
OMG Systems Modeling Language

(OMG SysML™) Tutorial

Based on the INCOSE tutorial
available on the web

http://www.uml-sysml.org/documentation/sysml-tutorial-incose-2.2mo

and the book “SysML for Systems Engineers”

SysML as an OMG standard

• Specification status Adopted by OMG in May ’06

• Current Specification v1.2 released in June 2010

• The INCOSE tutorial is based on the OMG
SysML specification v 1.0 (2007-09-01)

• The tutorial, the specifications, papers, and info
on tools can be found on the OMG SysML
Website at http://www.omg.org/spec/SysML/

• The examples are based on the Topcased
modeling tool (open source and Eclipse-based,
available at www.topcased.org)

Motivation, Objectives and Audience

• At the end of this tutorial, you should have an
understanding of:

– Motivation of model-based systems engineering approach

– SysML diagrams and language concepts

– How to apply SysML as part of a model-based SE process

– The course must be supplemented by modeling practice.

• Intended Audience:

– Practicing Systems Engineers interested in system

modeling

– Software Engineers who want to better understand how to
integrate software and system models

– Familiarity with UML is not required, but it helps

What is Systems Engineering

• Systems Engineering is a discipline that concentrates on

the design and application of the whole (system) as

distinct from the parts. It involves looking at the problem
in its entirety, taking into account all the facets and all

the variables. (Federal Aviation Agency FAA-USA,
Systems Engineering Manual, Definition by Simon

Ramo, 2006)

• Systems Engineering is an iterative process of top-down

synthesis, development and operation of a real-world

system that satisfies, in a near-optimal manner, the full
range of requirements for the system. (Howard Eisner,

Essentials of Project and Systems Engineering
Management, Wiley, 2002)

SysML structure

What is SysML

• A graphical modelling language developed in response

to the UML for Systems Engineering RFP developed by

the OMG, INCOSE, and AP233a

• Supports the specification, analysis, design, verification,

and validation of systems that include hardware,
software, data, personnel, procedures, and facilities

• Is a visual modeling language that provides

– Semantics = meaning, connected to a metamodel (rules
governing the creation and the structure of models)

– Notation = representation of meaning, graphical or textual

• Is not a methodology or a tool (SysML is methodology

and tool independent)

Metamodel, model and charts/views

System

Model(s)

Views

Built according to
the rules of the

metamodel

• UML is a general-purpose graphical modeling language aimed at

Software Engineers

• Diagrams not used

– Object diagram,

– Deployment diagram,

– Component diagram,

– Communication diagram,

– Timing diagram and

– Interaction overview diagram

• Diagrams from UML

– Class diagram (Block Definition Diagram - Class → Block)

– Package diagram,

– Composite Structure diagram (Internal Block Diagram)

– State Machine Diagram

– Activity Diagram

– Use Case Diagram

– Sequence Diagram

SysML vs UML

• In addition, SysML adds some new diagrams and constructs

– Parametric diagram,

– Requirement diagram

– Flow ports,

– Flow specifications

– Item flows.

– Allocation

SysML vs UML

• Includes UML4SysML: a UML Profile that represents a subset of

UML 2 with extensions

• Supports model and data interchange via XML Metadata
Interchange (XMI®) and the evolving AP233 standard (in-process)

SysML Extensions

• Blocks

• Item flows

• Value properties

• Allocations

• Requirements

• Parametrics

• Continuous flows

SysML vs UML

UML SysML

UML 2.0
reused by

SysML
SysML

outside the
UML

metamodel

Available diagrams

SysML Diagram

Structure

Diagram
Behavior

Diagram
Requirement

Diagram

Activity

Diagrams

State

Diagram

Sequence

Diagram

Use case

Diagram

Package

Diagram
Internal Block

Diagram
Block Definition

Diagram

Parametric

Diagram

Examples of diagrams

SysML Diagrams are contained in Frames

• Each SysML Diagram must have a Diagram Frame

– Diagram context is indicated in the header:Diagram kind (act, bdd,
ibd, sd, etc.)

– Refers to a model element type (package, block, activity, etc.)

– Refers to a Model element (Model element name)

– User defined diagram name or view name

• A separate diagram description block is used

Structure diagrams

SysML Diagram

Structure

Diagram
Behavior

Diagram
Requirement

Diagram

Activity

Diagrams

State

Diagram

Sequence

Diagram

Use case

Diagram

Package

Diagram
Internal Block

Diagram
Block Definition

Diagram

Parametric

Diagram

Package diagram

• Package diagram is used to organize the model

• Groups model elements into name spaces

• Often represented in tool browser

• Typically connected with model configuration

management (check-in/out)

• Model can be organized in multiple ways

– By System hierarchy (e.g., enterprise, system, component)

– By diagram kind (e.g., requirements, use cases, behavior)

– Use viewpoints to augment model organization

• Import relationship reduces need for qualified names

(package1::class1)

Package diagrams: a way to organize the model

Package diagrams: proposed organization

Requirements

Logical Design

Subsys 1

Subsys 2

Subsys 3

Physical Design

Mapping

Subsys A

Subsys B

Subsys C

Analysis

Structure

Behavior

Analysis

Package diagram: views

• Viewpoint represents
the stakeholder
perspective

– View conforms to a
particular viewpoint

– Imports model
elements from
multiple packages

– Can represent a
model query based
on query criteria

• View and Viewpoint
consistent with IEEE
1471 definitions

Structure diagrams

SysML Diagram

Structure

Diagram
Behavior

Diagram
Requirement

Diagram

Activity

Diagrams

State

Diagram

Sequence

Diagram

Use case

Diagram

Package

Diagram
Internal Block

Diagram
Block Definition

Diagram

Parametric

Diagram

Blocks: Basic structural Elements

• Based on UML Class from UML Composite Structure
– Supports unique features (e.g., flow ports, value properties)

• Provides a unifying concept to describe the structure of an

element or system

• Any type of system/element!
– Hardware

– Software

– Data

– Procedure

– Facility

– Person

– Signal

– Physical quantity

Blocks: Basic structural Elements

• Compartments are used to describe the block
characteristics
– Properties

• parts,

• references,

• values,

• ports

– Operations

– Constraints

– Allocations from/to other model elements (e.g. activities)

– Requirements the block satisfies

– User defined compartments

Blocks and Compartments

Compartment label

Blocks and Compartments

Property is a structural
feature of a block

Part property
aka. part (typed by a block)
Usage of a block in the context of
the enclosing (composite) block
Example - right-front:wheel

Blocks and Compartments

Reference property (typed

by a block)A part that is not

owned by the enclosing

block (not composition)

Example – aggregation of

components into logical

subsystem

Blocks and Compartments

Value property (typed by

value type)

A quantifiable property with

units, dimensions, and

probability distribution

ExampleNon-

distributed value:

tirePressure:psi=30

Distributed value:

«uniform»

{min=28,max=32}

tirePressure:psi

Block and Compartments: another example

Port specify interaction points

defined later …

Block Diagrams

• Blocks Used to Specify Hierarchies and Interconnection

• Block definition diagrams describe the relationship

among blocks (e.g., composition, association,
specialization)

• Internal block diagrams describe the internal structure
of blocks in terms of properties and connectors

• Behavior can be allocated to blocks

• Blocks can be “allocated” (different types of allocations)

Blocks are defined.. (BDD Block Definition Diagram)

• The BDD is used to define blocks

– The (Block) BDD is the same as a type definition

– Captures properties, relations, dependencies …

– Reused in multiple contexts

BDD Block Definition Diagram: An Example

The BDD cannot define completely the communication
dependencies and the composition structure (no topology)

BDD Block Relationships

Generic Association Meaning: the two blocks “cooperate”

in some way

Role

Multiplicity

BDD Block Relationships

Composition Meaning: the component blocks can

only exist in the context of the owner

“composite” block.

Filled diamond

BDD Block Relationships

Aggregation Meaning: the composite contains the

components but the components can

exist outside the composite

Empty diamond

BDD Block Relationships

Generalization/Specialization Meaning: the specialized block has all
the properties/operations/… of the

generic (abstract) object but can add

some of its own

… and then used (IBD Internal Block Diagram)

• Defines the use of Blocks in a composition

– Part is the usage of a block in the context of a composing block
(also known as a role)

– The internal structure becomes explicit

– The communication and signalling topology becomes explicit

IBD Internal Block Diagram: an Example

IBD: Blocks, Parts, Ports, Connectors & Flows

Internal Block Diagram Specifies Interconnection of Parts

Reference property

• S1 is a reference part*

• •Shown in dashed
outline box

SysML Ports

• Specify interaction points on blocks and parts

• Integrate behavior with structure

• Syntax: portName:TypeName

• Kinds of ports

– Standard (UML) Port: Operation oriented – for SW components

• Specifies a set of required or provided operations and/or signals

• Typed by a UML interface

– Flow Port: Used for signals and physical flows

• Specifies what can flow in or out of block/part

• Typed by a block, value type, or flow specification

• Atomic, non-atomic, and conjugate variations

• Standard Port and Flow Port Support Different Interface

Concepts

Port notation

Standard port
Typed by an interface
(provided interface)

Standard port

Connected to a port
typed by a block using
the interface (required
interface)

Flow Port with flow specification

Typed by a flow
specification

A flow specification
applies to a port
(typically of type
input/output)
supporting transfers of
multiple types of items

The
connected
port is
conjugated

Flow Port with flow specification

Typed by a flow
specification

A flow specification
applies to a port
(typically of type
input/output)
supporting transfers of
multiple types of items

The
connected
port is
conjugated

• The same information shown in the IBD

Delegation

• Delegation can be used
to preserve encapsulation
(black box vs white box)

• Interactions at outer ports
of Block1 are delegated
to ports of child parts

• Ports must match
(same kind, type,
direction, etc.)

• Connectors can cross
boundary without requiring
ports at each level of nested
hierarchy

Structure diagrams

SysML Diagram

Structure

Diagram
Behavior

Diagram
Requirement

Diagram

Activity

Diagrams

State

Diagram

Sequence

Diagram

Use case

Diagram

Package

Diagram
Internal Block

Diagram
Block Definition

Diagram

Parametric

Diagram

Parametric Diagrams

• Can be used to express constraints (possibly through
equations) between value properties

• Constraints are defined by (yet) another block (constraint
block), which captures equations
– Expression language can be formal (e.g., MathML, OCL) or

informal

• Binding of constraint parameters to value properties of blocks

(e.g., vehicle mass bound to parameter ‘m’ in F= m × a)

Parametrics and Equations

Equations (for Parametrics) can be defined to be reusable

Parametric Diagrams

• Support for engineering analysis (e.g., performance,
reliability) on design models

• Parametric diagram represents the usage of the constraints in
an analysis context

• May be used for identification of critical performance

properties

• Computational engine is provided by applicable analysis tool

and not by SysML

Example of use of a parametric diagram

Parametric Diagrams

• Notes/Comments

• They are yet another means of expressing specifications

• They are not executable, cannot be simulated and indeed are

listed among the structural diagrams, not behavioral

• Constraints can be defined in any language
– Too much freedom (will kill you) in the choice of the language,

the semantics

– OCL is however a strong candidate when using UMl/SysML tools

• Other tools may be better suited for this ….

Behavior diagrams

SysML Diagram

Structure

Diagram
Behavior

Diagram
Requirement

Diagram

Activity

Diagrams

State

Diagram

Sequence

Diagram

Use case

Diagram

Package

Diagram

Internal Block

Diagram
Block Definition

Diagram

Parametric

Diagram

Activities

• Activity specifies transformation of inputs to outputs

through a controlled sequence of actions

• Similar to dataflows with enhancements that allow the
representation of a more general semantics , including

the modeling of continuous physical flows

• Secondary constructs show responsibilities for the

activities using activity partitions (i.e., swim lanes)

– SysML adds support for continuous flow modeling (modeling of
continuous-time systems)

– Alignment of activities with Enhanced Functional Flow Block
Diagram (EFFBD)

Activities

Activity diagrams represent a wide range of applications.

• Usual problem with generality vs understandability

(interpretation)

• The application spectrum is between two endpoints according to
the way activities accept inputs and provide outputs

• At one end of the spectrum, activities accept inputs only when

they start, and provide outputs only after they finish. For
example, an addition function accepts two numbers, adds them,

and produces a result, with no inputs or outputs while it is

adding. These are nonstreaming activities.

• At the opposite end are applications in which activities pass
items between each other anytime while they are executing. For

example, physical subsystems, such as the engine in a car,

which delivers power to the clutch as it runs. These are

streaming activities.

Activity diagram

Activity Diagram Specifies Controlled Sequence of Actions

Action

Activity diagram: actions

• Actions Process Flows of Object/Control and Data

• Unit of flow is called a “token” (consumed & produced by

actions)

• Actions Execution Begins When Tokens Are Available on all
Control Inputs and Required Inputs (unless labeled as

«optional»)

Actions can be described by activities

• An entire (sub)activity is used to specify the action

behavior and it is invoked when the parent action begins

execution

Common actions

Call Operation Action
(can call leaf level function)

Call Behavior Action
(can call leaf level function)

Accept Event Action

(pin may be elided)

Send Signal Action
(pins may be elided)

Action Types and behavior

• Action input and output for an action can be
– control
– optional

– required

– streaming (continuous) item inputs & outputs

Action Types and behavior

• Starting an action:

– An action starts when a token is placed on all of its control

inputs and all of its required inputs (must meet minimum

multiplicity of its input pins) and the previous invoked

activity has completed (actions are atomic)

– An action invokes an activity when it starts, and passes the

tokens from its input pins to the input parameter nodes of

the invoked activity

• During an execution:

– An action continues to accept streaming inputs and

produce streaming outputs

Action Types and behavior

• Terminating an action:

– An action terminates when its invoked activity reaches an

activity final, or when the action receives a control disable,
or as a side affect of other behaviors of the parent activity

– The tokens on the output parameter nodes of the activity

are placed on the output pins of the action and a control

token is placed on each of the control outputs of the action

• Following action termination:

– The tokens on the output pins and control outputs of the

action are moved to the input pins of the next actions when

they are ready to start per above

– The action can restart and invoke the activity again when

the starting conditions are satisfied per above

Activity diagram: notation

• Initial Node – On execution of parent
control token placed on outgoing

control flows

• Activity Final Node – Receipt of a

control token terminates parent

• Flow Final Node – Sink for control
tokens

Activity diagram: notation

• Fork Node – Duplicates input (control or

object) tokens from its input flow onto all

outgoing flows

• Join Node – Waits for an input (control or

object) token on all input flows and then

places them all on the outgoing flow

• Decision Node – Waits for an input (control

or object) token on its input flow and places it
on one outgoing flow based on guards

• Merge Node – Waits for an input (control or
object) token on any input flows and then

places it on the outgoing flow

Guard expressions can be applied on all flows

An Example with input and output streams

• Streaming Inputs and Outputs Continue to Be
Consumed and Produced While the Action is Executing

Activity diagram: an example

Continuous flow modeling

• Representative of Physical Processes (plant modeling)

Enabling and disabling actions

Behavior diagrams

SysML Diagram

Structure

Diagram
Behavior

Diagram
Requirement

Diagram

Activity

Diagrams

Sequence

Diagram

State

Diagram

Use case

Diagram

Package

Diagram

Internal Block

Diagram
Block Definition

Diagram

Parametric

Diagram

Interactions

• Interaction (Sequence) diagrams provide representations of
message based behavior representing a flow of control

• describe interactions between parts (a possibly complex

protocol)

• Sequence diagrams provide mechanisms for representing

complex scenarios (startup, errors and error recovery,

communication protocols …)

• reference sequences

• control logic

• lifeline decomposition

Items in a Sequence diagram Lifelines

Represent the role:classifier that

takes part to the interaction

Represent the role:classifier that

takes part to the interaction

Items in a Sequence diagram

Fragments

Identify sections of the diagram

with special semantics (as defined

by interaction operators)

Identify sections of the diagram

with special semantics (as defined

by interaction operators)

Items in a Sequence diagram

Executions

Identify execution of operationsIdentify execution of operations

Messages
(Synchronous

with reply)

Messages
(Asynchronous)

or Signals

Fragment Types

• seq (weak, the default) Each lifeline may see different

orders for the exchange (subject to causality)

• strict: The message exchange occurs in the order

described

• critical The sequence diagram fragment is a critical
region. It is treated as atomic – no interleaving with

parallel regions

• neg The sequence diagram fragment is forbidden. Either

it is impossible to occur, or it is the intent of the
requirements to prevent it from occurring

• assert The sequence diagram fragment is the only one

possible (or legal)

Fragment Types

• ref name reference to a sequence diagram fragment

defined elsewhere

• opt [condition] has 1 part that may be executed based

on a condition/state value

• alt has 2 or more parts, but only one executes based on
a condition/state an operand fragment labeled [else] is

executed if no other condition is true

• par has 2 or more parts that execute concurrently (the

order is undetermined).

• loop min..max [escape] Has a minimum # of executions,
and optional maximum # of executions, and optional

escape condition

Fragment Types

• consider (list of messages) messages that are relevant

in this sequence fragment

• ignore (list of messages) messages that may arrive, but
are not interesting here

Behavior diagrams

SysML Diagram

Structure

Diagram
Behavior

Diagram
Requirement

Diagram

Activity

Diagrams

Sequence

Diagram

State

Diagram

Use case

Diagram

Package

Diagram

Internal Block

Diagram
Block Definition

Diagram

Parametric

Diagram

State Machine

• Used to represent the life cycle of a block

• event-based behavior (generally asynchronous)

Transition with trigger, guard, action

• State with entry, exit, and do-activity

• Can include nested sequential or concurrent states

• Can send/receive signals to communicate between

blocks during state transitions, etc.

• Event types

– Change event

– Time event

– Signal event

Elements of State Diagrams

Elements of State Diagrams

State: a condition of the

(sub)system typically

characterized by an invariant,

summarizing the history of the

previous inputs and defining its

mode of operation

Elements of State Diagrams

Composite State: contains at

least one region. Each region is

a concurrent superstate

Elements of State Diagrams

Submachine State: A

superstate for which the behavior

is defined by an internal state

machine

Elements of State Diagrams

Composite State: contains at

least one region. Each region is

a concurrent superstate

Orthogonal State: A superstate

for which the behavior is defined

by two or more concurrently

executing submachines, each in

its region

Elements of State Diagrams

Initial (pseudo) State: indicating

the initial state for the system,

there can be at most one in each

region

Elements of State Diagrams

Final state

Entry point

Exit point

Connection

point
reference

A pseudo-state signifying either the leaving state for

an object or the termination of the enclosing region

A reference for the target of a transition

A reference as the source of a transition

Used as a source or target of a transition. They

represent entries into or exits out of the submachine
machine referenced by the superstate.

Elements of State Diagrams

Fork

Join

Choice
point

Junction

Splits an incoming transition into two or more

transitions terminating on orthogonal target vertices

Merge transitions emanating from source vertices in

different orthogonal regions

Split transition paths (OR decomposition)

Chain together multiple transitions

State diagram vs Protocol state diagram

Example of state diagram

f1 f2 f3 f4

f5 f6

s4

s5

s2

s3

s1

ECU2ECU1 ECU3

OSEK1
CAN1

task1 task2
task3 task4

Functional

model

System

platform model

Execution

architect.

model

SR1 msg1

msg2
task
period
priority
WCET
activ.mode

message
CANId
period
length
transm. mode
is_trigger

resource
WCBT

Deployment model

Allocation

• Represent general relationships that map one

model element to another

• Different types of allocation may be defined

– Behavioral (i.e., function to component)

– Structural (i.e., logical to physical)

– Software to Hardware

– ….

• Different ways for specifying allocation are

possible in SysML

• Both graphical and tabular representations are

possible

Allocation using Activity diagrams

• Explicit by swimlanes

Allocation: types and expressions

Allocation using IBD and BDD

• In SysML, «allocation» on an ibd and bdd can be used

to deploy software/data to hardware

Allocation: table definition

• Allocating logical components to HW/SW/Data

Available diagrams

SysML Diagram

Structure

Diagram
Behavior

Diagram
Requirement

Diagram

Activity

Diagrams

Sequence

Diagram

State

Diagram

Use case

Diagram

Package

Diagram
Internal Block

Diagram
Block Definition

Diagram

Parametric

Diagram

Requirements

• The «requirement» stereotype represents a text
based requirement
– Includes the definition of an id and text properties

• A requirement can have user-defined properties
such as verification method(s)

• The user can define
– a classification of requirements categories (e.g.,

functional, interface, performance)

– A requirements hierarchy describing requirements
contained in a specification

• Requirements relationships include DeriveReqt,
Satisfy, Verify, Refine, Trace, Copy

Requirements structure

Requirements structure

Tool

• Intro to Papyrus

