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Model-based testing

Purpose of this Lesson

– Learn methods for checking correctness in the 
implementation of an FSM



Model-based testing

Conformance testing between FSMs

– typically a model and its implementation

Given a FSM specification MS, for which we know the 
transition diagram, and another FSM MI, which is the 

implementation and for which we can only observe the 
behavior, we want to know if MI correctly implements MS.

Also called fault detection or machine verification
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Conformance testing

MI conforms to MS if and only if their initial states are 
equivalent and they will produce the same output sequence for 
any possible input sequence.

To prove this we need to find a set of input sequences that 
we can apply to MI to prove its equivalence. Note that 
applying all input sequences is equivalent to applying the 
concatenation of all the input sequences. This 
concatenation is called checking sequence

A checking sequence for MS is an input sequence that 
distinguishes the class of machines equivalent to MS from other 
machines
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i1, i2, i3, …, in o1, o2, o3, …, on



Conformance testing

Checking sequences differ for the cost to be produced, the 
size of the test suite (their total length) and their fault 
detection capability.

– They should be rather short to be practically applicable
– They should cover the implementation as much as possible and 

detect as many faults as possible 



Model-based testing

Assumptions (requirements)
– MS is reduced or minimal

Q1: How to compute a minimal FSM given a specification?

– MS is deterministic and completely specified: the state 
transition and the output function are defined for 
every state and every input symbol

– MS is strongly connected. Every state is reachable
from every other state via one or more transitions

• At least all states must be reachable from the initial one, if a
reset transition is available, allowing machines with 
deadlocks

– MI does not change during testing and it has the 
same set of inputs and outputs as MS.

• Implications here (data inconsistency for incorrect concurrent 
implementations)



Notation

λ(s,x) = output function: s is the state, x the input

σ(s,x) = state function: s is the state, x the input



Model-based testing

• How to compute a minimal FSM given a specification
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Two states s and t are equivalent iff
λ(s,x)=λ(t,x) for each possible input 
sequence xœI*.

That is, for each input sequence, the 
machine starting in s will produce the 
same output as the machine starting in t.

– Possibly checked using the simulation 
relation

– But there is a better way …

If states s and t are equivalent, then the 
machine obtained by merging the two 
states is equivalent to the original one.

For each machine there is an equivalent 
one with a minimum number of states, 
called reduced or minimized machine.



Model-based testing

Given a machine M, the minimized machine equivalent to M can 
be obtained by a partition refinement procedure.

A partition of S is a set {B1, B2, …, Bn} of subsets of S (also called 
blocks), such that ∪Bi = S and Bi∩Bj=∅.

Given a mealy machine, the states of the equivalent minimized 
machine are the coarsest (with minimum number of elements) 
partition of S such that, whenever s and t are in the same block, 
then 

– λ(s,a)=λ(t,a) for each input a and

– σ(s,a) and σ(t,a) are in the same block for each a

The coarsest partition can be found starting from an initial 
partition of S where s and t are in the same block iff λ(s,a)=λ(t,a)

Then, the initial partition is iteratively refined:

– Take a block Bi

– Examine σ(s,a) for each sœBi and aœI. Partition Bi so that s and t
stay in the same block iff σ(s,a) and σ(t,a) are in the same block of 
the current partition. (repeated until refinements are possible)



Model-based testing
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Initial partition (based on output)

B1={2,5}  B2={0,1,3,4}

Consider B1

σ(2,1)=3 σ(5,1)=0    0 and 3 are in the 
same partition

Consider B2

σ(0,1)=1 σ(1,1)=2 σ(3,1)=4 σ(4,1)=5

Refined in B2={1,4} B2={0,3}



Model-based testing

Assumptions (not essential)

– MS and MI have an initial state and MI is in its initial 

state before we conduct a conformance test.

• If not, we can apply a homing sequence to MI. The initial 

state is s1.

– MI has the same number of state as MS. 

• Faults do not increase the number of states

– Not included faults that create inconsistent states, such as, 

race conditions

• Possible faults then can only be of two types

– Output faults: the transition produces the wrong output

– Transfer faults: the implementation goes to a wrong state.



Example
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Model-based testing

Assumptions (not essential) continues …

– MS and MI have a special input reset that brings them 
back to the initial state without producing any output.

• This assumption will be relaxed

– MS and MI have a special input status to which they 
respond with an output that uniquely identifies the state in 
which they are. The state is not changed

• (If in si, the output is si)

• This assumption will be relaxed

– MS and MI have a special set of inputs set(sj), such that 
when set(sj) is received in the initial state, the machines 
move to sj without producing any output.

• This assumption will be relaxed



Algorithm for conformance test

Under these assumptions, this is a conformance test 

For all sœS, aœI :

1. Apply a reset message to bring MI to the initial state

2. Apply set(s) message to transfer MI to state s

3. Apply the input value a

4. Verify that the output received conforms to λS(s,a)

5. Apply the status message to verify that the final state conforms

to δS(s,a)

Output fault detection

Transition fault detection



Algorithm for conformance test

• The algorithm should also test the behavior for set, reset 
and status

• To test status, simply apply it twice in every state si after 

set(si) (first to test that it returns si, then to check that it 

does not change the state)

• Once status is tested, we can test set and reset by 

applying them in every state and verifying the result with 
status.

• The algorithm is the concatenation of reset, set(s), a and 

status ∀ sœS and ∀ aœI.

• The length of the sequence is 4pn where p=I and n= 
S



Algorithm for conformance test

• The main problem of the algorithm is the need for the 
set(s) input, which is typically not available.

• There is a sequence that avoids the need for set and 
possibly shortens the test run.

• We need a sequence that traverses every state and 
every transition, without restarting from the initial state 
after each test (and without using a set). Such a 
sequence is called Transition Tour (TT)

• A Transition Tour is an input sequence a1, a2, a3, …, an

that takes the machine to a sequence of states z1, z2, z3, 
…, zn such that, 

– for all sœS, there exists zj=s and,    (every state is visited)

– for all iœI and sœS, there exists j such that  zj=s and aj=i  
(every transition out of every state is taken)



Algorithm for conformance test

• If a Transition Tour is available, simply perform the input 
sequence a1, status, a2, status, a3, …status, an to test 
conformance.

• The length of the TT sequence is at least 2*p*n.

• The shortest path that traverses each transition exactly 
once is called Euler Tour

• For connected FSMs an Euler Tour exists if they are also 
symmetric (every state is the source and destination of 
the same number of transitions)

– And can be found in time linear in the number of 
transitions

• For non-symmetric FSMs, finding the shortest tour is 
another graph theory well-known problem (Chinese 
postman problem) that can be solved in polynomial time
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Example
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The Transition Tour method

• The TT method without the status message 

achieves only transition coverage (not status 

coverage)

• A test that visits all the states but not all 

transitions is a state tour and obtains state 

coverage

– Simple transition coverage is not enough to test 

correctness!
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Using Separating Sequences instead of status

• The status message is replaced by a (set of) sequences 
called separating sequences.

• Since MS is minimal, for every pair of states si, sj, there 

exists an input sequence x that distinguishes between 

them by creating different outputs: λ(si, x) ≠ λ(sj, x) 

• That is, we need a “signature” that characterizes each 

state. This “signature” is a behavior starting from the 

state.

• Let’s reason about those “signatures” … how long 

should they be?



Separating sequences

• Define a sequence ρ0, ρ1,  of partitions, so that two states 
are in the same class of ρi if and only if they do not have 
any separating sequence of length i

• ρ0 = {S}

• ρi+1 is a refinement of ρi

– Lemma: if ρi+1 = ρi for some i, then the rest of the sequence of 
partitions is constant, ρj=ρi for all j>i.

• Since partitions can be refined at most n times, the 
sequence is constant after at most n steps.

• Since the machine is minimized, at this point each 
partition is a singleton

ρi
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Sk, Sl have the same 

output for any 

sequence of length i



Separating sequences: example

• Define a sequence ρ0, ρ1,  of partitions, so that two states are in the 
same class of ρi if and only if they do not have any separating 
sequence of length i

• ρ0 = {S}

• ρi+1 is a refinement of ρi
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Separating sequences

• Step1: build the partitions ρ
Start from ρ1

– Two states s and t belong to different partitions of ρ1 iff ∃aœI such 
that λ(s,a)≠λ(t,a)

– ρ1 can be computed according to the definition

• Try all possible input symbols

Iteratively ….

– Two states s and t belong to different partitions of ρi with i>1 iff
∃aœI such that σ(s,a) and σ(t,a) belong to different sets of ρi-1 and 
to the same set of ρi-2 
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Separating sequences

• Step1: build the partitions ρ
Start from ρ1

– Two states s and t belong to different partitions of ρ1 iff ∃aœI such 
that λ(s,a)≠λ(t,a)

– ρ1 can be computed according to the definition

• Try all possible input symbols
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Separating sequences

Iteratively ….

– Two states s and t belong to different partitions of ρi with i>1 iff
∃aœI such that σ(s,a) and σ(t,a) belong to different sets of ρi-1 and 
to the same set of ρi-2 
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Separating sequences

• Step 2: find the separating sequence for s,t œS

– Find the smallest index j such that s and t belong to different sets 

of ρj

– Recursively, the separating sequence has the form ax, where x is

the shortest separating sequence for the pair σ(s,a) and σ(t,a) 

– Thus, we need to find the input a that takes s and t to different 

sets of ρj-1 and repeat the process until we reach ρ0

– The concatenation of all the inputs is the separating sequence

– (the algorithm needs O(n) memory)



Separating sequences: example

• Step 2: find the separating sequence for S1, S2 œS

– Find the smallest index j such that s and t belong to different sets of ρj (2)

– Thus, we need to find the input a that takes s and t to different sets of ρj-1

and repeat the process until we reach ρ0 (a=1)

– Recursively, the separating sequence has the form ax, where x is the 
shortest separating sequence for the pair σ(s,a) and σ(t,a) (x is 
separating sequence for S2,S3) (x=1)

– ax = 1,1
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Transition cover set

• The transition cover set of Ms is a set P of input sequences such 

that, for every s∈S and a∈I there exists a sequence x∈P ending 
with the transition that applies a to s

• P is a set closed under prefix selection

– If x∈P then prefix(x) in P (the empty sequence ε is assumed to be part 
of any P)

• One way of constructing P:

– Build a testing tree T of Ms (next algorithm) and then take the input 

sequences of all the partial paths of T

Building a test tree

1. The initial state of Ms is the root (level 1) of T

2. Suppose the tree is built up to level k: to build level k+1

1.For all nodes t at level k

2.If the node t is equal to another node in T at level j with 

j≤k, then t is a leaf of T

3.Otherwise, let si be the label of t. For every input x, if Ms
goes from si to sj, attach a branch to t with label x and a 

successor node sj



Example of transition cover set
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Characterizing set

• The characterizing set of Ms is a set W of input sequences such 
that, for every pair (si,sj)∈S there exists a sequence x∈W such that 
λ(si, x) ≠ λ(sj, x) 
– W is also called separating set

– x∈W are called separating sequences

• The choice of W is not unique, the fewer are the elements in W, the 
longer are the sequences.

Building a W set

1. Partition the states S into blocks Bi, i=1..r

2. W←←←←{}, r=1, B1=S

3. Repeat until every Bi is a singleton (and r=n)

1.Take two states s,t∈∈∈∈Bi and build their separating sequence x 

(algorithm shown in previous slides)

2.Add x to W

3.Partition The states sik in every Bj into smaller blocks based 

on their outputs λλλλ(sik,x)

Note: there are no more than n-1 partitions, and no more than 

n-1 sequences in W



Using P sets and W sets (the W method)

• The method consists in using the set W in place of the 
status message

• Use the set of P sequences to test all transitions.

• At the end of each sequence xP, apply all the sequences 
of W (xW).

• Apply a reset after each pair xPi, xWj

• The total number of sequences is given by the cardinality 

of PxW



Example

• The set W is simply {a,b} (a distinguishes s2 from both s1 and s3, b 
distinguishes s1 from s3)

• The set P is {ε, a, b, ba, bb, bba, bbb}
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The Wp method

• The partial W or Wp method has the advantage of 
reducing the length of the test suite wrt the W method.

• The conformance test is split in two phases

– During the first phase we test that every state that exists in MS

also exists in MI

– During the second phase we check that all transitions (not 
already checked during the first phase) are correctly 
implemented



The Wp method

• Phase 1: test that every state that exists in MS also 
exists in MI

• The Wp method uses a State cover set (as opposed to a 
transition cover set) or Q set

• The state cover set is a set Q of input sequences such 
that for each s in S there exists an input sequence x in Q 

that takes the machine to s, that is σ(s1, x) = s

• A Q set can be easily built by performing a breadth-first 

visit of the transition graph of MS



The Wp method

• Phase 2: check that all transitions (not already checked 
during the first phase) are correctly implemented

• For the second phase, the Wp method uses an 
identification set Wi specific of each state si instead of a 

generic characterizing set W for all states (Wi ⊂W).

• An identification set of state si is a set Wi of input 

sequences such that, for each state sjœS, there exists an 

input sequence xœWi such that λ(si,x)≠λ(sj,x) and no 
subset of Wi has this property.

– ∪Wi = W



The Wp method

• Phase 1:The input sequences for phase 1 consist in the 

concatenation of every q∈Q with every w∈W after a 
reset

– Every state is checked with a W set

• If the input sequences do not uncover any fault during 
this phase, we can conclude that every state in MS has a 

similar state in the implementation (produces the same 

output for all the sequences in W)

• This is not sufficient to prove that it is equivalent

– (we need to check all transitions in the next stage)



The Wp method

• Phase 2: To test all transitions, Wp uses the identification 
sets.

• For every transition from sj to si on input a, we apply a 
sequence x (after reset) that takes the machine to sj

along transitions already verified in phase 1.

• Then we apply the input a that takes the machine to si we 

verify the correctness of the output, and we apply one 

identification sequence of Wi

• We repeat the previous for all the sequences in Wi and, if 

these tests do not uncover faults, by applying them to 
every transition, we can verify that MI conforms to the 

specification.
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