
Code Generation (ModelToText o M2T) with

Acceleo

Based on the OBEO manuals
available on the web
http://www.acceleo.org/

Index

Overview

• Set up an acceleo project

• The selection of metamodel, source model and

target directory

• The Acceleo template language

• An example

Overview

• Acceleo is an Eclipse plugin

• It comes with its own perspective

Step 1: Create a project

• Open the New project Eclipse wizard, and in the Model to
Text Transformation category select Acceleo Project.

• On the next page, enter the project name. You can then click

Finish or create one or several initial module files:

Step 1: Create a project

• Open the New project Eclipse wizard, and in the Model to
Text Transformation category select Acceleo Project.

• On the next page, enter the project name. You can then click

Finish or create one or several initial module files:

In the Module information

section, you can specify the

location and name of the new

.mtl file to create.

Step 1: Create a project

• Open the New project Eclipse wizard, and in the Model to
Text Transformation category select Acceleo Project.

• On the next page, enter the project name. You can then click

Finish or create one or several initial module files:

you can also initialize the

contents of the new module

file with either a fixed

example file (Copy example

content), or an existing

Acceleo or Xpand template

Step 1: Create a project

• Open the New project Eclipse wizard, and in the Model to
Text Transformation category select Acceleo Project.

• On the next page, enter the project name. You can then click

Finish or create one or several initial module files:

The Metamodel information

section allows you to specify

the input metamodel of your

new module file, either from

the list of registered

metamodels or

directly by URI.

Possible options: http://www.topcased.org/2.0/sysML (sysML)

http://www.eclipse.org/uml2/3.0.0/UML (UML 2.0)

http://www.eclipse.org/emf/2002/Ecore (Ecore)

Step 1: Create a project

• The Acceleo project is created as an eclipse plugin!

• The wizard creates its own tree with a default template

(generate.mtl) in the Acceleo template language

Step 2: Editing the templates

• Acceleo comes with its own editor with several features …
– Syntax highlighting

– Content assistant (ctrl + space)

– Error detection

– Dynamic outline

– Code folding

– Open declaration (either with 'ctrl + left click' or 'F3')

– Search references (ctrl + shift + G)

The template language

• The language is intuitive, as in the first template

module

This is a comment

The template language

• The language is intuitive, as in the first template

module

This is the declaration of the

metamodel to be used for
interpreting the source model

The template language

• The language is intuitive, as in the first template

module

This is the first template rule (there

can be many of them)

The destination file for

the generated code

The text added for the

generated code

The template language

• The language is intuitive, as in the first template

module

The template rule operates on the
e elements of type EClass

The destination file for

the generated code
(name depends on

e.name)

The text (code) to be
produced inside it

The template language

• The acceleo module can be used as an entry point

for text generation if it contains a special comment

This one!
[comment @main /]

Step 3: Running the Acceleo Converter

• Now, selecting Run Configurations, a selection

window appears

You need to select the
input model and the

target directory

Step 4: Debugging an Acceleo Module

• You can select also the debug module

An example (intro to language)

• A simple model with ports and stereotypes

An example (intro to language)

We are using the UML2.0

and sysML metamodels

We are using the UML2.0

and sysML metamodels

An example (intro to language)

The first template: same name as

module, it takes as argument the

model itself

The first template: same name as

module, it takes as argument the

model itself

It is the main templateIt is the main template

An example (intro to language)

A for statement: iteraties over all

the ownedElements of self (the

argument of the template – b).

A for statement: iteraties over all

the ownedElements of self (the

argument of the template – b).

ownedElements is an OCL function – the Acceleo template language
includes OCL functions for referring to the model structure

ownedElements is an OCL function – the Acceleo template language
includes OCL functions for referring to the model structure

p is a generic UML Element (uml::Element refers to the uml metamodel

namespace)

p is a generic UML Element (uml::Element refers to the uml metamodel

namespace)

An example (intro to language)

An if statement: selects over all

the model elements only the

Package elements

An if statement: selects over all

the model elements only the

Package elements

oclIsTypeOf is another OCL functionoclIsTypeOf is another OCL function

Templates, Scripts and Services

• Templates

– Main modules for text generation

– They are polymorphic and can be overridden

– The order of declaration of templates is important: The first
template for which the guard condition is true is executed.

• Query

– Functions that process model elements and extract information,
that is values or Collections. (check boolean conditions)

– They use OCL

– Not polymorphic

• Services

– Advanced processing custom written in Java

Templates

(editor shortcut Ctrl-Space)

• Basic Syntax

[template public TemplateName()]

[/template]

• Additional features

– Overriding

[template public TemplateName() Overrides TemplName]

– Preconditions (guards)

[template public TemplateName() ? (bool_expr)]

– Posttreatments

[template public TemplateName() post(postfun())]

– Variable initialization (possibly more than 1)

[template public TemplateName() {var:type = init;}]

Templates statements

File tags
[file (out_file_uri, append_mode, encoding)] ... [/file]

For loops
[for (iter_var : type | Collection)] ... [/for]

modifiers
before()

separator()

after()

If condition
[if (condition)] ... [/if]

Let (assignment of final variables, value cannot change after init)
[let (var_name = init)] ... [/let]

Comments
[comment] ... [/comment]

Other postprocessing features (indentation)

Post (postprocessing)

[template public name(pars) : post="trim()”]

body

[/template]

• trim() removes the leading and trailing spaces

• indentSpace()

• indentTab()

Query format

[query public|private QueryName(par : type)

: resType = queryBody /]

Example

[query public hasStereotype(e : uml::Element, value

: String) : Boolean =

not e.getAppliedStereotypes()->select(e :

uml::Stereotype | e.name = value)->isEmpty()

/]

Acceleo Operators and OCL functions

Categories

• ContextServices

• ENodeServices

• EObjectServices

• PropertiesServices

• RequestServices

• ResourceServices

• StringServices

• XpathServices

Acceleo Operators and OCL functions

ContextServices

get(keyStr)gets the object referenced by the key

peek gets the object on top of the context stack

pop removes the object on top of the context stack

push puts the object on top of the context stack

put(keyStr) adds the object to the context with the key

Acceleo Operators and OCL functions

ENodeServices

toString cast to string if possible or provides object info

nSort(expr) sorts the objects in a collection

nReverse

nSize size of object

nFirst

nGet(int)

nLast

nContains(ENode)

filter(typeStr) returns the objects of the type indicated

adapt(typeStr) type casting

Acceleo Operators and OCL functions

• Object attributes and operations can be easily found from

the editor

Typing

[b.

(b of type

uml::class)

Acceleo Operators and OCL functions

• Object attributes and operations can be easily found from

the editor

Typing

[b.

(b of type

uml::class)

Acceleo Operators and OCL functions

• Some are OCL functions (OCL is an OMG standard)

Acceleo Operators and OCL functions

• Some are OCL functions (OCL is an OMG standard)

Acceleo Operators and OCL functions

EObjectServices

eAllContents all contents

eAllContents(typeStr) all contents of the

given type

eContents the list of the immediate

children

eContents(typeStr) the list of the immediate

children

of the given type

eContainer() the parent of the object

eClass() the class of the object

eContainer(typeStr) the parent of the

Acceleo Operators and OCL functions

StringServices (examples)

trim

toUpperCase

toLowerCase

toU1Case

substring(int,int)

startsWith(string)

split(string)

matches(regexp)

replaceAll(string, string)

Acceleo Operators and OCL functions

XpathServices (examples)

self current object

child set of all the object children

descendant set of all the object descendants

parent parent node

followingSibling set of all brothers

Acceleo Operators and OCL functions

XpathServices

An example (intro to language)

The for statement iterates over

the elements inside the package

The for statement iterates over

the elements inside the package

generateBlock is the name of another templategenerateBlock is the name of another template

An example (intro to language)

There are two templates with the same
name. Templates are polymorphic

There are two templates with the same
name. Templates are polymorphic

Inside, the generateBlock makes use of the OCL function
hasStereotype and invokes other templates

Inside, the generateBlock makes use of the OCL function

hasStereotype and invokes other templates

This is executed for
generic uml
Elements

This is executed for
generic uml
Elements

This is executed for
sysML Blocks

This is executed for
sysML Blocks

An example (intro to language)

The template generates the .h file for a

special type of block (stereotyped as

SimulinkBlock)

The template generates the .h file for a

special type of block (stereotyped as

SimulinkBlock)

It is a mixture of free text (in black) that is copied “as is” in the file and
template directives (between [])

It is a mixture of free text (in black) that is copied “as is” in the file and

template directives (between [])

Everything inside these
two lines is text with
destination in the given file

Everything inside these
two lines is text with
destination in the given file

An example (intro to language)

The template refers to
attributes of the block
object (its name)

The template refers to
attributes of the block
object (its name)

An example (intro to language)

The template has a for cycle that
iterates over the ports of the block
(calling another template)

The template has a for cycle that
iterates over the ports of the block
(calling another template)

For a flow port an attribute declaration is
generated

For a flow port an attribute declaration is
generated

An example (intro to language)

This is the

generated file

This is the

generated file

