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Model-based design

On August 19, 1418, a competition was announced in Florence, where the city’s
maghnificent new cathedral, Santa Maria del Fiore, had been under construction

for more than a century

Whoever desires to make any model or design for the vaulting of the
main Dome of the Cathedral under construction by the Opera del
Duomo-for armature, scaffolding or other thing, or any lifting device
pertaining to the construction and perfection of said cupola or vault
shall do so before the end of the month of September. If the model be
used he shall be entitled to a payment of 200 gold Florins.

Competition between architects was an old and honored custom.
Patrons had been making architects compete against one another
for their commissions since at least 448 B.C., when the Council of

Athens held a public competition for the war memornial it planned to
build on the Acropolis. Under these circumstances, it was normal

practice for architects to produce models as a means of convincing
patrons or panels of judges of the virtues of their particular designs.



Model-based design

Engineering has made use
| of models since its very
=== early days

Filippo Brunelleschi's design for the dome of the cathedral
of Santa Maria del Fiore in Florence remains one of the
most towering achievements of Renaissance architecture.
Completed in 1436, the dome remains a remarkable feat of
design and engineering. Its span of more than 140 feet
exceeds St Paul's in London and St Peter's in Rome, and
even outdoes the Capitol in Washington, D.C., making it the
largest dome ever constructed using bricks and moritar.
When work on the dome began in 1420 Brunelleschi was
virtually unknown. Sixteen years later the dome was built,
and its architect was a superstar.




Model-based design flow

« Typical flow, updated in
V-shape or iterative
fashion or V-shape
plus iterative ....

« The four tenets on the
right are fundamental
to model-based design

« Of course, you must
select a modeling
language that allows to
do everything in the
most natural and easy
way ...
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Figure 1 — Elements of model-based design



RTS and Platform-Based Design

Design (continued
architecture design

matching the logical design into the SW

waveform Kiosk
controller heartrate |lalarm alarm
- ~raitios
argmeter |manager | | displal e~ =

physician sets up i ieMenege rice por ire

for patient 152 4 waveforms| Rate=50 yade
. s monitaring setsweep 1
i ! speed(25) 1 Rate=47

|
L) _sum e ! setbradycardia /]
INC T * % T LMt il 1 !

!
: | settachycardia
1 \ ; alarm 1 ' . . A

asystole event Rate t t f
| | : e , iming constraints (from
| nt_out — N | physician's ! bradycardia alar} - .
I count_ot | o alarmp text
' IR RESET intervention Rate=d5 T unctional moge
!

lower
i \ ‘ | I bradycardia algin
H ' I clear alarm
!
i \ i
1 N | -
i - ! o Sich | st
1 T ! | ET i
i \ L I R 0o | ey
- ! sy o ‘sends trans. details lo|
i z | I 1 s, ey
1 ‘\ ;
' o oy dspenser e
o i This Class Diagram Is an eary, pre-task. n fplay.
v ol I -
Jsplay service request -b%\:&'}"

-

-

yment due.
ool prico

I
I
I
I
A4

Task and

-
o
g

esources

v Threads (tasks

= - b
- ... a
..
.y

. J

- = . ... .. . = 7

... .. ... ... .. .. .. . .. . .
. .+ . - . . -

. .. ..

. ., 7

-
-
-

.

4 resource

.

=

RTOS API

Timing attributes (from
platform deployment



Models and implementation: Simulink

Where are the tasks?
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Models and implementation: UML
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This Class Diagram is an early, pre-task design view of class relationships, based on the Object design interaction models.

This diagram would be considerably enhanced as further implementation detail was added.
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Models and implementation: UML
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Models and implementation: FSM
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Model-based design: a functional view

Advantages of model-based design
— Possibility of advance verification of correctness of (control) algorithms

« Possible approaches
1. The model is developed considering the implementation and the
platform limitations
— include from the start considerations about the implementation (tasking
model and HW)
«  PROS (apparent)

— use knowledge about the platform to steer the design towards a feasible solution
(in reality, this is often a trial-and-error manual process)

« CONS (true)
— the model depends on the platform (updates/changes on the platform create
opportunities or more often issues that need to be solved by changing the model)

— Analysis is more difficult, absence of layers makes isolating errors and causes of
errors more difficult
— the process is rarely guided by sound theory (how good is the platform selection
and mapping solution?)
— Added elements (Rate-transition blocks) introduce delays
2. The model is developed as a “pure functional” model according to
a formally defined semantics, irrespective of the possible
implementation

— The model is then refined and matched to a possible implementation
platform. Analysis tools check feasibility of an implementation that
refines the functional semantics and suggest options when no
implementation is feasible (more ...)



Model-based design: a functional view

« Advantages of model-based design starting from a purely functional
model

Possibility of advance verification of correctness of (control) algorithms
Irrespective of implementation
This allows an easier retargeting of the function to a different platform if
and when needed

» The functional design does not depend on the platform
The verification of the functional design can be perfomed by domain
experts (control engineers) without knowledge of SW or HW
implementation issues

« Necessary assets to leverage these advantages ...
— Capability of defining rules for the correct refinement of a functional

model into an implementation model on a given platform

— Capability of supporting design iterations to understand the tradeoffs

and the changes that are required when a given functional model
cannot be refined (mapped) on a given platform



Model-based development flow

* Platform-based design

Reuse of functions on different
architectures
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Platform-dependent modeling: an example
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PBD and RTOS/platform

SR modeling
— _(Simulink)

Application
instance

Refinement info a set
of concurrent tasks
exchanging messages

Platform API
(OSEK/AUTOSAR)

Dist. system w.
asynchronous
network (CAN)

Dist. system w. time-
triggered network
(FlexRay)

Platform
instance

Single-processor |
w. priority-based

RTOS




Choosing a functional representation

« Synchronous reactive modeling

« Purely functional implies “zero-time” execution or logical time (no
notion of platform or computation time)

The output update and state update functions are computed
immediately at the time the block is triggered/activated

Rather than “zero time”, a more accurate definition is:

“the system response or reaction is guaranteed to be completed
before the next system event”.

The only significant references to time are the sampling times (or
trigger events) of blocks

Also, the partial order in the execution of blocks because of
feedthrough behavior must be considered

* Options:

Signals are persistent (Simulink)
Signals are not persistent



Semantics options

« Signals are persistent (Simulink)

!
4 4 5
t ? f 1
e Signals are not persistent
stutter
4 5 RN
1 r L
4 ' L
f o I b ©

Y

e Algebraic loops (causal loops without delays) result in a fixed
point and lack of compositionality



Semantics and Compositionality

« Semantics problem: systems compositions do not behave
according to the semantics of the components

— The problem is typical of SR semantics when there are causal cycles:
existence of a fixed point solution cannot be guaranteed (i.e. the system
may be ill-defined)

— When multirate blocks are in a causal loop the composition is always not

feasible
Algebraic loop
u= 5 6
m ?\ - uxy) 2=
- 4 5
2(4?\\\ t / T\ e B _ZTés T2 g
T /

4=f(x,\§)

A 1

\r / A

Absence of causality loop




Qutline

 Functional vs. Execution model
« Semantics options

* Preserving semantics in refinements

— Verifying that the synchronous reaction assumption holds with
respect to the actual (finite) computation times

— The behavior of the simulation (of the functional model —i.e. without
RT blocks-) must be the same as the run-time behavior

« Communication behavior must be the same

* Outputs are produced before the following event (i.e. The system is
not sensitive to whatever happens in between events)

» Tradeoffs in task implementations

— Multitask Model implementation by Real-Time Workshop and
rate transition (RT) blocks

— Scheduling trade-offs (schedulability vs. added delays)
» References



Simulink models (SR)

o L

- =l

ﬁ rule




Simulink models (not feedthrough)
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Example of generated code

rule
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Simulink models (feedthrough)

q
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Most blocks are of type
feedthrough (output does
depend on input)
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output functions

:
[ ]

Ptm;ly‘:l

E\

no state

\‘\ Some blocks have

Dependencies
among outputs




Simulation of models

Simulation of Multirate models

order all blocks based upon their topological dependencies

The RTW tool (meant for a single processor implementation)
generates a total order based on the partial order imposed by
the feedthrough semantics

In reality, there are many such total orders that satisfy the
dependencies!
» Other choices are possible
» In multiprocessor implementations this can be leveraged to optimize the
implementation
Then, for simulation, virtual time is initialized at zero

The simulator scans the precedence list in order and execute all
the blocks for which the value of the virtual time is an integer
multiple of the period of their inputs

Simulated execution means computing the block output and
then computing the new state



From Models to implementation

e Simulink case

elist

Purpose List simulation methods in the order in which they are executed during a
simulation
Syntax elist m:mid [tid:TID]

elist <ges | s:sid> [mth] [tid:TID]
elist <gcb | sid:bid= [mth] [tid:TID]

Desc ripl’ion elist m:mid lists the methods invoked by the system or nonvirtual subsystem
method corresponding to the method 1d mid (see the where command for
information on method IDs), e.g.,

sldebug @19): elist n:19

RootSystem.Outputs 'vdp' [tid=0] : ——— Calling method
0:0 Integrator.Outputs 'x1' [tid=0]
0:1 Outport.Outputs 'Out1’ [tid=0]
0:2 Integrator.Qutputs 'x2' [tid=0]

P I —

Block id Methad Black Tosk id



Simulink models
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Simulink models

L The result is a network of
Each blockset is functions (_output/state
characterized by an update) with a set of
execution rate partial orders




Simulation of mutirate models

« Simulation of multirate models: an example
— Simulation runs in virtual time. The virtual clock is updated at

each step

— =1 . =2 L - T= S
t=0 t=1 t=2  t=3t=4

A A A




Motivation: Model-based devel. issues

The implementation of a SR model should preserve its semantics so to
retain the validation and verification results. The implementation can

use

— Single task executing at the base rate of the system

— A set of concurrent tasks, with typically one task for each execution rate,
and possibly more.

Simulation: logical execution and
communication time

43
T=1
~ C
> - >
T=4
T=1
21 D
T=2
| 4 f(4,2) 1 3 1
A | B C D A|B|A
=0 2 t,=2



From Models to implementation

« Simulink case (single task implementation)

Table 2-3: Permitted Solver Modes for

Real-Time Workshop Embedded Coder Targeted Models

Mode Single-Rate Multi-Rate
SingleTasking  Allowed Allowed
MultiTasking Disallowed Allowed
Auto Allowed Allowed

(defaults to
singleTasking)

(defaults to MultiTasking)




From Models to implementation

« Simulink case (single task implementation)

Real-Time Clock

Interrupt Service

Hardware Routine

Interrupt

Save Context ) )
Program execution using an

+ interrupt service routine (bare-
board, with no real-time operating
Execute Model system). See the grt target for an
* example.

Collect Data

'

Restore Context

Real-Time Clock

Interrupt Service Model Execution

Routi Context
outine Switch Task

semGive Z

Hardware

Interrupt

semTake

¥

Execute Model

Program execution using a real-time *
operating system primitive. See the
Tornado target for an example.

Collect Data




Implementation of models

« Implementation runs in real-time (code implementing the blocks
behavior has finite execution time)

« Generation of code: Singletask implementation

sample time

_________

|

— T=1

Y

T=2

b,

________

time to execute the model code

] T

time overflow

K4

(too short interval)

b,

Y

T=4




From Models to implementation

« Simulink case (single task implementation)

rt_OneStep()

{
Check for interrupt overflow or other error
Enable "rt_OneStep" (timer) interrupt

ModelStep——- Time step combines output, logging, update

Single-rate rt_OneStep is designed to execute model_step
within a single clock period. To enforce this timing

constraint, rt_OneStep maintains and checks a timer
overrun flag.



Generation of code: multitask mode

« The RTW code generator assigns each block a task identifier (tid)
based on its sample rate.

» The blocks with the fastest sample rates are executed by the task with
the highest priority, the next slowest blocks are executed by a task with
the next lower priority, and so on (Rate Monotonic)

T=4 -

Y

T=2

Y

—] T=1

v




Model implementation: single task

T-1
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T=1 2 D
T=2

System base cycle =
time to execute the longest system reaction

r \

t= t= t=2

=3

Easy but possibly inefficient
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=3

t=4




Model implementation: multi-task

Real-time execution: finite

possible preemption

4
T_1 execution time and
» C —
T=4
T=1 2 D
T=2
4 2 1 | 2
AlB AlB A
\ Inconsistent data
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| d [
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Model implementation: multi-task

A 4 Real-time execution: lack
T=1 of time determinism
. C |, (because of preemption)
T=4
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From Models to implementation

Multitask implementation

rt_OneStep()

{

Check for base-rate interrupt overflow
Enable "rt_OneStep" interrupt
Determine which rates need to run this time step
ModelStep(tid=0) —--base-rate time step
For i=1:NumTasks ——- iterate over sub-rate tasks
Check for sub-rate interrupt overflow
If (sub-rate task 1 is scheduled)
ModelStep (tid=i) —--sub-rate time step
EndIf
EndFor



Nondeterminism in time and value

« However, this can lead to the violation of the zero-execution time
semantics of the model (without delays) and even to inconsistent
state of the communication buffer in the case of

— low rate (priority) blocks driving high rate (priority) blocks.
— high rate (priority) blocks driving low rate (priority) blocks.

T=2

\i

T=

Y




Adding determinism: RT blocks

e Solution: Rate Transition blocks
— added buffer space and added latency/delay

- relax the scheduling problem by allowing to drop the
feedthrough precedence constraint

e The mechanism can only be implemented if the
rates of the blocks are harmonic (one multiple of
the other)

— Otherwise, it is possible to make a transition to the gcd
of the blocks’ periods, at the price of additional space
and delay



RT blocks: High rate/priority to low rate/priority

COST
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RT blocks: Low rate/priority to high rate/priority
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Limitations in the use of RT blocks (1)
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Tradeoffs and design cycles

« RT blocks are not a functional entity
— but an implementation device
- RT Blocks are only required
— because of the selection of the RM scheduling policy
In slow to fast transitions
— because of the possibility of preemption
In both cases
* |n both cases, time determinism (of communication) is obtained at
the price of additional memory
* In the case of slow to fast transitions, the RT block also adds a
delay equal to the period of the slowest block
— This is only because of the Rate monotonic scheduling
— Added delays decrease the performance of controls



Consistency issues

Consistency issues in the 1-1 communication between blocks
with different rates may happen:
— When blocks are executed in concurrent tasks (activated at different
rates or by asynchronous events)
— When a reader may preempt a writer while updating the communication
variables (reader with higher priority than writer)
— When the writer can preempt the reader while it is reading the
communication variables (writer with higher priority).
— Necessary condition for data inconsistency is the possibility of
preemption reader—writer or writer—reader

Also, we may want to enforce time determinism (flow preservation)



Consistency issues

b, o\ TT=1

T=2

« Also, a relaxed form of time determinism may be required

— Input coherency: when inputs are coming from multiple blocks, we want
to read inputs produced by instances activated by the same event



Guaranteeing data consistency

« Demonstrate impossibility of preemption between readers and writers

— Appropriate scheduling of blocks into tasks, priority assignment, activation
offsets and using worst-case response time analysis

« Avoid preemption between readers and writers
— Disabling preemption among tasks (blocks) (RES_SCHEDULER in OSEK)

« Allow preemption and protect communication variables

— Protect all the critical sections by
» Disabling interrupts
» Using (immediate) priority ceiling (semaphores/OSEK resources)

— Problem: need to protect each use of a communication variable. Advantage
(does not require extra buffer memory, but only the additional memory of the
protection mechanism)

— Lock-free/Wait-free communication: multiple buffers with protected copy
Instructions:

» Typically w. interrupt disabling or kernel-level code

- Problem: requires additional buffer memory (How much?). Advantafge: itis
possible to cluster the write/read operations at the end/beginning of a task,
with limited change to existing code.

- The best policy may be a mix of all the previous, depending on the
timing contraints of the application and on the communication
configuration.



Demonstrating impossibility of preemption

Assign priorities and offsets and use timing analysis to guarantee
absence of preemption

Input data:

— Mapping of functional blocks into tasks

— Order of functional blocks inside tasks

— Worst-case execution time of blocks (tasks)

— Priorities assigned to tasks

— Task periods

— (relative) Offset in the activation of periodic tasks (o, = minimum offset
between writer and reader activations, O, maximum "offset between the
activations)

Computed data

— Worst case response time of tasks/blocks (considering interferences and
preemptions) R, for the writer R, for the reader

Two cases:
— Periority writer > priority reader
— Priority reader > priority writer



Absence of preemption/High to low priority

« Condition for avoiding preemption writer—reader (no assumptions
about relative rates of reader/writer)

High priority Low priority

i — |




Absence of preemption/Low to high priority

« Condition guaranteeing absence of preemption or reader to writer
(reader—writer)

Low priority High priority

A 4 A 4
w L\ w L\

Both conditions are unlikely in practice '



Absence of preemption/Low to high priority

« These conditions are ultimately used by the Rate Transition block
mechanisms !!

Low High
priority priority

pri=3 pri=4 L/ pri=1 pri=2
T=2 T=2 H T=2 =1 |/

I
=
i

Output ,

¥

X~ Uupdate 4% b 4L‘

Output update

I == b

h T O,=0,,=0

Ry R,<T,

w =




Avoiding preemption

 Disabling preemption

High priority p—— Low priority Low priority —— High priority

A

I [ ] —i.

The response time of the high priority block/task is affected, need to
check real-time properties




Design/Scheduling trade-offs

— " T=4

However ...

 if the communication is fast-to-slow and the slow block completes
before the next instance of the fast writer, the RT block is not required

 if the communication is from slow to fast, it is possible to selectively
preserve the precedence order (giving higher priority to the slow block)
at the expense of schedulability

— Two tasks at the same rate, one high priority, the other low priority

ey 1 I 1 I 1,

A 4

Q.

(3

(V]

E :
JURIEY

T=1 t |—|§l b,
_ S I — / r

! ] !_/ !

v
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An approach

Required steps

« Definition of the network of functional blocks with
feedthrough dependencies

 Definition of the
synchronous sets

* Priority assignment
and mapping into
tasks

« Definition of the block
order inside tasks




Preserving streams

« What buffering mechanisms are needed for the general
case ?
— Event-driven activation
— One-to-many communication

» B

v
O

0-delay
behavior

— -
—
——
lo Yo' w! >»




Preserving streams

« What buffering mechanisms are needed for the general case ?
— Stream preservation (requirement)
— Event-driven activation
— One to many communication

» B
— " A §
* >
The value * C
produced by _
this instance Is read by this J b
' instance

... and needs fto be
buffered in between

[N " :
?\N s

0-delay
behavior

T
>

— -
———
——
"O |

——
u
YO




Preserving streams

» B
» A A
A S
*
This block _ » D
instance is Th.e entry is . ;
assigned a buffer written at running
entry at the time | time p

of its activation

The entry is used by the reader
at running time

fhohoh b b S h A

This reader

instanceis  ~TTTTC > ? =,’l ? B
assigned the [ | -
the e of s ? — 1 ? <
activation

! ! ot oo



Preserving streams

« The time the buffer index is assigned (activation of the block) may
differ significantly from the time when the index is actually used (at
running time) because of scheduling delays

— Support from the OS is needed for assigning indexes at block
activation times

This block .
instance is Theentryis
assigned a buffer written at running

entry at the time. time |,
of its activation ‘

The entry is used by the reader
at running time

Yh b b b bS]

This reader g VB
instanceis  "TTTTC > f >|* | $
assigned the -
buffer entry at g ) C
the time of its $ ? ? -
activation ? * ?

O D




Preserving streams

« Many issues

— Defining efficient mechanisms for assigning indexes to the writers and the
readers (if they are executed at kernel level)

— Sizing the communication buffers (given the system characteristics, how
many buffers are needed?)

What buffer
index is available

; It is not necessary to store all
at the time of the

writer activation ? these (6) values, there are at
\ most 3 readers at each time !
Q The entry is used by the reader
\ at running time
[ | R A
151 I | RO | RO | VA | M
This reader B
instanceis  "TTTTTTC >~ f >|* | $
assigned the -
buffer entry at -7 ~ C
the time of its $ [ ] * 1 -~
activation
! f o t oo




Model implementation: multi-task

» Efficient but issues with data integrity
and time determinism Defined at Defined at

activation time activation time

read at

0;(m) ij(k) o;(m+1) written at .
run time

run time
1 T 1 -

Q1: How many buffers you need?

to be used (at activation time) and

‘ | g Q2: How do you define the index
you pass to the runtime instance ?

read here ? or here ?
i, = 0;(m) i, = 0(m+1)



Buffer sizing methods

Two main methods

preventing concurrent accesses by computing an upper bound
for the maximum number of buffers that can be used at any
given time by reader tasks. This number depends on the
maximum number of reader instances that can be active at any
time.

Temporal concurrency control. The size of the buffer can be
computed by upper bounding the number of times the writer can
produce new values, while a given data item is considered valid
by at least one reader.



Bounding the maximum number of reader instances

« the size is equal to the maximum number N of reader task instances
that can be active at any time (the number of reader tasks if d<T),
plus two more buffers: one for the latest written data and one for use
by the writer [Chen97] (no additional information is available, and no
delays on the links).

The writer must discover the
available buffer index at runtime

Reader instance 1

[ s o
Reader instance 2 e—»
Reader instance 3 e—»
Reader instance 4 o—
[ e

FreeB

G
0
0

Use

Reader instance i

0 2 -1 0 2

1 0 4 1 4

Reader instance N e—— 2 2 -1 2 2
3 1 =1 3 1

4 0 5 4 5

5 0 7 5 7

A linked list implementation may 6 1 ~1 6 1

trade space for time (O(1) access) ! 0 - ! .



Temporal concurrency control

« Based on the concept of datum lifetime. The writer must not
overwrite a buffer until the datum stored in it is still valid for
some reader.

lifetime: 1, = O,,+ max(R) wrter Lses
: = L ——
— 5 reader gets item i
| J _

The writer simply
writes at the next
(modulo N) index

Item | can be reused when
no reader can access it



Combination

A combination of the temporal concurrency control and the
bounded number of readers approaches can be used to obtain a
tighter sizing of the buffer.

Reader tasks are partitioned into two groups: fast and slow
readers. The buffer bound for the fast readers leverages the
lifetime-based bound of temporal concurrency control, and the
size bound for the slow ones leverages information on the
maximum number of reader instances that can be active at any
time. Overall, the space requirements are reduced.



Combination

- Readers of T,,; are sorted by increasing lifetime (I<l,,). The
bound

. L
_:\ BU_:E !'.:"; — T—w

* Applies to readers with lifetime </, (fast readers).
* Once jis chosen, the bound is

Buffer shared — N R
4 TR
among fast o L v Rr. 72
readers N Buw,; = T i Z T T based on the
v i=j+1 "t 1| number of reader
instances inside
j = D..i"'\rrRuri| T the lifetime

NRu;
]

R. NRy.
min {ﬁ-‘ s .i:%—zl_l min { {T: -‘ } + ?2}3—?; delay|i]
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Modeling Real-time systems

« What type of timing constraints are in a Simulink
diagram?

F-14 Digital Autopilot High Angle of Attack Mode EI

L

Stick Filber

Alpha Sensor Fiiter

-

Pitch Sensor Fiter

Caparighi 10002000 T b aibiis g ne



Modeling Distributed Real-time systems

 Where is the task model, the implementation relation and
the deployment model?

i Aiacichnad - SR modeling
F-14 Digital Autopilot High Angle: of Attack Mode D (SImU“nk)
e ' 0 S >
IEL Stick Filter ~ Men J ,"!“, >
T Ol >
—.J — Alpha Sensor Filter :.:’:::1“. 1"‘"::1.’"0'_‘ Application
i { . ~ instance
G
o = T
T-exp-W2'deltat1)
SR Refinement info a set
of concurrent tasks - Platform API
exchanging messages <:| (OSEK/AUTOSAR)

Dist. system w. Dist. system w. time-
asynchronous triggered network
nstance network (CAN) (FlexRay)

Single-processor ' @ @
w. priority-based
RTOS

Platform




Distributed implementation of models

F-14 Digital Autopilot High Angle of Aftack Mode |ZI T
ask

CPU

' Stick Filter I::>
r - Al
1-exp(-detatTal) v s Cama
: 3 i .- |H'l
Hul

Alpha Sensor Filter

Need to characterize
/ the scheduling delays\ CAN

(how? cosimulation?) Remote blocks are bus
2] 2] no more reacting at

the same time

| =

7

Task CPU

= [




Heterogeneous Network topology
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Delays from network

A very simple model with oversampling ....
Imagine the data streams between source blocks and the
multiplier/comparator are exchanged over a network.

These are the results seen by the control engineer at design
time

Wmerwe W] s
File Edik View Simuolation Format Toolk Help
D Fd& &WE = Pl

o7 XY




Delays from network

An example of the trade-offs between additional
functional delays and scheduling feasibility

Block A D—
eriod = 4
. »| Block C
period =4
Block B N
period =4

AlBJC][C] C_\ T\ ABC>




Delays from network

Designers may be tempted to ease the scheduling
problem by choosing the instance of the receiving
task/block

M simple_paper_c2 * =HACIN X
File Edit View Simulation A
O =zEsS » = poo T ‘
Counter »
Free-Running
S = - ] ] |
Counter z
Frze-Running Integer Delay Product Scope Repeating >
Sequence \
, | i |
FlexRay
aEl o =< Bl T \:‘ [I [I
|_|_|_ ||||||||||||| | ] »
5 1
Repesting p;| cope Product
nee  Gperstor
Read 100% ded5




Delays from network

Unfortunately, by doing so, the behavior is different from
the one simulated with 0-delay

Are the designers/developers fully aware of these
iIssues ?

How can we help them ?

(Task and message design and scheduling are in the
background)

B simple_paper 2 * sk S
File Edit Wiew Simulation
L EdS [ 4 IED.D
A — ' « o[-
== Integer Delay Froduct Scope
|_|_|_ = o < L L
............. o
5 1
Repeating Relat cope
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i
Read [100% dets
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Delays from network

Unfortunately, solutions like this are possible

(not to mention issues with low-level communication
levels /drivers and custom code)




Architecture optimization vs features

- Active and Passive Safety

Smart adaptive
controls

Platooning
EMB & EMS

Emergency brake
ShW (wh)
Environment recognition

Road recognition (LDW)

Autonomous
driving

Collision avoidance
Highway copilot

High = m = m Passive safety
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in event of an accident) e
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Active and Passive Safety

High mmmm Passive safety
(reduced personal injury
in event of an accident)

mmmmm Active safety
{avoiding an accident)

&
K Seat belt
™

Safety cell :‘
*
an »s?

Low

|
Side impact protection _, » el
. -

Underfloar

concept
Side air bag ann®
Automatic

Precrash

emergency call

Smart adaptive
controls

Autonomous
driving Auto-

Collision avoidance pilot
Highway copilot :_:C-‘f
Platooning =
EMB & EMS %
Efnergency brake =
Gn-m

pilot

ABS
| | | | |

1960 1970 1980 1990 2000
ABC  Active body control EBD  Electronic brakeforce distribution
ABS  Antilock brake system EMB  Electromechanical brakes
ACC  Adaptive cruise control EMS  Electromechanical steering
BAS  Brake assist system ESP  Electronic stability program
BbW  Brake by wire ETC  Electronic traction control
CA Collision avoidance SbW  Steer by wire
DbW  Drive by wire (wh)  with mechanical backup




ACC (from Continental web site)

- Adaptive Cruise Control (ACC) — Chassis Electronics
Combined with Safety Aspects

As with conventional cruise control, the driver
specifies the desired velocity - ACC
consistently maintains this desired speed.

In addition, the driver can enter the desired
distance to a vehicle driving in front.

If the vehicle now approaches a car travelling
more slowly in the same lane, ACC will
recognize the diminishing distance and
reduce the speed through intervention in the
motor management and by braking with a
maximum of 0.2 to 0.3 g until the preselected
distance is reached. If the lane is clear again,
ACC will accelerate to the previously selected
desired tempo.




Evolution of Integrated Functions

Post-2014 function17

function16

function15

function14

to 2012/14 function13

function12

function11

function10

to 2010/12 function9

function8

function7

function6

function5

Pre-2004 ACC
Stabilitrak 2

Onstar emergency notification

Speed-dependant volume
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Automotive architecture trends

An increasing number of functions will be distributed on a
decreasing number of ECUs and enabled through an
iIncreasing number of smart sensors and actuators

« today: > 5 buses and > 30 ECUs

90% of innovation in cars for the foreseeable future will be
enabled through the Electronic Vehicle Architecture
Transition from single-ECU Black-box based development

processes to a system-level engineering process
« System-level methodologies for quantitative exploration and selection,
« From Hardware Emulation to Model Based Verification of the System

Architectures need to be defined years ahead of production
time, with incomplete information about (future) features
Multiple non-functional requirements can be defined



Functional model

Input Output
interface interface

> s S S, signal

f, I—— f, fa —0 ¢, [ period

4 is_trigger
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Architecture model

Functional
model

Execution
architect.
model

e

OSEK,

ECU

clk speed (Mhz)
register width

ECU,

ECU,

ECU,

CAN,

//‘ bus
speed (b/s)




Deployment model

Functional
model

System

platform model _ | &K

task \

Pe_”'og resource
priority
e . WCBT

msg,

activ.mode

ECU,
Execution /

architect. OSEK,
model

CAN,

message

CANId

period

length
transm. mode
is_trigger



Deployment: An example

End-to-end
latencies

ECU and bus
utilizations
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Back to architecture synthesis

DAC 07 (GP)

[Periods| =)

| Activation moaes |

DATE 07 (MILP) Task and
RTAS 07 (B&B) message
~| priorities
RTSS 07 (MILP)
Extensibility RTAS 08
(MILP+search)

Simul. annealing

Number and type of
ECUs and buses
System topology

Function to ECU
allocation

Function to task
mapping

Flow To Implementation




Approach: Mathematical Programming

« Why Mathematical Programming?

« (compared with search, genetic programming or SA ...)
— Simplicity
« Problem represented with:
— Set of decision variables

— Constraints
— Objective function

« “automatically” handles cross dependency among selection choices
— Easier coding of multi-objective optimization
— Standardized approach

« Well established technique

« Sound theory, methods

 Availability of commercial solvers (in essence, search engines)
— How good is your solution?

« Provides safe estimate of optimal solution

» Provides intermediate solutions of increasing quality

« Challenge:

— Capture the problem and obtain efficient runtimes

85



(Example) Problem Formulation

Objective

Design
objectives
(optimization
variables)

Minimization of (average case) end-to-end latencies

« Constraints on end-to-end latencies

« Constraints on messages size

« Constraints on utilization

- Constraints on message and task deadlines
« Semantics preservation constraints

» Placement of tasks onto the CPUs

« Packing of signals to messages

« Assignment of priorities to tasks and messages
 Definition of activation modes/synchronization model
» Period optimization




Periodic Activation Model

End-to-end Periodic
_ hronous
High latency, but allows latency async
decoupling tgle scheduling analysis activation model
problem
ECU, ECU,
T3 m4 T5
L () _
—o—-() -O (O
CAN
SR I t &
o s R SR t m,
)
i i il = T
-
[ — T +r where _
(4,3) > (T +71) nere N ri=Ci +




Worst Case Response Times

Tasks: ri=ci+ » [ w - Vo € T

jEhp(i)

73_03
Messages: ri=ci+bi+ »_ [ Wcj Yo; € M

t
JEhp( ) J
 Resource utilization

— Fraction of time the resource (ECU or bus)
spends processing its objects (tasks or messages)

Utilization bounds less than 100%
— To allow for future extensibility

Z Si Suj ‘V’RjeR

1:0; >R, ti
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Event-based Activation Model

Lower latency for high priority
paths, jitter increases along the
path

Data-driven precedence
constrained activation

End-to-end
latency
analysis model
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Design Process and Requirements

« Design optimization

Schedulability of task j

Schedulability of task i

X space of design optimization
variables, such as computation
times, periods, placement,
priorities ...




Design Process and Requirements

« Design optimization
|
X space of design optimization
variables, such as computation
times, periods, placement,
priorities ...

Communication constraints

Schedulability
(feasibility) region




Design Process and Requirements

« Design optimization

Semantics preservation

X space of design optimization
variables, such as computation
times, periods, placement,
priorities ...

Constraints

Schedulability
Communication




Design Process and Requirements

« Design optimization

1

)

Sensitivity (extensibility)

X space of design optimization
variables, such as computation
times, periods, placement,
priorities ...

Constraints

Schedulability
Communication
Model Semantics preservation




Design Process and Requirements

« Design optimization

1
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X (discrete) space of design
optimization variables, such as
computation times, placement,
priorities, periods ...

Constraints
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Communication

Model Semantics preservation
Extensibility




Design Process and Requirements

« Design optimization

)
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(Example) Problem Formulation

Objective

Design
objectives
(optimization
variables)

Minimization of (average case) end-to-end latencies

« Constraints on end-to-end latencies

« Constraints on messages size

« Constraints on utilization

« Constraints on message and task deadlines
« Semantics preservation constraints

» Placement of tasks onto the CPUs

« Packing of signals to messages

« Assignment of priorities to tasks and messages
 Definition of activation modes/synchronization model
» Period optimization




Stochastic analysis
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Figure 5. Latency cdfs of two high priority
representative messages in the test set

Figure 6. Latency cdfs of two low priority rep-

resentative messages in the test set

62 msg set (subset of chassis bus). Low priority msg — Distributions of latencies




Statistical analysis of CAN msgs

« Collected distributions of CAN message latencies by simulation
on automotive buses (5 “realistic msgs configurations” and 20+
more obtained by derivation with changes in the load)
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Statistical analysis of CAN msgs

probability {cdf)

Can we fit the latency cdf with a “well-known” statistical distribution?
What would be the accuracy?

—y

! !
sim*ation :
08 Lo, . N . R | SO il
Fitting with a gamma
| : : : | distribution
08 oo S cesc s S R i
ATJE (NS /RRRPRRUP. TR—— PA— p— p— | | An exponential fitting
’ i ’ ’ 5 also returns good
. . . . . results!
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Statistical analysis of CAN msgs

Finally, can we estimate the offsets and the parameters of the

Gamma distribution (a, b) or (u,b) for each message by regression
from parameters of the message set like U, UM.Q, QM ?
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Conclusions

« Schedulability theory and worst-case timing analysis ...

— From the run-time domain to the design domain (already
happening)

— From the analysis domain to the optimization (synthesis)
domain

— Complemented by sensitivity analysis and uncertainty
evaluation

* However ...
— Typical deadline analysis is not enough!

— Tasks and messages are not the starting point (semantics
preservation issues from functional models to tasking models)

— Worst case analysis needs to be complemented
— Mixed domains (time-triggered / event-triggered)
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Q&A

Thank you!




