Marco Di Natale Scuola Superiore S. Anna- Pisa, Italy

Taken from

"Model-Based Testing of Reactive Systems" by M. Broy, B. Jonsson, J. Katoen, M. Leucker and A. Pretschner editors, Springer Verlag Chapter 4: Conformance Testing by Angelo Gargantini Chapter 1: Homing and Synchronizing Sequences, by Sven Sandberg

Purpose of this Lesson

 Learn methods for checking correctness in the implementation of an FSM

Conformance testing between FSMs

- typically a model and its implementation

Given a FSM specification M_S , for which we know the transition diagram, and another FSM M_I , which is the implementation and for which we can only observe the behavior, we want to know if M_I correctly implements M_S .

Also called *fault detection* or *machine verification*

Conformance testing

 M_I conforms to M_S if and only if their initial states are equivalent and they will produce the same output sequence for any possible input sequence.

To prove this we need to find a set of input sequences that we can apply to M_I to prove its equivalence. Note that applying all input sequences is equivalent to applying the concatenation of all the input sequences. This concatenation is called *checking sequence*

A checking sequence for M_S is an input sequence that distinguishes the class of machines equivalent to M_S from other machines

Conformance testing

Checking sequences differ for the cost to be produced, the size of the test suite (their total length) and their fault detection capability.

- They should be rather short to be practically applicable
- They should cover the implementation as much as possible and detect as many faults as possible

Assumptions (requirements)

 $-M_S$ is reduced or minimal

Q1: How to compute a minimal FSM given a specification?

- $-M_S$ is deterministic and completely specified: the state transition and the output function are defined for every state and every input symbol
- $-M_S$ is strongly connected. Every state is reachable from every other state via one or more transitions
 - At least all states must be reachable from the initial one, if a reset transition is available, allowing machines with deadlocks
- $-M_I$ does not change during testing and it has the same set of inputs and outputs as M_S .
 - Implications here (data inconsistency for incorrect concurrent implementations)

Notation

 $\lambda(s,x)$ = output function: s is the state, x the input $\sigma(s,x)$ = state function: s is the state, x the input

• How to compute a minimal FSM given a specification

Two states s and t are equivalent iff $\lambda(s,x)=\lambda(t,x)$ for each possible input sequence $x \in I^*$.

That is, for each input sequence, the machine starting in s will produce the same output as the machine starting in t.

- Possibly checked using the simulation relation
- But there is a better way ...

If states s and t are equivalent, then the machine obtained by merging the two states is equivalent to the original one. For each machine there is an equivalent one with a minimum number of states, called reduced or minimized machine.

Given a machine M, the minimized machine equivalent to M can be obtained by a partition refinement procedure.

A partition of S is a set {B₁, B₂, ..., B_n} of subsets of S (also called blocks), such that $\cup B_i = S$ and $B_i \cap B_j = \emptyset$.

Given a mealy machine, the states of the equivalent minimized machine are the coarsest (with minimum number of elements) partition of S such that, whenever s and t are in the same block, then

- $-\lambda(s,a)=\lambda(t,a)$ for each input a and
- $-\sigma(s,a)$ and $\sigma(t,a)$ are in the same block for each a

The coarsest partition can be found starting from an initial partition of S where s and t are in the same block iff $\lambda(s,a)=\lambda(t,a)$ Then, the initial partition is iteratively refined:

- Take a block B_i
- Examine σ(s,a) for each s∈B_i and a∈I. Partition B_i so that s and t stay in the same block iff σ(s,a) and σ(t,a) are in the same block of the current partition. (repeated until refinements are possible)

Initial partition (based on output)

 $B_1 = \{2,5\} B_2 = \{0,1,3,4\}$

Consider B_1 $\sigma(2,1)=3 \sigma(5,1)=0$ 0 and 3 are in the same partition

Consider B_2 $\sigma(0,1)=1 \ \sigma(1,1)=2 \ \sigma(3,1)=4 \ \sigma(4,1)=5$

Refined in $B_2 = \{1,4\} B_2 = \{0,3\}$

Assumptions (not essential)

- $-M_S$ and M_I have an initial state and M_I is in its initial state before we conduct a conformance test.
 - If not, we can apply a *homing sequence* to M_I. The initial state is s₁.
- $-M_I$ has the same number of state as M_S .
 - Faults do not increase the number of states
 - Not included faults that create inconsistent states, such as, race conditions
 - Possible faults then can only be of two types
 - Output faults: the transition produces the wrong output
 - Transfer faults: the implementation goes to a wrong state.

Example

Faulty implementations

Assumptions (not essential) continues ...

- $-M_S$ and M_I have a special input *reset* that brings them back to the initial state without producing any output.
 - This assumption will be relaxed
- $-M_S$ and M_I have a special input *status* to which they respond with an output that uniquely identifies the state in which they are. The state is not changed
 - (If in s_i, the output is s_i)
 - This assumption will be relaxed
- M_s and M_I have a special set of inputs set(s_j), such that when set(s_j) is received in the initial state, the machines move to s_i without producing any output.
 - This assumption will be relaxed

Under these assumptions, this is a conformance test

For all $s \in S$, $a \in I$:

1. Apply a reset message to bring M_I to the initial state

2. Apply set(s) message to transfer M_I to state s

3. Apply the input value a

Output fault detection

4. Verify that the output received conforms to $\lambda_{S}(s,a)$

5. Apply the status message to verify that the final state conforms to $\delta_{s}(s,a)$

Transition fault detection

- The algorithm should also test the behavior for set, reset and status
- To test *status*, simply apply it twice in every state s_i after set(s_i) (first to test that it returns s_i, then to check that it does not change the state)
- Once *status* is tested, we can test *set* and *reset* by applying them in every state and verifying the result with *status*.
- The algorithm is the concatenation of reset, set(s), a and status ∀ s∈S and ∀ a∈I.
- The length of the sequence is 4pn where p = |I| and n = |S|

- The main problem of the algorithm is the need for the set(s) input, which is typically not available.
- There is a sequence that avoids the need for set and possibly shortens the test run.
- We need a sequence that traverses every state and every transition, without restarting from the initial state after each test (and without using a set). Such a sequence is called Transition Tour (TT)
- A Transition Tour is an input sequence $a_1, a_2, a_3, ..., a_n$ that takes the machine to a sequence of states $z_1, z_2, z_3, ..., z_n$ such that,
 - for all $s \in S$, there exists $z_i = s$ and, (every state is visited)
 - for all i∈I and s∈S, there exists j such that z_j=s and a_j=i (every transition out of every state is taken)

- If a Transition Tour is available, simply perform the input sequence *a*₁, *status*, *a*₂, *status*, *a*₃, *...status*, *a*_n to test conformance.
- The length of the TT sequence is at least 2*p*n.
- The shortest path that traverses each transition exactly once is called Euler Tour
- For connected FSMs an Euler Tour exists if they are also symmetric (every state is the source and destination of the same number of transitions)
 - And can be found in time linear in the number of transitions
- For non-symmetric FSMs, finding the shortest tour is another graph theory well-known problem (Chinese postman problem) that can be solved in polynomial time

Example

Checking	b	S	а	S	b	S	а	S	b	S	а	S
sequence												
Start state	1	2	2	2	2	3	3	3	3	1	1	1
Output	1	2	1	2	1	3	0	3	0	1	0	1
End state	2	2	2	2	3	3	3	3	1	1	1	1

Example

Checking	b	S	а	S	b	S	а	S	b	S	а	S
sequence												
Start state	1	2	2	2	2	3	3	3	3	1	1	1
Output	1	2	1	2	1	3	0	3	1 (0)	1	0	1
End state	2	2	2	2	3	3	3	3	1	1	1	1

The Transition Tour method

- The TT method without the status message achieves only transition coverage (not status coverage)
- A test that visits all the states but not all transitions is a state tour and obtains state coverage
 - Simple transition coverage is not enough to test correctness!

Check. seq.	а	b	а	b	а	b
Start state	1	2	2	3	3	1
Output	0	1	1	1	0	0
End state	2	2	3	3	1	1

Check. seq.	b	а	b	а	b	а
Start state	1	1(2)	2	<mark>2</mark> (3)	3	<mark>3</mark> (1)
Output	0 (1)	0 (1)	1	1 (0)	1 (0)	0
End state	1(2)	2	2 (3)	3	<mark>3</mark> (1)	1

Using Separating Sequences instead of status

- The status message is replaced by a (set of) sequences called separating sequences.
- Since M_s is minimal, for every pair of states s_i , s_j , there exists an input sequence x that distinguishes between them by creating different outputs: $\lambda(s_i, x) \neq \lambda(s_i, x)$
- That is, we need a "signature" that characterizes each state. This "signature" is a behavior starting from the state.
- Let's reason about those "signatures" ... how long should they be?

- Define a sequence ρ_0 , ρ_1 , of partitions, so that two states are in the same class of ρ_i if and only if they do not have any separating sequence of length i
- $\bullet \quad \rho_0 = \{S\}$
- ρ_{i+1} is a refinement of ρ_i
 - Lemma: if $\rho_{i+1} = \rho_i$ for some i, then the rest of the sequence of partitions is constant, $\rho_i = \rho_i$ for all j>i.
- Since partitions can be refined at most n times, the sequence is constant after at most n steps.
- Since the machine is minimized, at this point each partition is a singleton

 S_k , S_l have the same output for any sequence of length i

Separating sequences: example

Counter modulo 4

- Define a sequence ρ_0 , ρ_1 , of partitions, so that two states are in the same class of ρ_i if and only if they do not have any separating sequence of length i
- $\bullet \quad \rho_0 = \{S\}$
- ρ_{i+1} is a refinement of ρ_i

• Step1: build the partitions $\boldsymbol{\rho}$

Start from ρ_1

- Two states s and t belong to different partitions of ρ_1 iff $\exists a \in I$ such that $\lambda(s,a) \neq \lambda(t,a)$
- $-~\rho_{1}$ can be computed according to the definition
 - Try all possible input symbols

Iteratively

- Two states s and t belong to different partitions of ρ_i with i>1 iff $\exists a \in I$ such that $\sigma(s,a)$ and $\sigma(t,a)$ belong to different sets of ρ_{i-1} and to the same set of ρ_{i-2}

- Step1: build the partitions ρ Start from ρ₁
 - Two states s and t belong to different partitions of ρ_1 iff $\exists a \in I$ such that $\lambda(s,a) \neq \lambda(t,a)$
 - ρ_1 can be computed according to the definition
 - Try all possible input symbols

Iteratively

- Two states s and t belong to different partitions of ρ_i with i>1 iff $\exists a \in I$ such that $\sigma(s,a)$ and $\sigma(t,a)$ belong to different sets of ρ_{i-1} and to the same set of ρ_{i-2}

- Step 2: find the separating sequence for s,t \in S
 - Find the smallest index j such that s and t belong to different sets of ρ_{j}
 - Recursively, the separating sequence has the form ax, where x is the shortest separating sequence for the pair $\sigma(s,a)$ and $\sigma(t,a)$
 - Thus, we need to find the input a that takes s and t to different sets of ρ_{i-1} and repeat the process until we reach ρ_0
 - The concatenation of all the inputs is the separating sequence
 - (the algorithm needs O(n) memory)

Separating sequences: example

- Step 2: find the separating sequence for S1, S2 \in S
 - Find the smallest index j such that s and t belong to different sets of ρ_i (2)
 - Thus, we need to find the input a that takes s and t to different sets of ρ_{j-1} and repeat the process until we reach ρ_0 (**a=1**)
 - Recursively, the separating sequence has the form ax, where x is the shortest separating sequence for the pair $\sigma(s,a)$ and $\sigma(t,a)$ (x is separating sequence for S2,S3) (x=1)

Transition cover set

- The transition cover set of M_s is a set P of input sequences such that, for every s∈ S and a∈ I there exists a sequence x∈ P ending with the transition that applies a to s
- P is a set closed under prefix selection
 - If x∈ P then prefix(x) in P (the empty sequence ε is assumed to be part of any P)
- One way of constructing P:
 - Build a testing tree T of M_s (next algorithm) and then take the input sequences of all the partial paths of T

Building a test tree

- 1. The initial state of M_s is the root (level 1) of T
- 2. Suppose the tree is built up to level k: to build level k+1 1.For all nodes t at level k 2.If the node t is equal to another node in T at level j with j≤k, then t is a leaf of T 3.Otherwise, let s_i be the label of t. For every input x, if M_s goes from s_i to s_j, attach a branch to t with label x and a
 - successor node s_j

Example of transition cover set

Characterizing set

- The characterizing set of M_s is a set W of input sequences such that, for every pair $(s_i, s_j) \in S$ there exists a sequence $x \in W$ such that $\lambda(s_i, x) \neq \lambda(s_j, x)$
 - W is also called separating set
 - $x \in W$ are called separating sequences
- The choice of W is not unique, the fewer are the elements in W, the longer are the sequences.

Building a W set

- 1. Partition the states S into blocks B_i , i=1..r
- 2. $W \leftarrow \{\}, r=1, B_1=S$
- 3. Repeat until every B_i is a singleton (and r=n)
 - 1. Take two states $s, t \in B_i$ and build their separating sequence x (algorithm shown in previous slides)
 - 2.Add x to W
 - 3.Partition The states s_{ik} in every B_j into smaller blocks based on their outputs $\lambda(s_{ik},x)$
- Note: there are no more than n-1 partitions, and no more than n-1 sequences in $\ensuremath{\mathbb{W}}$

Using P sets and W sets (the W method)

- The method consists in using the set W in place of the status message
- Use the set of P sequences to test all transitions.
- At the end of each sequence x_P , apply all the sequences of W (x_W).
- Apply a reset after each pair x_{Pi} , x_{Wi}
- The total number of sequences is given by the cardinality of PxW

- The set W is simply {a,b} (a distinguishes s_2 from both s_1 and s_3 , b distinguishes s_1 from s_3)
- The set P is $\{\varepsilon, a, b, ba, bb, bba, bbb\}$

Ρ	8	Ξ	а		b		ba		bb		bba		bbb	
r.P.W	ra	rb	raa	rab	rba	rbb	rbaa	rbab	rbba	rbbb	rbbaa	rbbab	rbbba	rbbbb
trans test	$S_1 \rightarrow (\epsilon)$		$s_1 \rightarrow (a/0) s_1$		$s_1 \rightarrow (b/1) s_2$		$s_2 \rightarrow (a/1) s_2$		$s_2 \rightarrow (b/1) s_3$		$s_3 \rightarrow (a/0) s_3$		$s_3 \rightarrow (b/0) s_1$	
output	0	1	00	11	11	11	111	111	110	110	1100	1100	1100	1101

Example

Ρ	8	E	а		b		ba		bb		bba		bbb	
r.P.W	ra	rb	raa	rab	rba	rbb	rbaa	rbab	rbba	rbbb	rbbaa	rbbab	rbbba	rbbbb
trans test	$S_1 \rightarrow (\epsilon)$		$s_1 \rightarrow (a/0) s_1$		$s_1 \rightarrow (b/1) s_2$		$s_2 \rightarrow (a/1) s_2$		$s_2 \rightarrow (b/1) s_3$		$s_3 \rightarrow (a/0) s_3$		$s_3 \rightarrow (b/0) s_1$	
output	0	1	00	01	11	11	111	111	110	110	1100	1100	1100	1101

Ρ	8	E	а		b		ba		bb		bba		bbb	
r.P.W	ra	rb	raa	rab	rba	rbb	rbaa	rbab	rbba	rbbb	rbbaa	rbbab	rbbba	rbbbb
trans test	$s_1 \rightarrow (\epsilon)$ $s_1 \rightarrow (a/c)$		a/0) s ₁	$s_1 \rightarrow (b/1) s_2$		$s_2 \rightarrow (a/1) s_2$		$s_2 \rightarrow (b/1) s_3$		$s_3 \rightarrow (a/0) s_3$		$s_3 \rightarrow (b/0) s_1$		
output	0	0	01	01	00	00	001	001	000	000	0001	0001	0000	0000

- The partial W or Wp method has the advantage of reducing the length of the test suite wrt the W method.
- The conformance test is split in two phases
 - During the first phase we test that every state that exists in $\rm M_S$ also exists in $\rm M_I$
 - During the second phase we check that all transitions (not already checked during the first phase) are correctly implemented

- Phase 1: test that every state that exists in $M_{\rm S}$ also exists in $M_{\rm I}$
- The Wp method uses a State cover set (as opposed to a transition cover set) or Q set
- The state cover set is a set Q of input sequences such that for each s in S there exists an input sequence x in Q that takes the machine to s, that is $\sigma(s_1, x) = s$
- A Q set can be easily built by performing a breadth-first visit of the transition graph of MS

- Phase 2: check that all transitions (not already checked during the first phase) are correctly implemented
- For the second phase, the Wp method uses an identification set W_i specific of each state si instead of a generic characterizing set W for all states (W_i ⊂W).
- An identification set of state s_i is a set W_i of input sequences such that, for each state s_j∈S, there exists an input sequence x∈W_i such that λ(s_i,x)≠λ(s_j,x) and no subset of W_i has this property.

 $- \cup W_i = W$

- Phase 1:The input sequences for phase 1 consist in the concatenation of every q∈ Q with every w∈ W after a reset
 - Every state is checked with a W set
- If the input sequences do not uncover any fault during this phase, we can conclude that every state in M_S has a similar state in the implementation (produces the same output for all the sequences in W)
- This is not sufficient to prove that it is equivalent
 - (we need to check all transitions in the next stage)

- Phase 2: To test all transitions, Wp uses the identification sets.
- For every transition from s_j to s_i on input a, we apply a sequence x (after *reset*) that takes the machine to s_j along transitions already verified in phase 1.
- Then we apply the input a that takes the machine to s_i we verify the correctness of the output, and we apply one identification sequence of W_i
- We repeat the previous for all the sequences in W_i and, if these tests do not uncover faults, by applying them to every transition, we can verify that *M_I* conforms to the specification.

Bibliography

Taken from

"Model-Based Testing of Reactive Systems" by M. Broy, B. Jonsson, J. Katoen, M. Leucker and A. Pretschner editors, Springer Verlag

Chapter 4: Conformance Testing by Angelo Gargantini Chapter 1: Homing and Synchronizing Sequences, by Sven Sandberg