
Model-based testing

Marco Di Natale

Scuola Superiore S. Anna- Pisa, Italy

Taken from

“Model-Based Testing of Reactive Systems” by M. Broy, B. Jonsson, J. Katoen,

M. Leucker and A. Pretschner editors, Springer Verlag

Chapter 4: Conformance Testing by Angelo Gargantini

Chapter 1: Homing and Synchronizing Sequences, by Sven Sandberg

Model-based testing

Purpose of this Lesson

– Learn methods for checking correctness in the
implementation of an FSM

Model-based testing

Conformance testing between FSMs

– typically a model and its implementation

Given a FSM specification MS, for which we know the
transition diagram, and another FSM MI, which is the

implementation and for which we can only observe the
behavior, we want to know if MI correctly implements MS.

Also called fault detection or machine verification

a/0

S1

S2 S3

a/1

b/1

b/0

a/1a/1

M
S

M
I

Conformance testing

MI conforms to MS if and only if their initial states are
equivalent and they will produce the same output sequence for
any possible input sequence.

To prove this we need to find a set of input sequences that
we can apply to MI to prove its equivalence. Note that
applying all input sequences is equivalent to applying the
concatenation of all the input sequences. This
concatenation is called checking sequence

A checking sequence for MS is an input sequence that
distinguishes the class of machines equivalent to MS from other
machines

M
I

i1, i2, i3, …, in o1, o2, o3, …, on

Conformance testing

Checking sequences differ for the cost to be produced, the
size of the test suite (their total length) and their fault
detection capability.

– They should be rather short to be practically applicable
– They should cover the implementation as much as possible and

detect as many faults as possible

Model-based testing

Assumptions (requirements)
– MS is reduced or minimal

Q1: How to compute a minimal FSM given a specification?

– MS is deterministic and completely specified: the state
transition and the output function are defined for
every state and every input symbol

– MS is strongly connected. Every state is reachable
from every other state via one or more transitions

• At least all states must be reachable from the initial one, if a
reset transition is available, allowing machines with
deadlocks

– MI does not change during testing and it has the
same set of inputs and outputs as MS.

• Implications here (data inconsistency for incorrect concurrent
implementations)

Notation

λ(s,x) = output function: s is the state, x the input

σ(s,x) = state function: s is the state, x the input

Model-based testing

• How to compute a minimal FSM given a specification

0

1 2

3

45

{1}/1

{1}/1

{1}/0

{1}/1

{1}/1{1}/0

Two states s and t are equivalent iff
λ(s,x)=λ(t,x) for each possible input
sequence xœI*.

That is, for each input sequence, the
machine starting in s will produce the
same output as the machine starting in t.

– Possibly checked using the simulation
relation

– But there is a better way …

If states s and t are equivalent, then the
machine obtained by merging the two
states is equivalent to the original one.

For each machine there is an equivalent
one with a minimum number of states,
called reduced or minimized machine.

Model-based testing

Given a machine M, the minimized machine equivalent to M can
be obtained by a partition refinement procedure.

A partition of S is a set {B1, B2, …, Bn} of subsets of S (also called
blocks), such that ∪Bi = S and Bi∩Bj=∅.

Given a mealy machine, the states of the equivalent minimized
machine are the coarsest (with minimum number of elements)
partition of S such that, whenever s and t are in the same block,
then

– λ(s,a)=λ(t,a) for each input a and

– σ(s,a) and σ(t,a) are in the same block for each a

The coarsest partition can be found starting from an initial
partition of S where s and t are in the same block iff λ(s,a)=λ(t,a)

Then, the initial partition is iteratively refined:

– Take a block Bi

– Examine σ(s,a) for each sœBi and aœI. Partition Bi so that s and t
stay in the same block iff σ(s,a) and σ(t,a) are in the same block of
the current partition. (repeated until refinements are possible)

Model-based testing

0

1 2

3

45

{1}/1

{1}/1

{1}/0

{1}/1

{1}/1{1}/0

Initial partition (based on output)

B1={2,5} B2={0,1,3,4}

Consider B1

σ(2,1)=3 σ(5,1)=0 0 and 3 are in the
same partition

Consider B2

σ(0,1)=1 σ(1,1)=2 σ(3,1)=4 σ(4,1)=5

Refined in B2={1,4} B2={0,3}

Model-based testing

Assumptions (not essential)

– MS and MI have an initial state and MI is in its initial

state before we conduct a conformance test.

• If not, we can apply a homing sequence to MI. The initial

state is s1.

– MI has the same number of state as MS.

• Faults do not increase the number of states

– Not included faults that create inconsistent states, such as,

race conditions

• Possible faults then can only be of two types

– Output faults: the transition produces the wrong output

– Transfer faults: the implementation goes to a wrong state.

Example

a/0

S1

S2 S3

b/0

b/1

b/1

a/0a/1

a/0

S1

S2 S3

b/1

b/1

b/1

a/0a/1

b/0

S1

S2 S3

a/0

a/1

a/0

b/1b/1

Output
fault

Transition
faults

Faulty implementations

Model-based testing

Assumptions (not essential) continues …

– MS and MI have a special input reset that brings them
back to the initial state without producing any output.

• This assumption will be relaxed

– MS and MI have a special input status to which they
respond with an output that uniquely identifies the state in
which they are. The state is not changed

• (If in si, the output is si)

• This assumption will be relaxed

– MS and MI have a special set of inputs set(sj), such that
when set(sj) is received in the initial state, the machines
move to sj without producing any output.

• This assumption will be relaxed

Algorithm for conformance test

Under these assumptions, this is a conformance test

For all sœS, aœI :

1. Apply a reset message to bring MI to the initial state

2. Apply set(s) message to transfer MI to state s

3. Apply the input value a

4. Verify that the output received conforms to λS(s,a)

5. Apply the status message to verify that the final state conforms

to δS(s,a)

Output fault detection

Transition fault detection

Algorithm for conformance test

• The algorithm should also test the behavior for set, reset
and status

• To test status, simply apply it twice in every state si after

set(si) (first to test that it returns si, then to check that it

does not change the state)

• Once status is tested, we can test set and reset by

applying them in every state and verifying the result with
status.

• The algorithm is the concatenation of reset, set(s), a and

status ∀ sœS and ∀ aœI.

• The length of the sequence is 4pn where p=I and n=
S

Algorithm for conformance test

• The main problem of the algorithm is the need for the
set(s) input, which is typically not available.

• There is a sequence that avoids the need for set and
possibly shortens the test run.

• We need a sequence that traverses every state and
every transition, without restarting from the initial state
after each test (and without using a set). Such a
sequence is called Transition Tour (TT)

• A Transition Tour is an input sequence a1, a2, a3, …, an

that takes the machine to a sequence of states z1, z2, z3,
…, zn such that,

– for all sœS, there exists zj=s and, (every state is visited)

– for all iœI and sœS, there exists j such that zj=s and aj=i
(every transition out of every state is taken)

Algorithm for conformance test

• If a Transition Tour is available, simply perform the input
sequence a1, status, a2, status, a3, …status, an to test
conformance.

• The length of the TT sequence is at least 2*p*n.

• The shortest path that traverses each transition exactly
once is called Euler Tour

• For connected FSMs an Euler Tour exists if they are also
symmetric (every state is the source and destination of
the same number of transitions)

– And can be found in time linear in the number of
transitions

• For non-symmetric FSMs, finding the shortest tour is
another graph theory well-known problem (Chinese
postman problem) that can be solved in polynomial time

Example

a/0

S1

S2 S3

b/0

b/1

b/1

a/0a/1

111133332222End state

101030312121Output

111333322221Start state

sasbsasbsasbChecking
sequence

Example

a/0

S1

S2 S3

b/0

b/1

b/1

a/0a/1

111133332222End state

1011(0)30312121Output

111333322221Start state

sasbsasbsasbChecking
sequence

a/0

S1

S2 S3

b/1

b/1

b/1

a/0a/1

Output
fault

The Transition Tour method

• The TT method without the status message

achieves only transition coverage (not status

coverage)

• A test that visits all the states but not all

transitions is a state tour and obtains state

coverage

– Simple transition coverage is not enough to test

correctness!

Example
a/0

S1

S2 S3

b/0

b/1

b/1

a/0a/1

113322End state

001110Output

133221Start state

bababaCheck. seq.

b/0

S1

S2 S3

a/0

a/1

a/0

b/1b/1

Transition
faults

13(1)32(3)21(2)End state

01(0)1(0)10(1)0(1)Output

3(1)32(3)21(2)1Start state

abababCheck. seq.

Using Separating Sequences instead of status

• The status message is replaced by a (set of) sequences
called separating sequences.

• Since MS is minimal, for every pair of states si, sj, there

exists an input sequence x that distinguishes between

them by creating different outputs: λ(si, x) ≠ λ(sj, x)

• That is, we need a “signature” that characterizes each

state. This “signature” is a behavior starting from the

state.

• Let’s reason about those “signatures” … how long

should they be?

Separating sequences

• Define a sequence ρ0, ρ1, of partitions, so that two states
are in the same class of ρi if and only if they do not have
any separating sequence of length i

• ρ0 = {S}

• ρi+1 is a refinement of ρi

– Lemma: if ρi+1 = ρi for some i, then the rest of the sequence of
partitions is constant, ρj=ρi for all j>i.

• Since partitions can be refined at most n times, the
sequence is constant after at most n steps.

• Since the machine is minimized, at this point each
partition is a singleton

ρi

Sk

Sl

Sk, Sl have the same

output for any

sequence of length i

Separating sequences: example

• Define a sequence ρ0, ρ1, of partitions, so that two states are in the
same class of ρi if and only if they do not have any separating
sequence of length i

• ρ0 = {S}

• ρi+1 is a refinement of ρi

ρ0

S0

S1

• Counter modulo 4

s0 s1 s2 s3

1/0 1/0 1/0

1/1

0/0

0/0 0/0
0/0

S2

S3

ρ1

S1

S2

S3
S0

ρ2

S1
S3

S0

S2
ρ3

S1
S3

S2

S0

Separating sequences

• Step1: build the partitions ρ
Start from ρ1

– Two states s and t belong to different partitions of ρ1 iff ∃aœI such
that λ(s,a)≠λ(t,a)

– ρ1 can be computed according to the definition

• Try all possible input symbols

Iteratively ….

– Two states s and t belong to different partitions of ρi with i>1 iff
∃aœI such that σ(s,a) and σ(t,a) belong to different sets of ρi-1 and
to the same set of ρi-2

ρ1

S1

S2

ρ0

S2

S3

S1

S4

S7S6

S5

S3

S4

S6

S5 S7

ρ2

S1 S3

S4

S6

S5 S7
S2

σ(S1,a)=S4

σ(S2,a)=S7

Separating sequences

• Step1: build the partitions ρ
Start from ρ1

– Two states s and t belong to different partitions of ρ1 iff ∃aœI such
that λ(s,a)≠λ(t,a)

– ρ1 can be computed according to the definition

• Try all possible input symbols

ρ0

S0

S1

S2

S3

ρ1

S1

S2

S3
S0

s0 s1 s2 s3

1/0 1/0 1/0

1/1

0/0

0/0 0/0
0/0

Separating sequences

Iteratively ….

– Two states s and t belong to different partitions of ρi with i>1 iff
∃aœI such that σ(s,a) and σ(t,a) belong to different sets of ρi-1 and
to the same set of ρi-2

ρ0

S0

S1

S2

S3

ρ1

S1

S2

S3
S0

s0 s1 s2 s3

1/0 1/0 1/0

1/1

0/0

0/0 0/0
0/0

ρ2

S1
S3

S0

S2

a=1

a=1

Separating sequences

• Step 2: find the separating sequence for s,t œS

– Find the smallest index j such that s and t belong to different sets

of ρj

– Recursively, the separating sequence has the form ax, where x is

the shortest separating sequence for the pair σ(s,a) and σ(t,a)

– Thus, we need to find the input a that takes s and t to different

sets of ρj-1 and repeat the process until we reach ρ0

– The concatenation of all the inputs is the separating sequence

– (the algorithm needs O(n) memory)

Separating sequences: example

• Step 2: find the separating sequence for S1, S2 œS

– Find the smallest index j such that s and t belong to different sets of ρj (2)

– Thus, we need to find the input a that takes s and t to different sets of ρj-1

and repeat the process until we reach ρ0 (a=1)

– Recursively, the separating sequence has the form ax, where x is the
shortest separating sequence for the pair σ(s,a) and σ(t,a) (x is
separating sequence for S2,S3) (x=1)

– ax = 1,1

ρ0

S0

S1

S2

S3

ρ1

S1

S2

S3
S0

s0 s1 s2 s3

1/0 1/0 1/0

1/1

0/0

0/0 0/0
0/0

ρ2

S1
S3

S0

S2

a=1

a=1

Transition cover set

• The transition cover set of Ms is a set P of input sequences such

that, for every s∈S and a∈I there exists a sequence x∈P ending
with the transition that applies a to s

• P is a set closed under prefix selection

– If x∈P then prefix(x) in P (the empty sequence ε is assumed to be part
of any P)

• One way of constructing P:

– Build a testing tree T of Ms (next algorithm) and then take the input

sequences of all the partial paths of T

Building a test tree

1. The initial state of Ms is the root (level 1) of T

2. Suppose the tree is built up to level k: to build level k+1

1.For all nodes t at level k

2.If the node t is equal to another node in T at level j with

j≤k, then t is a leaf of T

3.Otherwise, let si be the label of t. For every input x, if Ms
goes from si to sj, attach a branch to t with label x and a

successor node sj

Example of transition cover set

a/0

S1

S2 S3

b/0

b/1

b/1

a/0a/1

b

S1

S2

a

S1

b

S3

a

S1

b

S1

a

S3

Characterizing set

• The characterizing set of Ms is a set W of input sequences such
that, for every pair (si,sj)∈S there exists a sequence x∈W such that
λ(si, x) ≠ λ(sj, x)
– W is also called separating set

– x∈W are called separating sequences

• The choice of W is not unique, the fewer are the elements in W, the
longer are the sequences.

Building a W set

1. Partition the states S into blocks Bi, i=1..r

2. W←←←←{}, r=1, B1=S

3. Repeat until every Bi is a singleton (and r=n)

1.Take two states s,t∈∈∈∈Bi and build their separating sequence x

(algorithm shown in previous slides)

2.Add x to W

3.Partition The states sik in every Bj into smaller blocks based

on their outputs λλλλ(sik,x)

Note: there are no more than n-1 partitions, and no more than

n-1 sequences in W

Using P sets and W sets (the W method)

• The method consists in using the set W in place of the
status message

• Use the set of P sequences to test all transitions.

• At the end of each sequence xP, apply all the sequences
of W (xW).

• Apply a reset after each pair xPi, xWj

• The total number of sequences is given by the cardinality

of PxW

Example

• The set W is simply {a,b} (a distinguishes s2 from both s1 and s3, b
distinguishes s1 from s3)

• The set P is {ε, a, b, ba, bb, bba, bbb}

a/0

S1

S2 S3

b/0

b/1

b/1

a/0a/1

1100

rbbba

bbb

1100

rbbab

110111001101101111111111110010output

s3→(b/0) s1s3→(a/0) s3s2→(b/1) s3s2→(a/1) s2s1→(b/1) s2s1→(a/0) s1s1→(ε)trans test

rbbbbrbbaarbbbrbbarbabrbaarbbrbarabraarbrar.P.W

bbabbbabaεP

Example

a/0

S1

S2 S3

b/0

b/1

b/1

a/0a/1

1100

rbbba

bbb

1100

rbbab

110111001101101111111111010010output

s3→(b/0) s1s3→(a/0) s3s2→(b/1) s3s2→(a/1) s2s1→(b/1) s2s1→(a/0) s1s1→(ε)trans test

rbbbbrbbaarbbbrbbarbabrbaarbbrbarabraarbrar.P.W

bbabbbabaεP

b/0

S1

S2 S3

a/0

a/1

a/0

b/1b/1

Transition
faults

0000

rbbba

bbb

0001

rbbab

000000010000000010010000010100output

s3→(b/0) s1s3→(a/0) s3s2→(b/1) s3s2→(a/1) s2s1→(b/1) s2s1→(a/0) s1s1→(ε)trans test

rbbbbrbbaarbbbrbbarbabrbaarbbrbarabraarbrar.P.W

bbabbbabaεP

The Wp method

• The partial W or Wp method has the advantage of
reducing the length of the test suite wrt the W method.

• The conformance test is split in two phases

– During the first phase we test that every state that exists in MS

also exists in MI

– During the second phase we check that all transitions (not
already checked during the first phase) are correctly
implemented

The Wp method

• Phase 1: test that every state that exists in MS also
exists in MI

• The Wp method uses a State cover set (as opposed to a
transition cover set) or Q set

• The state cover set is a set Q of input sequences such
that for each s in S there exists an input sequence x in Q

that takes the machine to s, that is σ(s1, x) = s

• A Q set can be easily built by performing a breadth-first

visit of the transition graph of MS

The Wp method

• Phase 2: check that all transitions (not already checked
during the first phase) are correctly implemented

• For the second phase, the Wp method uses an
identification set Wi specific of each state si instead of a

generic characterizing set W for all states (Wi ⊂W).

• An identification set of state si is a set Wi of input

sequences such that, for each state sjœS, there exists an

input sequence xœWi such that λ(si,x)≠λ(sj,x) and no
subset of Wi has this property.

– ∪Wi = W

The Wp method

• Phase 1:The input sequences for phase 1 consist in the

concatenation of every q∈Q with every w∈W after a
reset

– Every state is checked with a W set

• If the input sequences do not uncover any fault during
this phase, we can conclude that every state in MS has a

similar state in the implementation (produces the same

output for all the sequences in W)

• This is not sufficient to prove that it is equivalent

– (we need to check all transitions in the next stage)

The Wp method

• Phase 2: To test all transitions, Wp uses the identification
sets.

• For every transition from sj to si on input a, we apply a
sequence x (after reset) that takes the machine to sj

along transitions already verified in phase 1.

• Then we apply the input a that takes the machine to si we

verify the correctness of the output, and we apply one

identification sequence of Wi

• We repeat the previous for all the sequences in Wi and, if

these tests do not uncover faults, by applying them to
every transition, we can verify that MI conforms to the

specification.

Bibliography

Taken from

“Model-Based Testing of Reactive Systems” by M. Broy, B.
Jonsson, J. Katoen, M. Leucker and A. Pretschner editors,

Springer Verlag

Chapter 4: Conformance Testing by Angelo Gargantini

Chapter 1: Homing and Synchronizing Sequences, by Sven

Sandberg

