
Coverage measurement

Purpose of this lesson

• Gather practical experience on how to achieve coverage

• Learn how to use gcov

Gcov

• Open source and free tool from the gnu foundation

• gcov is a test coverage program.

• It is meant to be used in concert with gcc to analyze
programs and discover untested parts of it.

• gcov can also be used as a profiling tool to discover where
optimization efforts will best affect the code (assess which
parts of your code use the greatest amount of computing
time). In this case it should be used along with the profiling
tool gprof

• Using gcov it is possible to gather information on:
– how often each line of code executes

– what lines of code are actually executed

– how much computing time each section of code uses

Gcov

• Gcov requires that the code is compiled without
optimization, because optimization may combine some
lines of code into one function.

• gcov accumulates statistics by line (at the lowest
resolution), and works best with a programming style that
places only one statement on each line.
– In case of complicated macros that expand to loops or to other

control structures, the statistics are less helpful—they only report
on the line where the macro call appears.

• gcov creates a logfile called sourcefile.gcov which
indicates how many times each line of a source file
sourcefile.c has executed.

• gprof provides additional timing information to use along
with the information from gcov.

• gcov works only on code compiled with GCC. It is not
compatible with any other profiling or test coverage
mechanism.

Invoking gcov

gcov [options] sourcefiles

Options

-h --help

-v --version

-n --no-output

-a --all-blocks

Write individual execution counts for every basic block. Normally gcov
outputs execution counts only for the main blocks of a line. With this
option you can determine if blocks within a single line are not being
executed.

-b --branch-probabilities

Write branch frequencies to the output file, and branch summary info
to the standard output. Allows to see how often each branch is taken.
Unconditional branches are not shown, unless the -u option is given.

Invoking gcov

-c --branch-counts
Write branch frequencies as the number of branches taken, rather
than the percentage of branches taken.

--long-file-names
Create long file names for included source files. For example, if the
header file x.h contains code, and was included in a.c, then running
gcov on the file a.c will produce an output file called a.c##x.h.gcov
instead of x.h.gcov. This can be useful if x.h is included in multiple
source files. If you use the `-p' option, both the including and included
file names will be complete path names.

-p --preserve-paths
Preserve complete path information in the names of generated .gcov
files. Without this option, just the filename component is used. With
this option, all directories are used, with `/' characters translated to
`#' characters, . directory components removed and .. components
renamed to `^'. This is useful if sourcefiles are in several different
directories. It also affects the `-l' option.

Invoking gcov

-f --function-summaries
Output summaries for each function in addition to the file level
summary.

-o directory|file

--object-directory directory

--object-file file
Specify either the directory containing the gcov data files, or the
object path name. The .gcno, and .gcda data files are searched for
using this option. If a directory is specified, the data files are in that
directory and named after the source file name, without its extension.
If a file is specified here, the data files are named after that file,
without its extension. If this option is not supplied, it defaults to the
current directory.

-u --unconditional-branches
When branch probabilities are given, include those of unconditional
branches. Unconditional branches are normally not interesting.

Invoking gcov

• To allow finding the source files, gcov should be run with the current
directory set as the same from which the compiler is called.

• gcov produces one coverage information file (extension .gcov) for each
source file of the program the current directory. The name part of the
output file name is usually simply the source file name, but can be more
complicated if the `-l' or `-p' options are given.

• When using gcov, the program must be compiled with the GCC options:
`-fprofile-arcs -ftest-coverage'. These tell the compiler to generate
additional information needed by gcov (basically a flow graph of the
program) and also includes additional code in the object files for
generating the extra profiling information needed by gcov. These
additional files are placed in the directory where the object file is located.

• Running the program will cause profile output to be generated. For each
source file compiled with -fprofile-arcs, an accompanying .gcda file will be
placed in the object file directory.

Invoking gcov

The .gcov files contain the `:' separated fields along with the program source
code

execution_count:line_number:source line text

Additional block information may follow each line, when requested by
command line options. The execution_count is `-' for lines containing no
code and `#####' for lines which were never executed.

The preamble lines are of the form

-:0:tag:value

The tag name should be used to locate a preamble line.

The additional block information is of the form

tag information

The information is human readable, and simple enough for machine parsing.

When printing percentages, 0% and 100% are only printed when the values
are exactly 0% and 100%. Other values which would conventionally be
rounded to 0% or 100% are printed as the nearest non-boundary value.

Invoking gcov

• Running gcov with your program's source file
names as arguments will now produce a listing of
the code along with frequency of execution for
each line. For example, if your program is called
tmp.c, this is what you see when you use the
basic gcov facility:

$ gcc -fprofile-arcs -ftest-coverage
tmp.c

$ a.out

$ gcov tmp.c

90.00% of 10 source lines executed in
file tmp.c

Creating tmp.c.gcov.

Invoking gcov

The file tmp.c.gcov contains output from gcov. Here is a sample:
-: 0:Source:tmp.c

-: 0:Graph:tmp.gcno

-: 0:Data:tmp.gcda

-: 0:Runs:1

-: 0:Programs:1

-: 1:#include <stdio.h>

-: 2:

-: 3:int main (void)

1: 4:{

1: 5: int i, total;

-: 6:

1: 7: total = 0;

-: 8:

11: 9: for (i = 0; i < 10; i++)

10: 10: total += i;

-: 11:

1: 12: if (total != 45)

#####: 13: printf ("Failure\n");

-: 14: else

1: 15: printf ("Success\n");

1: 16: return 0;

-: 17:}

Invoking gcov

When you use the -a option, you will get individual block counts, and the output looks like this:
...

-: 0:Programs:1

-: 1:#include <stdio.h>

-: 2:

-: 3:int main (void)

1: 4:{

1: 4-block 0

1: 5: int i, total;

-: 6:

1: 7: total = 0;

-: 8:

11: 9: for (i = 0; i < 10; i++)

11: 9-block 0

10: 10: total += i;

10: 10-block 0

-: 11:

1: 12: if (total != 45)

1: 12-block 0

#####: 13: printf ("Failure\n");

$$$$$: 13-block 0

-: 14: else

1: 15: printf ("Success\n");

1: 15-block 0

1: 16: return 0;

1: 16-block 0

-: 17:}

Invoking gcov

• In this mode, each basic block is only shown on one line –
the last line of the block. A multi-line block will only
contribute to the execution count of that last line, and other
lines will not be shown to contain code, unless previous
blocks end on those lines. The total execution count of a
line is shown and subsequent lines show the execution
counts for individual blocks that end on that line. After each
block, the branch and call counts of the block will be
shown, if the -b option is given.

• Because of the way GCC instruments calls, a call count
can be shown after a line with no individual blocks. As you
can see, line 13 contains a basic block that was not
executed.

Invoking gcov

When you use the -b option, your output looks like this:
$ gcov -b tmp.c

90.00% of 10 source lines executed in file tmp.c

80.00% of 5 branches executed in file tmp.c

80.00% of 5 branches taken at least once in file tmp.c

50.00% of 2 calls executed in file tmp.c

Creating tmp.c.gcov.

Invoking gcov

Here is a sample of a resulting tmp.c.gcov file:

-: 0:Source:tmp.c

-: 0:Graph:tmp.gcno

-: 0:Data:tmp.gcda

-: 0:Runs:1

-: 0:Programs:1

-: 1:#include <stdio.h>

-: 2:

-: 3:int main (void)

function main called 1 returned 1 blocks executed 75%

1: 4:{

1: 5: int i, total;

-: 6:

1: 7: total = 0;

-: 8:

11: 9: for (i = 0; i < 10; i++)

branch 0 taken 91% (fallthrough)

branch 1 taken 9%

For each function, a line is printed showing

how many times the function is called, how

many times it returns and what percentage of

the function's blocks were executed.

For a branch, a percentage indicating the

number of times the branch was taken is

printed if it is executed at least once.

Otherwise, the message “never executed”.

Invoking gcov

10: 10: total += i;

-: 11:

1: 12: if (total != 45)

branch 0 taken 0% (fallthrough)

branch 1 taken 100%

#####: 13: printf ("Failure\n");

call 0 never executed

-: 14: else

1: 15: printf ("Success\n");

call 0 called 1 returned 100%

1: 16: return 0;

-: 17:}

For a call, a percentage indicating the number

of times the call returned is shown, if it is

executed at least once.

This is usually 100%, but may be less for

functions that call exit or longjmp

For each basic block, a line is printed after the

last line of the basic block describing the

branch or call that ends the basic block.

There can be multiple branches and calls listed

for a single source line if there are multiple

basic blocks that end on that line.

Invoking gcov

• The execution counts are cumulative.

• If the program is executed again without removing the .gcda file,

the count for the number of times each line in the source is

executed are added to the results of the previous run(s).

• This is useful in several ways. For example, it can be used to
accumulate data over a number of program runs as part of a

test verification suite

• The data in the .gcda files is saved immediately before the

program exits.

• For each source file compiled with -fprofile-arcs, the profiling

code first attempts to read in an existing .gcda file; if the file

doesn't match the executable (differing number of basic block

counts) it will ignore the contents of the file. It then adds in the

new execution counts and finally writes the data to the file.

