitions is a **state tour** and obtains **state coverage**
 - Simple transition coverage is not enough to test correctness!
Example

Check. seq. | a | b | a | b | a | b
Start state | 1 | 2 | 2 | 3 | 3 | 1
Output | 0 | 1 | 1 | 1 | 0 | 0
End state | 2 | 2 | 3 | 3 | 1 | 1

Check. seq. | b | a | b | a | b | a
Start state | 1 | 1(2)| 2 | 2(3)| 3 | 3(1)
Output | 0(1)| 0(1)| 1 | 1(0)| 1(0)| 0
End state | 1(2)| 2 | 2(3)| 3 | 3(1)| 1

Transition faults
Using Separating Sequences instead of status

- The status message is replaced by a (set of) sequences called separating sequences.
- Since M_s is minimal, for every pair of states s_i, s_j, there exists an input sequence x that distinguishes between them by creating different outputs: $\lambda(s_i, x) \neq \lambda(s_j, x)$
- That is, we need a “signature” that characterizes each state. This “signature” is a behavior starting from the state.
- Let’s reason about those “signatures” … how long should they be?
Separating sequences

- Define a sequence \(\rho_0, \rho_1, \) of partitions, so that two states are in the same class of \(\rho_i \) if and only if they do not have any separating sequence of length \(i \)
 - \(\rho_0 = \{S\} \)
 - \(\rho_{i+1} \) is a refinement of \(\rho_i \)
 - Lemma: if \(\rho_{i+1} = \rho_i \) for some \(i \), then the rest of the sequence of partitions is constant, \(\rho_j = \rho_i \) for all \(j > i \).
- Since partitions can be refined at most \(n \) times, the sequence is constant after at most \(n \) steps.
- Since the machine is minimized, at this point each partition is a singleton

\[\rho_i \]

\(S_k, S_l \) have the same output for any sequence of length \(i \)
Separating sequences: example

• Counter modulo 4

• Define a sequence \(\rho_0, \rho_1, \) of partitions, so that two states are in the same class of \(\rho_i \) if and only if they do not have any separating sequence of length \(i \)
 • \(\rho_0 = \{S\} \)
 • \(\rho_{i+1} \) is a refinement of \(\rho_i \)

\[
\begin{array}{cccc}
S0 & S2 & S1 & S3 \\
S3 & S2 & S1 & S0 \\
S3 & S1 & S0 & S2 \\
S3 & S1 & S0 & S2
\end{array}
\]
Separating sequences

- Step 1: build the partitions ρ

 Start from ρ_1

 - Two states s and t belong to different partitions of ρ_1 iff $\exists a \in I$ such that $\lambda(s,a) \neq \lambda(t,a)$

 - ρ_1 can be computed according to the definition
 - Try all possible input symbols

 Iteratively

 - Two states s and t belong to different partitions of ρ_i with $i>1$ iff $\exists a \in I$ such that $\sigma(s,a)$ and $\sigma(t,a)$ belong to different sets of ρ_{i-1} and to the same set of ρ_{i-2}
Separating sequences

- Step 1: build the partitions ρ

 Start from ρ_1

 - Two states s and t belong to different partitions of ρ_1 iff $\exists a \in I$ such that $\lambda(s, a) \neq \lambda(t, a)$

 - ρ_1 can be computed according to the definition

 - Try all possible input symbols

![Diagram of partitions]ρ_0 and ρ_1
Separating sequences

Iteratively ….

- Two states s and t belong to different partitions of ρ_i with $i>1$ iff
 $\exists a \in \mathcal{I}$ such that $\sigma(s,a)$ and $\sigma(t,a)$ belong to different sets of ρ_{i-1} and to the same set of ρ_{i-2}
Separating sequences

• Step 2: find the separating sequence for \(s, t \in S \)
 – Find the smallest index \(j \) such that \(s \) and \(t \) belong to different sets of \(\rho_j \)
 – Recursively, the separating sequence has the form \(ax \), where \(x \) is the shortest separating sequence for the pair \(\sigma(s,a) \) and \(\sigma(t,a) \)
 – Thus, we need to find the input \(a \) that takes \(s \) and \(t \) to different sets of \(\rho_{j-1} \) and repeat the process until we reach \(\rho_0 \)
 – The concatenation of all the inputs is the separating sequence

 – (the algorithm needs \(O(n) \) memory)
Separating sequences: example

- Step 2: find the separating sequence for $S_1, S_2 \in S$
 - Find the smallest index j such that s and t belong to different sets of ρ_j (2)
 - Thus, we need to find the input a that takes s and t to different sets of ρ_{j-1} and repeat the process until we reach ρ_0 ($a=1$)
 - Recursively, the separating sequence has the form ax, where x is the shortest separating sequence for the pair $\sigma(s,a)$ and $\sigma(t,a)$ ($x=1$)
 - $ax = 1,1$
Transition cover set

- The **transition cover set** of M_s is a set P of input sequences such that, for every $s \in S$ and $a \in I$ there exists a sequence $x \in P$ ending with the transition that applies a to s.
- P is a set closed under prefix selection
 - If $x \in P$ then prefix(x) in P (the empty sequence ε is assumed to be part of any P).
- One way of constructing P:
 - Build a testing tree T of M_s (next algorithm) and then take the input sequences of all the partial paths of T.

Building a test tree

1. The initial state of M_s is the root (level 1) of T.
2. Suppose the tree is built up to level k: to build level $k+1$
 1. For all nodes t at level k.
 2. If the node t is equal to another node in T at level j with $j \leq k$, then t is a leaf of T.
 3. Otherwise, let s_i be the label of t. For every input x, if M_s goes from s_i to s_j, attach a branch to t with label x and a successor node s_j.
Example of transition cover set
Characterizing set

- The **characterizing set** of M_s is a set W of input sequences such that, for every pair $(s_i, s_j) \in S$ there exists a sequence $x \in W$ such that $\lambda(s_i, x) \neq \lambda(s_j, x)$
 - W is also called separating set
 - $x \in W$ are called separating sequences
- The choice of W is not unique, the fewer are the elements in W, the longer are the sequences.

Building a W set
1. Partition the states S into blocks B_i, $i=1..r$
2. $W \leftarrow \{\}$, $r=1$, $B_1=S$
3. Repeat until every B_i is a singleton (and $r=n$)
 1. Take two states $s, t \in B_i$ and build their separating sequence x
 (algorithm shown in previous slides)
 2. Add x to W
 3. Partition the states s_{ik} in every B_j into smaller blocks based on their outputs $\lambda(s_{ik}, x)$

Note: there are no more than $n-1$ partitions, and no more than $n-1$ sequences in W
Using P sets and W sets (the W method)

• The method consists in using the set W in place of the status message

• Use the set of P sequences to test all transitions.
• At the end of each sequence \(x_P \), apply all the sequences of W \(x_W \).
• Apply a reset after each pair \(x_{Pi}, x_{Wj} \)
• The total number of sequences is given by the cardinality of \(PxW \)
Example

- The set W is simply \{a, b\} (a distinguishes s_2 from both s_1 and s_3, b distinguishes s_1 from s_3)
- The set P is \{ε, a, b, ba, bb, bba, bbb\}

<table>
<thead>
<tr>
<th>P</th>
<th>ε</th>
<th>a</th>
<th>b</th>
<th>ba</th>
<th>bb</th>
<th>bba</th>
<th>bbb</th>
</tr>
</thead>
<tbody>
<tr>
<td>r.P.W</td>
<td>ra</td>
<td>rb</td>
<td>ra</td>
<td>rb</td>
<td>ra</td>
<td>rb</td>
<td>rb</td>
</tr>
<tr>
<td>trans test</td>
<td>$s_1\to(\varepsilon)$</td>
<td>$s_1\to(a/0) s_1$</td>
<td>$s_1\to(b/1) s_2$</td>
<td>$s_2\to(a/1) s_2$</td>
<td>$s_2\to(b/1) s_3$</td>
<td>$s_3\to(a/0) s_3$</td>
<td>$s_3\to(b/0) s_1$</td>
</tr>
<tr>
<td>output</td>
<td>0</td>
<td>1</td>
<td>00</td>
<td>11</td>
<td>11</td>
<td>111</td>
<td>111</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>P</th>
<th>ε</th>
<th>a</th>
<th>b</th>
<th>ba</th>
<th>bb</th>
<th>bba</th>
<th>bbb</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r.P.W$</td>
<td>ra</td>
<td>rb</td>
<td>raa</td>
<td>rab</td>
<td>rba</td>
<td>rbb</td>
<td>rbaa</td>
</tr>
<tr>
<td>trans test</td>
<td>$s_1 \rightarrow (\varepsilon)$</td>
<td>$s_1 \rightarrow (a/0) s_1$</td>
<td>$s_1 \rightarrow (b/1) s_2$</td>
<td>$s_2 \rightarrow (a/1) s_2$</td>
<td>$s_2 \rightarrow (b/1) s_3$</td>
<td>$s_3 \rightarrow (a/0) s_3$</td>
<td>$s_3 \rightarrow (b/0) s_1$</td>
</tr>
<tr>
<td>output</td>
<td>0</td>
<td>1</td>
<td>00</td>
<td>01</td>
<td>11</td>
<td>11</td>
<td>111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>ε</th>
<th>a</th>
<th>b</th>
<th>ba</th>
<th>bb</th>
<th>bba</th>
<th>bbb</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r.P.W$</td>
<td>ra</td>
<td>rb</td>
<td>raa</td>
<td>rab</td>
<td>rba</td>
<td>rbb</td>
<td>rbaa</td>
</tr>
<tr>
<td>trans test</td>
<td>$s_1 \rightarrow (\varepsilon)$</td>
<td>$s_1 \rightarrow (a/0) s_1$</td>
<td>$s_1 \rightarrow (b/1) s_2$</td>
<td>$s_2 \rightarrow (a/1) s_2$</td>
<td>$s_2 \rightarrow (b/1) s_3$</td>
<td>$s_3 \rightarrow (a/0) s_3$</td>
<td>$s_3 \rightarrow (b/0) s_1$</td>
</tr>
<tr>
<td>output</td>
<td>0</td>
<td>0</td>
<td>01</td>
<td>01</td>
<td>00</td>
<td>00</td>
<td>001</td>
</tr>
</tbody>
</table>
The Wp method

- The partial W or Wp method has the advantage of reducing the length of the test suite wrt the W method.
- The conformance test is split in two phases
 - During the first phase we test that every state that exists in M_S also exists in M_I.
 - During the second phase we check that all transitions (not already checked during the first phase) are correctly implemented.
The Wp method

- Phase 1: test that every state that exists in M_S also exists in M_I
- The Wp method uses a State cover set (as opposed to a transition cover set) or Q set
- The state cover set is a set Q of input sequences such that for each s in S there exists an input sequence x in Q that takes the machine to s, that is $\sigma(s_1, x) = s$
- A Q set can be easily built by performing a breadth-first visit of the transition graph of MS
The Wp method

- Phase 2: check that all transitions (not already checked during the first phase) are correctly implemented.
- For the second phase, the Wp method uses an identification set W_i specific of each state s_i instead of a generic characterizing set W for all states ($W_i \subset W$).
- An identification set of state s_i is a set W_i of input sequences such that, for each state $s_j \in S$, there exists an input sequence $x \in W_i$ such that $\lambda(s_i, x) \neq \lambda(s_j, x)$ and no subset of W_i has this property.
 - $\bigcup W_i = W$
The Wp method

• Phase 1: The input sequences for phase 1 consist in the concatenation of every \(q \in Q \) with every \(w \in W \) after a reset
 – Every state is checked with a \(W \) set

• If the input sequences do not uncover any fault during this phase, we can conclude that every state in \(M_S \) has a similar state in the implementation (produces the same output for all the sequences in \(W \))

• This is not sufficient to prove that it is equivalent
 – (we need to check all transitions in the next stage)
The Wp method

- Phase 2: To test all transitions, Wp uses the identification sets.
- For every transition from s_j to s_i on input a, we apply a sequence x (after reset) that takes the machine to s_j along transitions already verified in phase 1.
- Then we apply the input a that takes the machine to s_i we verify the correctness of the output, and we apply one identification sequence of W_i.
- We repeat the previous for all the sequences in W_i and, if these tests do not uncover faults, by applying them to every transition, we can verify that M_I conforms to the specification.
Bibliography

Taken from

Chapter 4: Conformance Testing by Angelo Gargantini
Chapter 1: Homing and Synchronizing Sequences, by Sven Sandberg