OMG Systems Modeling Language
(OMG SysML™) Tutorial
Based on the INCOSE tutorial

available on the web
http://www.uml-sysml.org/documentation/sysml-tutorial-incose-2.2mo

and the book “SysML for Systems Engineers”

SysML as an OMG standard

« Specification status Adopted by OMG in May 06
» Current Specification v1.2 released in June 2010

« The INCOSE tutorial is based on the OMG
SysML specification v 1.0 (2007-09-01)

» The tutorial, the specifications, papers, and info
on tools can be found on the OMG SysML
Website at http://www.omg.org/spec/SysML/

* The examples are based on the Topcased
modeling tool (open source and Eclipse-based,
available at www.topcased.org)

Motivation, Objectives and Audience

« At the end of this tutorial, you should have an
understanding of:

— Motivation of model-based systems engineering approach
— SysML diagrams and language concepts

— How to apply SysML as part of a model-based SE process
— The course must be supplemented by modeling practice.

 Intended Audience:

— Practicing Systems Engineers interested in system
modeling

— Software Engineers who want to better understand how to
iIntegrate software and system models

— Familiarity with UML is not required, but it helps

What is Systems Engineering

« Systems Engineering is a discipline that concentrates on
the design and application of the whole (system) as
distinct from the parts. It involves looking at the problem
In its entirety, taking into account all the facets and all
the variables. (Federal Aviation Agency FAA-USA,
Systems Engineering Manual, Definition by Simon
Ramo, 2006)

« Systems Engineering is an iterative process of top-down
synthesis, development and operation of a real-world
system that satisfies, in a near-optimal manner, the full
range of requirements for the system. (Howard Eisner,
Essentials of Project and Systems Engineering
Management, Wiley, 2002)

SysML structure

System Models

[[ITLE=System Design<TITLE>
META hitp-equiv="REFRESH"

== |-CSSDATA:966533483—>

FCRIPT sre="hvirtual’2000/code
[INK rel="stylesheet" href="/

SCRIPT

Component Models

What is SysML

« A graphical modelling language developed in response
to the UML for Systems Engineering RFP developed by
the OMG, INCOSE, and AP233a

« Supports the specification, analysis, design, verification,
and validation of systems that include hardware,
software, data, personnel, procedures, and facilities

 [Is a visual modeling language that provides

— Semantics = meaning, connected to a metamodel (rules
governing the creation and the structure of models)

— Notation = representation of meaning, graphical or textual

 Is not a methodology or a tool (SysML is methodology
and tool independent)

Metamodel, model and charts/views

Built according to
the rules of the

metamodel

System

Model(s)

Views

SysML vs UML

UML is a general-purpose graphical modeling language aimed at
Software Engineers

Diagrams not used

— Object diagram,

— Deployment diagram,

— Component diagram,

— Communication diagram,

— Timing diagram and

— Interaction overview diagram

Diagrams from UML

— Class diagram (Block Definition Diagram - Class — Block)
— Package diagram,

— Composite Structure diagram (Internal Block Diagram)
— State Machine Diagram

— Activity Diagram

— Use Case Diagram

— Sequence Diagram

SysML vs UML

 In addition, SysML adds some new diagrams and constructs
— Parametric diagram,
— Requirement diagram
— Flow ports,
— Flow specifications
— Item flows.
— Allocation

SysML vs UML

* Includes UML4SysML: a UML Profile that represents a subset of
UML 2 with extensions

« Supports model and data interchange via XML Metadata
Interchange (XMI®) and the evolving AP233 standard (in-process)

SysML Extensions
* Blocks

o [tem flows

* Value properties
Allocations

Requirements
 Parametrics
e Continuous flows

Available diagrams

SysML Diagram

b

Behavior
Diagram

T

| |
Activity Sequence
Diagrams Diagram
State
Diagram

Requirement Structure
Diagram Diagram
|
| | |
Block Definition|| Internal Block|| Package
Diagram Diagram Diagram
Use case ||
Diagram
Parametric

Diagram

Examples of diagrams

1. Structure

bdd [Packagz] Structure [ABS Structure Hierarchy]J

sd ABS_ActivationSequence [Sequence Diagrarru

==hlock== ==plock== ==plock==
Library:: Amli-Lock Library::
Electronic Contr| ibd [Eiock] Anti-Lock Controller [Basic]
Processor
|} d1 : Traction
\\ EH; Detector
==hlock== !
Traction &
Detector
m1: Brake
definition use

2. Behavior

i

stm TireTraction [State Diagrarry interactinn
act PreventLockup [Activity Diagram] J State
machine
_____ activity/
Modulzte function

B rakingForce

req [Fackage] Yehicke Zpecifications [Brakng Regquirements]J

7| par [Block] Straight Line Yericle Dyramics [Parameters]_J

Vehicle System Specification]

Braking Subsystem Specification

Text="Tha vehicle shall
stop from 60 mmiles per haur
within 150 fon & clean dry
surace "

==reguremants= ==regurement==
Stopping Distance Anti-Lock Performance
led ="10.2" led="33.71

Text ="The braking system shall
pravent whesl lackup under 2l
hraking conditions. "

=zdetveRect==

e

t:n % bf: M m: kg
N P e T]
e1 :Braking Force e2: Acceleration
Equation I: :l Equation

{f=H*h i1 0 A misectz Li=mtal

. L [1)
a: misec™?

[e4: Distance Equation | I [])

{w=clafolt } el : Velocity Equation

Y mfzec W mfsen Ta=cluictt}

¥ t |£T|: E :l t |£n|3u:

A

3. Requirements

4. Parametrics

18

SysML Diagrams are contained in Frames

« Each SysML Diagram must have a Diagram Frame

— Diagram context is indicated in the header:Diagram kind (act, bdd,
ibd, sd, etc.)

— Refers to a model element type (package, block, activity, etc.)
— Refers to a Model element (Model element name)
— User defined diagram name or view name

« A separate diagram description block is used

Diagram Description

Version:
Description:
Completion status:

Header Reference:
»*" (User-defined fields)
" Pl

o
adiagram usage»
diagramKind [modelElementType] modelElementName [diagramMName]

Contents

Structure diagrams

SysML Diagram

&

Behavior
Diagram

T

Activity
Diagrams

Sequence
Diagram

State
Diagram

| |
Requirdment Structure
Diagnam Diagram
| sy ol
Block Definition|| Internal Block|| Package
Diagram Diagram Diagram
Use case || / \
Diagram
Parametric
Diagram

Package diagram

« Package diagram is used to organize the model
« Groups model elements into name spaces
« Often represented in tool browser

« Typically connected with model configuration
management (check-in/out)

« Model can be organized in multiple ways
— By System hierarchy (e.g., enterprise, system, component)
— By diagram kind (e.g., requirements, use cases, behavior)
— Use viewpoints to augment model organization

 |Import relationship reduces need for qualified names
(packagel:.class1)

pkg SampleModel[by diagram type])

]

pkg SampleModel [by Ievel])

Package diagrams: a way to organize the model

Use Cases

]

Requirements

1]

Behavior

]

Enterprise

]

System

1

]

\—|

Structure

]

EngrAnalysis

Logical Design

Physical
Design

]

Verification

By Diagram Type

pkg SampleModel[by IPH)

]

Architecture
Team

]

Requirements
Team

1

IPT A

IPT B

IPTC

By Hierarchy

By IPT

Package diagrams: proposed organ

]

Requirements

]

Logical Design

]

Physical Design

]

Mapping

I

Analysis

S

Ization
]

Subsys 1

Structure

I

Subsys 2

I

Subsys 3

I

Behavior

I

1

Subsys A

]

Subsys B

]

Subsys C

. | Analysis

Package diagram: views

pkg SampleModel[by Ievel]/

[

Physical
Design

]

Verification

Enterprise N
«import»
i «view»
== «Import»---- .
System < P EngrAnalysis
«import» ./
. . g «conforms»
Logical Design & o .
«import» '

EngrAnalysisViewpoint

«viewpoint»
stakeholders="..."
purpose="..."
constructionRules="..."
concerns=".."
languages="..."

Viewpoint represents
the stakeholder
perspective

— View conforms to a
particular viewpoint

— Imports model
elements from
multiple packages

— Can represent a
model query based
on query criteria

View and Viewpoint
consistent with IEEE
1471 definitions

Structure diagrams

SysML Diagram

/\

Behavior
Diagram

T

Requirdment
Diagram

Structure
Diagram

L\
N N H

| | |

Activity Sequence Block Definition|| Internal Block|| Package

Diagrams Diagram Diagram Diagram Diagram
P £oN 7N
Diagram Parametric

Diagram

Blocks: Basic structural Elements

Based on UML Class from UML Composite Structure
— Supports unique features (e.g., flow ports, value properties)

Provides a unifying concept to describe the structure of an
element or system

Any type of system/element!
— Hardware

— Software

— Data

— Procedure

— Facility

— Person

— Signal

— Physical quantity

Blocks: Basic structural Elements

« Compartments are used to describe the block
characteristics
— Properties
* parts,
 references,
 values,
 ports

— Operations

— Constraints

— Allocations from/to other model elements (e.g. activities)
— Requirements the block satisfies

— User defined compartments

Blocks and Compartments

Compartment label

modeBtn : null <<hlack»> G
Digitmm

constrmints
OpanTtions
parts
setBtn : null +display Watch_Display &

refarances
values

properties
+fcounter : Timestamp -

lightBtn : null

b’

b’

Blocks and Compartments

modeBtn : null <<block>> e _
= DigitalWatch Property is a structural
oo feature of a block
opergtions

y : Watch_Display &

references

+/counter : Timestamp
Part property

aka. part (typed by a block)
Usage of a block in the context of
the enclosing (composite) block
Example - right-front:wheel

setBtn : null +dis

Blocks and Compartments

ar
=<block>> Reference property (typed
Elevator :
— by a block)A part that is_not
Rp— owned by the enclosing
. block (not compositign)
+controller : Controllel Example — aggregation of
+cabin : Cabin components into logical
+Floor1 : FloorContrefier subsystem
references
+contolledMotor : Motol
values
-Num_of_floors : Integel
properties

Blocks and Compartments

modeBtn : null <<block=> &
— DigitalWatch Value property (typed by
_ value type)
canstraints ‘ps .
operations A quantifiable property with
pars units, dimensions, and
setBtn - null 5 +display : Watch_DiM probzbility cfislt\ll’ibution
referenges xample Non-
distributed value:
+/counter : Timestamp tirePressure:psi=30

Distributed value:
«uniform»
{Min=28,max=32}
tirePressure:psi

Block and Compartments: another example

Port specify interaction points
defined later ...

= DigitalWatch

constraints

operations

parts

setBtn : null +display : Watch_Display @
references
vilues
properties

+/counter : Timestamp

Block Diagrams

» Blocks Used to Specify Hierarchies and Interconnection

« Block definition diagrams describe the relationship
among blocks (e.g., composition, association,
specialization)

 Internal block diagrams describe the internal structure
of blocks in terms of properties and connectors

« Behavior can be allocated to blocks

» Blocks can be “allocated” (different types of allocations)

Blocks are defined.. (BDD Block Definition

Diagram)

The BDD is used to define blocks

bdd |package] structure [Watch bad (design)]
<<hlock»> A
Digitalvyatch
constroints
magsBtn ; Aull {=zelf.counter = selfwatch_Processor.counter}t
OpenTions
\paris
+display Watch_Display @
lightBtn - nul +watch_FProcessor Watch_Processor
) Erenoas
= E
properties
+{counter : Timestamp
lightCtl : null LeftCtl: null
EB <<hlock>> EE “ setBtn : null modeBin : nul
Watch_Display leftValue : UnlimitedMatural E BZ' <<hlocie>
consraints = “atch_Processor
operations leftCtl : null E m
parts rightValue : UnlimitedMatural operatians
+Calon : ColanLED = parts
+ eftDigits ; Twin7LED colonCtl null 4 R
+rightDigits : Twin?LED rightCtl : null e
+light : Light = -counter : null []
references leftValue : UnlimitedMatural clock : null
p:;:; rightValue : UnlimitedMatural

— The (Block) BDD is the same as a type definition
— Captures properties, relations, dependencies ...
— Reused in multiple contexts

BDD Block Definition Diagram: An Example

bdd [package] MyPackage [MyPadcagE])

<<hblock>»
Cahin <chlockss a
ST Dashkhoard
<<block>> e 1 operations 1 1 constraints
Elewvator ;/2- parts ‘_ﬁ. operations
EERE cahin ; s ashh @RI+ Oper..) 1
s +elevatar valuss
Speratons propenies FlgwPortl parts 1 <<hlock>>
parts B references ‘muu.d Display
EEnT= valies +isnl constrins
. = isplay —
-Murm_of_floors : Integer 1 0 P ‘1 y
propertias 1 <<hlock>> 1 ¥ +dashhoard +Cpe.. (Farl :Int._.
b, Motor parts
1.10 | e amevatoneleyaifl T references
i +miotor -
{unijue p— i
Assistance Up : Boolean 5 o 1| +huttans -
Dgwn : referances
1 [+assistance Stop an @ volues <<hlock>>
properties
<<hlocks> Elu_ttu_n_s
Assistance comaE
constraints \ ki <<hlock»» A
— parts LCD_Dizpl
opertions eferances - |sp g
parts valses constroints
referances properties operations
vilues parts
popeyiies references
valies
+wyidth Integer
1., +controller +Floar <<blocks> s «
FloorCaontroller +height .InFeger

The BDD cannot define completely the communication
dependencies and the composition structure (no topology)

BDD Block Relationships

Generic Association Meaning: the two blocks “cooperate”
In some way

<<hlock>>
Blockl
consteints
OpenThions
+ Dperatian 1)
+ Dperation ()
<< signal »»> Reception]

FlowPortl

parts
references
values

+ Fropenyd : Integer

<<constrai.. ConstraintPr..___ RO/e

N\ | +programrmer

Frogramming

@ +programmed
MU/tIp/ICIty <<hlocks>

Block?
constraints
ypERTLING

parts

referances
vanlues

properties

BDD Block Relationships

Composition Meaning: the component blocks can

only exist in the context of the owner
“Hlagil . “composite” block.

CONSIRGints
openThions
+ Dperatian (]
+Operation ()
<< signal »» Reception?

FlowPortl

parts
references
wales

+Propertye : Integer

ﬁﬁcomtrmraintﬁ_

1 + et

Filled diamond

1.10, |, +owned

<<hlock>»
Block?
constrmints
opanThions
parts
referancas
values
properties

BDD Block Relationships

Aggregation Meaning: the composite contains the
components but the components can
Do . exist outside the composite

constroints

FlowPortl

OpEnTLionS
+Operation [
+ DperationZ ()
<< signal >» Reception]

parts
references
valles

+Fropery? | Integer

Tass
{{Cﬂnstrmraintﬁ_

+gssembly

Empty diamond

1.4 | +assembled_item

<<hlock>>
Block?
constraints
ERTLINTS
parts
references
varlues

propertiss

BDD Block Relationships

Generalization/Specialization Meaning: the specialized block has all
1 the properties/operations/... of the
L ¢olocko> generic (abstract) object but can add

(o Display :
COMSTRTETTS Some Of ItS Own
openThios

+Ope.. i(Farl :Int..

DTS
refarances
walues

properties

splay

1ard

<<hlock>> o
LCD_Display
ConSTRmints
OpEnTTiomS
[Tt
referanoes
wlues

+wiclth : Integer
+height : Integer
properties

... and then used (IBD Internal Block Diagram)

tbd [BElock] Anti-Lock Controller [Basic U

I d1 : Traction
*7| Detector

[

m1 : Brake
—*| Modulator

* Defines the use of Blocks in a composition

— Part is the usage of a block in the context of a composing block
(also known as a role)

— The internal structure becomes explicit
— The communication and signalling topology becomes explicit

IBD Internal Block Diagram: an Example

1

1

modeBtn : null

ibd [block] DigitalWatch [Watch ibd (design]])

modeBtn : null

1

||
setBtn : null

rightValue : UnlirmitedMatuf

L

lightBtn : null

rightCtl : null

cetBtn : null colonCtl: null
leftValue : Unlimited
leftCtl : nul

LI E . TTUTT
display Watch_Display o
leftDigits : Twin?/LED =
Ctl

value ; UnlimitedMatural

clock : null

Colon : ColonLED

=

Ctl

clock: nul%

Mat]

Lrg

IBD: Blocks, Parts, Ports, Connectors & Flows

ibd [Elock] Anti-Lock Cortroller [kem Flow]/|
=Y

Enclosing —

Block
C2! {'_ d1 : Traction
Detector
Connector,—f/
/T activate : Svdc
1: Brak
Item Flow -~ | _—F.L nr:lodu::t;
)\ ~
I\ N
Port Part

Internal Block Diagram Specifies Interconnection of Parts

Reference property

bdd [Package] Structure[Owverall Structure U o S1 is a reference pal‘t*

« +Shown in dashed
outline box

=<zhlock==
Vehicle

==hlock==
Braking

==hlock==
Chassis

System
ibd [Block] Arti-Lock Controller [Extended U

— hub [/ 4 "

==hlocks== —_—— —_——_ =

==hlock== AntiLock ==hlock== -=~’~=b|'f"3k='} s1:Sensor [4] |
Rotor Controller Hub Assy Tire |

d1 : Traction
Detector

=<zhlock==

Brake
Modulator

=<zhlocks==

Traction
Detector

==hlock==
Sensor

W activate ; Svdc

m1 : Brake
Modulator

SysML Ports

» Specify interaction points on blocks and parts
 Integrate behavior with structure
« Syntax: portName: TypeName

 Kinds of ports

— Standard (UML) Port. Operation oriented — for SW components
« Specifies a set of required or provided operations and/or signhals
« Typed by a UML interface
— Flow Port. Used for signals and physical flows
« Specifies what can flow in or out of block/part
« Typed by a block, value type, or flow specification
« Atomic, non-atomic, and conjugate variations

« Standard Port and Flow Port Support Different Interface
Concepts

Port notation

Standard
Port

Flow
Port

provided interface
(provides the operations)

part1: Dé&i—:3¥] part2:

required interface
(calls the operations)

Flow Port

part1: part2:

item flow

Standard port
Typed by an interface

(provided interface)

<<hlock»>
Block1
constrmints
OpEnTHions
+Uperation ()

+ Dperationz ()
<< signal >» Reception] L ; Pojtl :[Interfacel

: FlowSpecificationl

eclficationl

parts _@J acell
referances
values
+Fropenye : Integer
properties Conngctorl LLinterface»:
< <constrai.. ConstraintPr... Interfacel
1 O +assembly ya
!
Conngctar? !
{{u@E}}
1.4 | +assemhbled_item f
!
<<hlock»> <<hlocks»»
Block? FlowPortl : FlowSpecificationl Interface]lse
constroints FlowSpecificationl constraints
OERTEIoNS ODERTToNS
pans Interfacel pars
references referenoes
values verluas
roperties Port3 : Interfacel Use properties

Standard port

properties

+Fropenye : Integer

< < constrai.. ConstraintPr...

1.4 | +assembled_itemn

1 O +assembly

Connector?

<<hlock»»
Block?

Connector]

ConstRTints

OpERTTinnS

mk FI::uwF'l:ur}/

t1/: FlowSpecificationl

cationl

BErt3 1 Interfacel Use

<<hlock>> o
Blockl
st = ; FlowPgrtl : FIDwSpecificatiDnconneCted to d port
+Dperatiws FlowSpeclficationl typed by a block u5|ng
+ DperationZ () the interface (required
<< gignal >> Reception] L] ; Portl :[Interfacel interface)
parts Inflerfacell
referances
values /

LLinterfacex:
Interfacel

|
|

7

!
{{uge}}

I
|

<<block>»
Interfacellse

constrnints

OpEnTHionS

parts
referances
vlies

properties

Flow Port with flow specification

Typed by a flow
specification

<<Hlowspecificationz>
Flowspecification
flowProperties
+in FlowFroperty
+out FlawFropemyE

<<hlock>> @ T
Block]
G FIbwPgrtl : FlowSpecificationl
_ aperations Specfficationl
+Uperation ()
+ Dperationz ()
<< gignal »> Feception] L _. Portl :[Interfacel
parts Inflerfacell
referamoes
wrles
+Fropenye : Integer I
- Conngctor

< < constrai.. ConstraintPr...

The
connected
port is
conjugated

1 O +assembly

+assembled_item

Conng

bCtore

<<hloches
Elock? FlowPortl : FlowSpecificationl
constroints FlowSpecificationl
OpERTTinns
parts Interfacel
refiaranoes
wlises
properties Port3 : Interfacel Use

A flow specification
applies to a port
(typically of type
input/output)
supporting transfers of
multiple types of items

Flow Port with flow specification

Typed by a flow
specification

<<Hlowspecificationz>
Flowspecification
flowProperties
+in FlowFroperty
+out FlawFropemyE

<<hlock>> @ T
Block]
G FIbwPgrtl : FlowSpecificationl
_ aperations Specfficationl
+Uperation ()
+ Dperationz ()
<< gignal »> Feception] L _. Portl :[Interfacel
parts Inflerfacell
referamoes
wrles
+Fropenye : Integer I
- Conngctor

< < constrai.. ConstraintPr...

The
connected
port is
conjugated

1 O +assembly

+assembled_item

Conng

bCtore

<<hloches
Elock? FlowPortl : FlowSpecificationl
constroints FlowSpecificationl
OpERTTinns
parts Interfacel
refiaranoes
wlises
properties Port3 : Interfacel Use

A flow specification
applies to a port
(typically of type
input/output)
supporting transfers of
multiple types of items

 The same information shown in the IBD

ibd [block] Blodk1 [EII::u:kl])

FoleCiBlock] : Block] &
Portl :Interface‘[./ FlowPortl : FlowSpecificationl
Interfacel
Interfacel
J\ Port3 : Interfacel Use FlowPortl : FlowSpecificationl

FoleOfBlock? - Block?

Delegation

« Delegation can be used

(black box vs white box)

* Interactions at outer ports C} .
of Block1 are delegated ehildt:
to ports of child parts

* Ports must match
(same kind, type,

direction, etc.)
« (Connectors can cross

1
Ly

| Child2:

boundary without requiring
ports at each level of nested
hierarchy

Structure diagrams

SysML Diagram

&

Behavior
Diagram

T

Activity
Diagrams

Sequence
Diagram

State
Diagram

| |
Requirgment Structure
Diagrnam Diagram
|
| | |
Block Definition|| Internal Block|| Package
Diagram Diagram Diagram
Use case |
Diagram \ | /
Parametric
Diagram

—

Parametric Diagrams

« (Can be used to express constraints (possibly through
equations) between value properties

« Constraints are defined by (yet) another block (constraint
block), which captures equations

— Expression language can be formal (e.g., MathML, OCL) or
informal

« Binding of constraint parameters to value properties of blocks
(e.g., vehicle mass bound to parameter ‘m’ in F=m x a)

Parametrics and Equations

Equations (for Parametrics) can be defined to be reusable

bdd [Package] Analysis [Analysis Context U

==hlock==
£ aig ine
Vehicle 2 L vales
Vehicle Dynamics time : sec{unit = Second, dimension = Time}
el
=aconstraint== B4 ==constraint=:=
Braking Force Equation Distance Equation
{i=(t*h (140} {w=chxJclt }
pamameters paranebers
1 : M{unit = Newwton, dimension = Force} v | mizec{unit = MeterPerSecond, dimension = Yelocity
tf : Myunit = Mewton, dimension = Force} ¥ o miunit = Meter, dimension = Length}
bt . N{unit = Newton, dimension = Force} {: seciunit = Second, dimension = Time}
t: %
e2 e3
==constraint== ==constraint==

Acceleration Equation Velocity Equation
{f=m*a} {a=chvictt}

paraneters paranieters
1 : M{unit = Newton, dimension = Force} a : misec”2{unit = MeterPerSecondSguared, dimension = Acceleration}
v o miseciunit = MeterPerSecond, dimension = Yelocity

m : Kogfunit = Kilogram, dimension = Mass}
& migec"2{unit = MeterPerSecondSguared, dimension = Accelerstion} t . sec{unit = Second, dimension = Time}

Parametric Diagrams

« Support for engineering analysis (e.g., performance,
reliability) on design models

« Parametric diagram represents the usage of the constraints in
an analysis context

« May be used for identification of critical performance
properties

« Computational engine is provided by applicable analysis tool
and not by SysML

Example of use of a parametric diagram

par [Block] =traight Line Yehicle Dynamics [Walue Bindings U

v.b.abs.m1.duty cycle : % v.mass : Kg
v.c.t.friction: H v.b.r.braking force: N
tomM | % bf: N m: Kg

|_, |__| I_l FrN [t 1 I_l
el: Brakm_g Force |: e? : Acceleration
Equation :l Equation
f=(tf* %1 -1l =tm*
=T (140 B

LW " | |
L.

) § a . misec™s
ed : Distance Equation i |_|
{=challt ; e3 : Velocity Equation
¥ misec Y misec {a=chv/dt}
X m t13'3'3|: :lt:sec:

e

v.position: m clk.time : sec

Parametric Diagrams

« Notes/Comments

« They are yet another means of expressing specifications

« They are not executable, cannot be simulated and indeed are
listed among the structural diagrams, not behavioral

« Constraints can be defined in any language
— Too much freedom (will kill you) in the choice of the language,

the semantics
— OCL is however a strong candidate when using UMI/SysML tools

« Other tools may be better suited for this

Behavior diagrams

SysML Diagram

/\

i

Behavior
Diagram

V4

Activity
Diagrams

I

Sequence
Diagram

gtate

Diagram

| |
Requirgment Structure
Diagram Diagram
/\
|
| | |
Block Definition|| Internal Block|| Package
Diagram Diagram Diagram
[\
Use case |
Diagram |
Parametric
Diagram

Activities

 Activity specifies transformation of inputs to outputs
through a controlled sequence of actions

« Similar to dataflows with enhancements that allow the
representation of a more general semantics , including
the modeling of continuous physical flows

« Secondary constructs show responsibilities for the
activities using activity partitions (i.e., swim lanes)

— SysML adds support for continuous flow modeling (modeling of
continuous-time systems)

— Alignment of activities with Enhanced Functional Flow Block
Diagram (EFFBD)

Activities

Activity diagrams represent a wide range of applications.

Usual problem with generality vs understandability
(interpretation)

The application spectrum is between two endpoints according to
the way activities accept inputs and provide outputs

At one end of the spectrum, activities accept inputs only when
they start, and provide outputs only after they finish. For
example, an addition function accepts two numbers, adds them,
and produces a result, with no inputs or outputs while it is
adding. These are nonstreaming activities.

At the opposite end are applications in which activities pass
items between each other anytime while they are executing. For
example, physical subsystems, such as the engine in a car,
which delivers power to the clutch as it runs. These are
streaming activities.

Activity diagram
Activity

Activity Diagram Specifies Controlled Sequence of Actions

Activity diagram: actions

« Actions Process Flows of Object/Control and Data

« Unit of flow is called a “token” (consumed & produced by
actions)

« Actions Execution Begins When Tokens Are Available on all
Control Inputs and Required Inputs (unless labeled as

«optional»)
Control Input
4
=<=optional== action ==optional=:=
inputi |:| |:| otput
input2 D D output 2
Control Output

v

Actions can be described by activities

« An entire (sub)activity is used to specify the action
behavior and it is invoked when the parent action begins
execution

act Activity J
' <<optional=> : action . <<optional>>
inputi | > D D > outputi
B 3 | action2 T
input2 ﬂ M output2
: 8 | L
)
Control Input
]
i
V
==0ptional== action : Activity ==optional==
et th [ot

input?2 D D output2
"

Control Qutput \:/

Common actions

==hlocks== =
B

opl(inil, outol)

target

op1 ol

Call Operation Action
(can call leaf level function)

Accept Ev
> —| EvertData

Accept Event Action
(pin may be elided)

act ActwwtyJ

<<optional>> action1 <<option.
input1] [t - outpu

put2 — [output2
=<optional=> action : Activity |‘|'| =<optional==
inpLt1 output!
O a*®
input2 D D output2

Call Behavior Action
(can call leaf level function)

target

[1]

signalData Send X
B >

Send Signal Action
(pins may be elided)

Action Types and behavior

« Action input and output for an action can be
— control
— optional
— required
— streaming (continuous) item inputs & outputs

Action Types and behavior

 Starting an action:

— An action starts when a token is placed on all of its control
inputs and all of its required inputs (must meet minimum
multiplicity of its input pins) and the previous invoked
activity has completed (actions are atomic)

— An action invokes an activity when it starts, and passes the
tokens from its input pins to the input parameter nodes of
the invoked activity

« During an execution:

— An action continues to accept streaming inputs and

produce streaming outputs

Action Types and behavior

 Terminating an action:

— An action terminates when its invoked activity reaches an
activity final, or when the action receives a control disable,
or as a side affect of other behaviors of the parent activity

— The tokens on the output parameter nodes of the activity
are placed on the output pins of the action and a control
token is placed on each of the control outputs of the action

* Following action termination:

— The tokens on the output pins and control outputs of the
action are moved to the input pins of the next actions when
they are ready to start per above

— The action can restart and invoke the activity again when
the starting conditions are satisfied per above

Activity diagram: notation

. > * Initial Node — On execution of parent
"""" control token placed on outgoing
control flows

Pt
------- :-')l'x!,ffl

« Activity Final Node — Receipt of a
control token terminates parent

....... >R) Flow Final Node — Sink for control
' tokens

Activity diagram: notation

* Fork Node — Duplicates input (control or
%I object) tokens from its input flow onto all
outgoing flows

—S « Join Node — Waits for an input (control or
N Ié object) token on all input flows and then
places them all on the outgoing flow

5 \; or object) token on its input flow and places it
on one outgoing flow based on guards

* Merge Node — Waits for an input (control or
object) token on any input flows and then
places it on the outgoing flow

I >« Decision Node — Waits for an input (control
,f%

>

Guard expressions can be applied on all flows

An Example with input and output streams

act Activity
[Activityd ‘“J_O'-“PE
| out1
1
- bet] [else]
<<optional>> -
input1 jvity 2 " <<optional>>
{stream} D p— GSTPM1
= {stream} {stream}
woptionals
in1
| input2 I {Slresﬁ’ AC‘WWE

' ‘ outl

« Streaming Inputs and Outputs Continue to Be
Consumed and Produced While the Action is Executing

Activity diagram: an example

<<structured>>
<< Delay >> Alarm

Count

N

start
E {CountClk=ClockUnion(start,stop,tick)}
(CountClk
<<Causality>> i_
1 e S Check
tick CheckClk 0o

<<structured>>
Count

<<DEIay>> count

CountClk I
eme

[start]

JJ

0
decrement | llast >=0] l Select
T [stopl]
ot L{CIockPnorlty (start, stop, last)} [:’ ’

init

‘ default

<<structured>>
Check

CheckClk
<<Delay>> [count =0]

alarm

[k
increment
tl _ siseconds HI% (Alarm.Check)

e

Continuous flow modeling

act [activity] DistilWater [Simultaneous - no control ﬂuvay

Actions are enabled by default

Continuous flow means ATime
between tokens approaches zero

when activity is enabled Continuous Flow

acontinuous»
|oP ress:Residue

gcontinuouss |
coldDirty:H20 acontinuouss «continuouss
[liquid] steam:H20 hiPress:Residue

acontinuouss
recovered:H eat

.

wcontinuousy

a1 Heat\Water

I
{9.Itrea m
I
I
I
I
I
I

hotDirty:H20
[liquid] wcontinuouss
pure:H20
Diquid]
xcontinuouss
external Heat

ShutDown

Accept Event Action_/_ -
Will Terminate Execution

Region

Representative of Physical Processes (plant modeling)

Enabling and disabling actions

act Operate Car

-

e tDO'H J:—

Brake Pressure .
goontinuousy

wcontinuouss acontinuous»
Brake Pressure| | Braking Pressure
acontrolOperators

:Enable on Brake
Pressure =0

Modulation

Frequency |
acontinuouss
«optional »

gcontinuouss
Modulation

Frequency [|

[‘Monitor Traction JE‘(D“M})

Tumn Key | _--»

>(®)

Behavior diagrams

SysML Diagram

/\

| | |
Behavior Requirgment Structure
Diagram Diagram Diagram
| |
| | | | |
Activity State Block Definition|| Internal Block|| Package
Diagrams Diagram Diagram Diagram Diagram
X ! A
Sequence ll{)?aegcr:f: ||
Diagram Parametric
1 \ Diagram

Interactions

 Interaction (Sequence) diagrams provide representations of
message based behavior representing a flow of control

« describe interactions between parts (a possibly complex
protocol)

« Sequence diagrams provide mechanisms for representing
complex scenarios (startup, errors and error recovery,
communication protocols ...)

 reference sequences
« control logic
* lifeline decomposition

ltems in a Sequence diagram

‘MAIN O1.dass 1 02:class 2 O3clas 3 Odclas 4
| | |
1It) [cond] . ||
iiiten | | Represent the roI_e:cIass:_fler that
avg takes part to the interaction
val2=M2() <10=>
TL7|3 attrib=Get_attrib() |
T \ |
loop=<1,40= |
val3=M3(val2 f g)
val4=M4(c) | <20>
Set_attrib(van""
v T
[cond2] I
e=M21(h) <20
val4=M4(c) J <20>
Set_attib{val)
=
val31=M31(n) | <4> ‘
T | |

ltems in a Sequence diagram

‘MAIN Oldass 1 O3clas 3 Odclas 4
| |
alt) [cond1] / . |
iiien | | | Idfentify sgctions of t_‘he diagralp
A | with special semantics (as defined
val2=M2(= by interaction operators)
/ :
loop<1,40=) |
val3=M3(val2 f g)
val4=M4(Q | <0
Set_attrib(val)
i T
[cond2] I
e=M21(h) <20> J
val4=M4(c) <20>
Set_attiib(val)
-
val31=M31(n) | <4> ‘
T | |

ltems in a Sequence diagram

‘MAIN Oldass 1 O3clas 3 Odclas 4
Executions | q
alt) [cond1] |
val1=M1(a,b)

Identify execution of operations I
I

val2=M2() <10>

attib=Get_attrib() J

loop=<1,40= T

|
< ‘ :
val3=M3(val2 f g) I
val4=M4(q) .!_ <20>
‘ Set_attrib(val)
%
Messages T
(Synchronous I
with reply) val4=M4(c)
=
| val31=M31(n) | <4> Messages
Y J——@ (Asynchronous)
f or Signals

Fragment Types

sed (weak, the default) Each lifeline may see different
orders for the exchange (subject to causality)

strict. The message exchange occurs in the order
described

critical The sequence diagram fragment is a critical
region. It is treated as atomic — no interleaving with
parallel regions

neg The sequence diagram fragment is forbidden. Either
it is impossible to occur, or it is the intent of the
requirements to prevent it from occurring

assert The sequence diagram fragment is the only one
possible (or legal)

Fragment Types

ref name reference to a sequence diagram fragment
defined elsewhere

opt [condition] has 1 part that may be executed based
on a condition/state value

alt has 2 or more parts, but only one executes based on
a condition/state an operand fragment labeled [else] is
executed if no other condition is true

par has 2 or more parts that execute concurrently (the
order is undetermined).

loop min..max [escape] Has a minimum # of executions,
and optional maximum # of executions, and optional
escape condition

Fragment Types

« consider (list of messages) messages that are relevant
In this sequence fragment

 Ignore (list of messages) messages that may arrive, but
are not interesting here

Behavior diagrams

SysML Diagram

/\

| | |
Behavior Requirgment Structure
Diagram Diagram Diagram
L |
| i | | |
Activity State Block Definition|| Internal Block|| Package
Diagrams Diagram Diagram Diagram Diagram
Sequence T ll{)?aegcr:f: ||
Diagram Parametric
Diagram

State Machine

« Used to represent the life cycle of a block

« event-based behavior (generally asynchronous)
Transition with trigger, guard, action

« State with entry, exit, and do-activity
« Can include nested sequential or concurrent states

« (Can send/receive signals to communicate between
blocks during state transitions, etc.

« Event types
— Change event
— Time event
— Signal event

Elements of State Diagrams

StateMachine1

-

[Moving1to2]

Floor2 W ExitFoint1

Moving2to J

Floor1

Stopped1Close @ Stopped10pen j

[MovingOto J

M

[(button1||button||button3)&&(button0)]

N

\f Moving1to0]
,,L

FloorQ

Stopped0Close

"
.-—"l

p

\.

Stopped0Open J

M

Elements of State Diagrams

StateMachine

Floor2] ExitPoint1

(

Moving1to2]

p

Moving2to]

Floor1

L

[(button1]||but

MovingOto]\
/

N

[StoppediClose @ Stopped10pen J

=
>

ond||button3)&&(!button0)]

\;

Q. -

L%

State: a condition of the
(sub)system typically
characterized by an invariant,
summarizing the history of the
previous inputs and defining its
mode of operation

Moving1tol j

M

Elements of State Diagrams

StateMachine

.
Floar2

[Moving1to2]

]

ExitPoint1

4

p

Moving2to]

Floor1

StoppediClose @ Stopped10pen J

[MovingOto j

[(button1||button?||button3)&&(! button0}]

o
P

Composite State: contains at
least one region. Each region is

a concurrent superstate

=
=

Moving1tol j

-

FloarQ

T~

al

StoppediClose

g/

Q. -

L%

:“|"f Stopped0Cpen J

\

M

Elements of State Diagrams

StateMachine

[Moving1to2]

/

Floor2] ExitPoint1

AN

4

p

Moving2to]

(

/

Floor1

Submachine State: A
superstate for which the behavior
is defined by an internal state

ped10pen

[Moving0tof J machine

[(button1||button?||button3)&&(! button0}]

=
>

Moving1tol j

FloarQ

StoppediClose

:“|"f Stopped0Cpen J
\

g/

Q. -

L%

M

Elements of State Diagrams

Stopwatch

@ ita

timedisplay

|

|

|

|

I

|

timeset W :
|

1

.I tritiald

alarmset

Orthogonal State: A superstate
for which the behavior is defined
by two or more concurrently
executing submachines, each in
its region

\ J

@ iiia

\JAI Off
e

M

{ AlarmExpired J

Elements of State Diagrams

StateMachine

-

Floor2] ExitPoint1

=
@ = Moving2to]
h

[Moving1to2] -

Floor? |

[StoppediClose @ Stopped10pen J
/% iPoint1
MovingOto ,
E Moving1tol j

] Initial (pseudo) State: indicating
the initial state for the system,
[(button1||button?||button3)&&(! buttg there can be at most one In each

region
\[StoppediClose :"|"f Stopped0Cpen J
@ - k)

L%

TTUUTL

M

g/

Elements of State Diagrams

Final state
O
Entry point
X
Exit point
{) }
Connection

point

reference

A pseudo-state signifying either the leaving state for
an object or the termination of the enclosing region

A reference for the target of a transition

A reference as the source of a transition

Used as a source or target of a transition. They
represent entries into or exits out of the submachine
machine referenced by the superstate.

Elements of State Diagrams

*I:: : v Splits an incoming transition into two or more

transitions terminating on orthogonal target vertices
Fork

:I_> % Merge transitions emanating from source vertices in

different orthogonal regions
Join

l—é>—l Split transition paths (OR decomposition)

Choice
point

/’(: Chain together multiple transitions

Junction

State diagram vs Protocol state diagram

| Deep History] Represents the most recent active Pl'ﬂtxﬂﬂﬂl TraHSItln?“

corfiguration of the composite state I L i)
&) that directly contains the pseudo L) - J
state

A protocol transition (transition as specialized in the
Protocol State Machines package) specifies a legal

' Shallow History | [ORIEIE L8 e Te transition for an operation. Transitions of the protocol
@ A A S state machines have the following information: a
state g3 : "
] precondition (guard), on trigger, and a post condition.

m When an object exits

— " and returns 1o the

Transition to Self] same state in

response to an avent. " Protocol Transition | When an object returns to
‘ to Self the same state after the
: specified event occurs.
Transition Adirected relationship
| S | | between a source vertex

and a target vertex.

Example of state diagram

stm HS UVOperationaIStateS)

o

~
——keyOff/ —‘{6)

4

p

/—
accelerate/

N
Accelerating/
Cruising

o v

o

Off
start[in neutral)/start engine shutOff/stop engine Nominal
states only
Operate
.H_ ‘\
Idle

/AN

|
when (speed = 0)

releaseBrake/ w

Braking }
.

L—engageBrakei—J\

/

Deployment model

Functional
model

System
platform model

task \

Pe_”'og resource
priority
e . wCBT

task,

msg;

activ.mode

ECU,
Execution /

architect. OSEK,

model

CAN,

message

CANId

period

length
transm. mode
is_trigger

Allocation

» Represent general relationships that map one
model element to another

 Different types of allocation may be defined
— Behavioral (i.e., function to component)
— Structural (i.e., logical to physical)
— Software to Hardware

 Different ways for specifying allocation are
possible in SysML

* Both graphical and tabular representations are
possible

Allocation using Activity diagrams

 Explicit by swimlanes

act [Activity] Prevent Lockup [Actions U

Avi . AV
al: Detect Loss of Pl Trag%oss a2 : Modulate
Traction Braking Force

] T

1 i

act [Activity] Prevent Lockup [Swimlanes u

<<allocate>>
d1 : Traction Detector

<<allocate>>
m1 : Brake Modulator

...........
]
]

AV

T
! -
______ i ————

- 1 i

allocatedTo ,
<<connector=> ¢2 :

al: Detect Loss of p1: Tractloss
Traction of1

L < p2: Tract]

-

- —

a2 : Modulate
Braking Force
| oss

Allocation: types and expressions

Name1

Element 1-

-

---«allocate»

Element
,--~':7 Name2

«allocate»

part name : Element Name

--=""«allocate»

Tl Element
“=>»(Name3

action name :
Activity Name

Allocate Relationship

«block»
Block Name

part name

«elementType» ElementName

allocatedFrom

Compartment Notation

Explicit Allocation of
Action to Part Property

«block»
Block Name

part name

allocatedFrom
«elementType»Element Name

d“‘-

Callout Notation

Allocation using IBD and BDD

« In SysML, «allocation» on an ibd and bdd can be used
to deploy software/data to hardware

ibd [node] SF ResidenceJ

]
e

. = 2
S «hardware » «hardware » - _
[- Optical Sensor - V{;Q:cr:-dg;r:’i:a E - Alarm [HEI
5 :
(]
Iil I
chardware» [J]
- Site Processor «hardware »
allocatedFrom - NW Hub [«hardware » K3
«software» Device Mgr allocatedFrom | : DSL Modem
«software» Event Mgr
«software» Site Config Mgr «software » ?%Cﬁmm i
«software» Site RDBMS
«software» Site Status Mgr
wsoftware» User I/F
«software» User Valid Mgr D\;{Saédownﬁr?)%
: - rive

allocatedFrom
«data» Video File

' «hardware»
M -
«hardware » - User Console
- Site Hard Disk I
allocatedFrom
«data» Site Database
s

K|

Allocation: table definition

 Allocating logical components to HW/SW/Data

Logical Components

Physical Components

Type

Entry
SEnsor

Penmeter EntrgExit BEwent Site

Exit Sensor Sensor

Monitor Monitor Comms I'F Bwentlog |F

Cusstomer Customer System

Output Mgr Status

Alamm
Fault Mgr Genestor Alam IF

Desiice Mgr
SF Comm F
User IF

Event Mgr

Site Status Mgr

Site RDEMS

CMS RDBMS

X

X

ndatas

Wideo File

CMS Database

Site Database

> | XX | XX | X

uhardwares

Optical Sensor
DEL Modem
Liser Console
ideo Camera

Alarm

Available diagrams

SysML Diagram

b

Behavior
Diagram

T

Activity
Diagrams

State
Diagram

Sequence
Diagram

Requirement Structure
Diagram Diagram
|
| | |
Block Definition|| Internal Block|| Package
Diagram Diagram Diagram
Use case ||
Diagram
Parametric

Diagram

Requirements

* The «requirement» stereotype represents a text
based requirement

— Includes the definition of an id and text properties

* A requirement can have user-defined properties
such as verification method(s)

* The user can define

— a classification of requirements categories (e.g.,
functional, interface, performance)

— A requirements hierarchy describing requirements
contained in a specification
* Requirements relationships include DeriveReqt,
Satisty, Verify, Refine, Trace, Copy

Requirements structure

req [package] HSUVRequirements [HSUY Specificationy
[]
HSUVSpecification
P RefinedBy
- 5 «useCase» HSUVUseCases:Accelerate
«requirement» crequirement» I
Eco-Friendliness Performance ,
«requirement»
E P9 9 ’ Power
e
f «deriveRegt»
7 l
«requirement» «requirement» «requirement» . ,
raking FuelEconomy Acceleration '
«requirement» / ,
Emissions
Id =“R12.1" VerifiedBy SatisfiedBy
text = “The vehicle shall meet Ultral ow «testCaser» MaxAcceleration «block» PowerSubsystem
Emissions Vehicle standards”

req [Package] Distiller Requirements [Top Level Requirements]_J

Source_Requirements
(Distiller Distiller Requirements)

==requirement==
Original Statement

ld="30.0"

Text=" Describe a system far purifying dirty water.

- Heat dirty water and condense steam are performed by a Counter Flow Heat Exchanger
- Boil dirty water is performed by a Boiler. Drain residue is performed by a Drain.

The water has properties: val = 1 liter, density 1 gmicm3, temp 20 deg C, specific heat 1calfgm deg C, heat of vaporization 540 calfgm.”

e rEGURBMErTss <=requirement== =<requirement==
Purqify Water Heat Exchanger Water Properties
Id="510" ld="520" ld="55.0"
Tex‘c:"‘fhe system shall puriy Text="Heat dirty water and Text="Water has properties: density 1
dirty water " condense stearn are performed by a grmfcm3, temp 20 deg C, specific heat
) Counter Flow Heat Exchanger” 1caligm deg C, heat of vaparization
L) 540 caligm.”
|
| =<requirement=:=
Boiler
! _u " ==requirement==
I ld = 5“3'0_) . Water Initial Temp
catiBrvEREgD» Text = "Boil dirty water is performed by
F a Boiler." ld="3461"
) p - Text="Water has an initial
==Rationale== E‘; - - termp 20 deg C"
The requirement | L] - =srequirement==
for a bailing I - Drain
function and a G ” = =
hoiler implies that | - == Id="54.0
the water must be) Text="Drain residue is performed by
purified by | <<deﬁveﬂem>> oM
distillation)
| e
; e
==requirement=>
Distill Water
(Distiller Distiller Requirements Derived_Reguirements)
ld="D1.0"
Text = "The systern shall purify water by hoiling it"

Requirements structure

arequirement»

«regquirement»

«requirement»

OffRoadCapability Acceleration CargoCapacity
Supplier T"'\ ‘; ﬂ
\«deriveReqt» \ /
\\ «deriveReqt» ,ﬂ{:’erweReqt»
N\ N \ , /
\ \ /
Client 1 p;
«requirement»
Client depends on supplier Power
(i.e., a change in supplier Suonlior & _
results in a change in client) o iy

\(,‘Qent

P

«block»
owerSubsystem

Tool

* Intro to Papyrus

