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Simulink model
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Many things...

A network of blocks
Workspace variables

Type declarations (bus objects)
Matlab code (.m)

Possibly external code
Simulator configuration

Code generation configuration



Simulink semantics and flow preservation

« The system is a network L -
of functional blocks b, e L SR
Blocks can be: o= e |
— regular (Dataflow) blocks or [ [~ e
— Stateflow (state machine) e — ﬁﬁﬁﬁ _

blocks. S_—

« Dataflow blocks can be of
type continuous, discrete or triggered

« Discrete blocks are activated at periodic time instants
and process input signals, sampled at periodic time
instants producing a set of periodic output signals and
the state updates.




Simulation flow
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Model is compiled before simulation

— Rates are computed, values/types are
propagated ...

Initialization stage at the beginning of the
simulation

— Init of simulation structure (entrate, uscite,
stati ecc.)

— |Init matrices and variables

Compute next simulation time for variable
rate

Compute outputs at next major time step

Update discrete states at next major time
step

Integration of systems with continuous
state

Terminate and cleanup



Functional representation: SR Simulink modeling

« Simulink system = networks of blocks

S =1b,,b,,....b }

Blocks can be Regular or Stateflow blocks
Regular blocks can be Continuous of Discrete type.
All types operate on (right)continuous type signals.
Blocks may have a state S;or may be stateless.
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Functional representation: SR Simulink modeling

« Continuous-type blocks are defined by a set of differential
equations

» Discrete-type blocks are activated at events e; belonging
to a periodic sequence with 0 offset and period T,

 When a model generates code, continuous blocks must
be implemented by a fixed-step solver, with period Tb

* T, (base period) must be a divisor of any other Tj In the
system
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Functional representation: SR Simulink modeling

* At each e, the block computes its out update and
state update functions, updating the values on its

output signals Snew 0.=f(S.,i,)
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Simulink models (execution order - feedthrough)

Stateflow (or state machine)
blocks react to a set of events
€ derived from signals
(generated at each rising or
falling edge).

As such, events belong to a set
of discrete time bases T,
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Simulink models (execution order - feedthrough)

If two blocks b; and b, are in an input-output relationship
(one of the outputs of b, is the input of b, ), and b, is of type
feedthrough), then

b, abj

In case b, is not of type feedthrough, then the link has a delay,

—1
b, ebj



Semantics options

« Signals are persistent (Simulink)
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e Algebraic loops (causal loops without delays) result in a fixed
point and lack of compositionality



Semantics and Compositionality

« Semantics problem: systems compositions do not behave
according to the semantics of the components

— The problem is typical of SR semantics when there are causal cycles:
existence of a fixed point solution cannot be guaranteed (i.e. the system
may be ill-defined)

— When multirate blocks are in a causal loop the composition is always not

feasible
Algebraic loop
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Simulink models (execution order - feedthrough)

R -y

o;(m) i,(k o, (m+1) 0;(m+2) i (k+1)

May be a problem in a code implementation with (scheduling)
delays
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Simulink models (execution order - feedthrough)

b, — b

i J

Let b.(k) represent the k-th occurrence of bi (belonging to the
set U kT, if a state machine block, or kT; if a standard block),
a sequence of activation times a (k) is associated to b..

n(t) iIs the number of times b, is activated before or at 1.

In case bi —bj , if i(k) is the input of the k-th occurrence of b, ,
then this input is equal to the output of the last occurrence of b,
that is no later than the k-th occurrence of b,

i(k) = 0{(m); where m = n(a;(k))
If the link has a delay , then the previous output value is read,
ij(k) =o,(m-1):



From model to code

« The code generation framework follows the general rule
set of the simulation engine and must produce an
implementation with the same behavior (preserving the
semantics).

« Goal 1: preservation of the synchronous assumption:

« The reaction (the outputs and the next state) of the
system must be computed before the next event in the
system.

« Goal 2: (looser property, equivalent to untimed
simulation), called flow preservation.

« The execution of the system must guarantee

* i{k) = o{m); where m = n{a[k)) (1)



Simulink models (feedthrough)

fumis)
BNy
q fden(s)
Sensed Anti-aliasing ZOHZ
filter3 J_LL |
slowzoh3
1-exp{-WZ deltat1)
z-exp-W2 deltat1)

E\E/E\ Some blocks have

! no state
Most blocks are of type —
feedthrough (output does Dependencies
depend on input) among outputs

This implies a precedence
constraint in the
computation of the block
output functions




Simulink models (SR)
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Simulink models (not feedthrough)
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Example of generated code

rule
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28 f% Model step function */
29  wold Subsystem step (void)
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31 A% Outport: '<Rootx/0Outl' incorporates:
32 * Discretelntegrator: '<31x/Discrete-Time Integrator'
33 wy
34 Subsystem Y.0utl = Subsystem DWork.DiscreteTimelIntegrator DITATE:
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Simulink models (feedthrough)

q
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Simulation of models

Simulation of Multirate models

order all blocks based upon their topological dependencies

The RTW tool (meant for a single processor implementation)
generates a total order based on the partial order imposed by
the feedthrough semantics

In reality, there are many such total orders that satisfy the
dependencies!
» Other choices are possible
» In multiprocessor implementations this can be leveraged to optimize the
implementation
Then, for simulation, virtual time is initialized at zero

The simulator scans the precedence list in order and execute all
the blocks for which the value of the virtual time is an integer
multiple of the period of their inputs

Simulated execution means computing the block output and
then computing the new state



From Models to implementation

e Simulink case

elist

Purpose List simulation methods in the order in which they are executed during a
simulation
Syntax elist m:mid [tid:TID]

elist <ges | s:sid> [mth] [tid:TID]
elist <gcb | sid:bid= [mth] [tid:TID]

Desc ripl’ion elist m:mid lists the methods invoked by the system or nonvirtual subsystem
method corresponding to the method 1d mid (see the where command for
information on method IDs), e.g.,

sldebug @19): elist n:19

RootSystem.Outputs 'vdp' [tid=0] : ——— Calling method
0:0 Integrator.Outputs 'x1' [tid=0]
0:1 Outport.Outputs 'Out1’ [tid=0]
0:2 Integrator.Qutputs 'x2' [tid=0]

P I —

Block id Methad Black Tosk id



From Simulink models to update functions

fnumis) - J_LL - 1-exp{-deltat1/Ts) - J-LL
Stk fden{s) z-exp{-deltat1/Ts)
Pasition Anti-aliasing ZOH1 slowzshi
filtert Stick Filter Anti-Windup
Integrator ActuatorCmd
I .I
friumis) > J_LL > 1-exp{-deltat1/Tal) > J-I—l_ e -
Alpha fden{s) z-expl-deltat1/Tal} n
Sensed Anti-aliasing ZOHZ2 slowzoh2 A y
filter2 Alpha Sensor Filter k
Z
fnumds) = .
L J_LI_ c Saturaticn
3 fden{s) Detection
]
Sensed Anti-aliasing Z0H2 E 8
filter2 J‘LL A A
slowzoh3
1-expl{-W2*deltat1}
z-exp{-W2*deltat1)

Pitch Sensor Filter

)
ActPos
Sensed



From Simulink models to update functions
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z The result is a network of

functions (output/state
update) with a set of
partial orders

Each blockset is
characterized by an
execution rate




Task implementations (of multirate systems)

 In multitask implementations, the run-time execution of
the model is performed by running the code in the
context of a set of threads under the control of a priority-
basedreal-time operating system (RTOS).

« The function-to-task mapping consists of a relation
between a block update function (or a set of them in the
case of an Stateflow block) and a task, and a static
scheduling (execution order) of the function code inside
the task.

« The /th task is denoted as 7.

- M, K, i) indicates that the step (update) function f; of
block b; is executed as the k-th segment of code in the
context of 1.

« Legal task mappings must guarantee the block
execution constraints



Flow preservation

« The implementation of a SR model should preserve its semantics so to
retain the validation and verification results.

f(x,y)
4 T3 o £(4.2) °
A f(p,t)
T=1
‘ C
> —>
T=4 Simulation: zero logical
T 5 execution time and zero logical
— D communication time
2
1 0 T=2
I 4 2 f(4,2) 1 34 2 0
B C D A|B B D
32



From Models to implementation

« Simulink case (single task implementation)

Table 2-3: Permitted Solver Modes for

Real-Time Workshop Embedded Coder Targeted Models

Mode Single-Rate Multi-Rate
SingleTasking  Allowed Allowed
MultiTasking Disallowed Allowed
Auto Allowed Allowed

(defaults to
singleTasking)

(defaults to MultiTasking)




From Models to implementation

« Simulink case (single task implementation)

Real-Time Clock

Interrupt Service

Hardware Routine

Interrupt

Save Context ) )
Program execution using an

+ interrupt service routine (bare-
board, with no real-time operating
Execute Model system). See the grt target for an
* example.

Collect Data

'

Restore Context

Real-Time Clock

Interrupt Service Model Execution

Routi Context
outine Switch Task

semGive Z

Hardware

Interrupt

semTake

¥

Execute Model

Program execution using a real-time *
operating system primitive. See the
Tornado target for an example.

Collect Data




Implementation of models

* Implementation runs in real-time (code implementing the blocks
behavior has finite execution time)

« Generation of code: Singletask implementation

sample time

_________

|

— T=1

Y

T=2

b,

________

time to execute the model code

] T

time overflow

K4

(too short interval)

b,

Y

T=4




From Models to implementation

« Simulink case (single task implementation)

rt_OneStep()

{
Check for interrupt overflow or other error
Enable "rt_OneStep" (timer) interrupt

ModelStep——- Time step combines output, logging, update

Single-rate rt_OneStep is designed to execute model_step
within a single clock period. To enforce this timing

constraint, rt_OneStep maintains and checks a timer
overrun flag.



Model implementation: single task

System base cycle =
time to execute the longest system reaction

A 4 « The implementation can
Lt | use
A1 | — Single task executing at
B the base rate of the
T=1 x D system

— A set of concurrent tasks,
with typically one task for
each execution rate, and
possibly more.

t=4

t= t= 1 t=2 t=3

t=4




From Models to implementation

Multitask implementation

rt_OneStep()

{

Check for base-rate interrupt overflow
Enable "rt_OneStep" interrupt
Determine which rates need to run this time step
ModelStep(tid=0) —--base-rate time step
For i=1:NumTasks ——- iterate over sub-rate tasks
Check for sub-rate interrupt overflow
If (sub-rate task 1 is scheduled)
ModelStep (tid=i) —--sub-rate time step
EndIf
EndFor



Generation of code: multitask mode

« The RTW code generator assigns each block a task identifier (tid)
based on its sample rate.

» The blocks with the fastest sample rates are executed by the task with
the highest priority, the next slowest blocks are executed by a task with
the next lower priority, and so on (Rate Monotonic)

T=4 -

Y

T=2
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Nondeterminism in time and value

« However, this can lead to the violation of the zero-execution time
semantics of the model (without delays) and even to inconsistent
state of the communication buffer in the case of

— low rate (priority) blocks driving high rate (priority) blocks.
— high rate (priority) blocks driving low rate (priority) blocks.

T=2

\i

T=

Y




Model implementation: multi-task

Real-time execution: finite

possible preemption

4
T_1 execution time and
» C —
T=4
T=1 2 D
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Model implementation: multi-task

A 4 Real-time execution: lack
T=1 of time determinism
. C |, (because of preemption)
T=4
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4 2 31 i1 20
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Adding determinism: RT blocks

« Solution: Rate Transition blocks
— added buffer space and added latency/delay

— relax the scheduling problem by allowing to drop the
feedthrough precedence constraint

« The mechanism can only be implemented if the rates of
the blocks are harmonic (one multiple of the other)

— Otherwise, it is possible to make a transition to the gcd of
the blocks’ periods, at the price of additional space and
delay

 RT Blocks are only for intracore communication



RT blocks: High rate/priority to low rate/priority

COST
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guaranteed by proving
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RT blocks: Low rate/priority to high rate/priority

COST
space: 2 additional Low rate/ . H | High rate/
set of variables for priority I [ priority
eaCh ||nk Protected RT
' A [P .
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Limitations in the use of RT blocks (1)
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Tradeoffs and design cycles

« RT blocks are not a functional entity
— but an implementation device
- RT Blocks are only required
— because of the selection of the RM scheduling policy
In slow to fast transitions
— because of the possibility of preemption
In both cases
* |n both cases, time determinism (of communication) is obtained at
the price of additional memory
* In the case of slow to fast transitions, the RT block also adds a
delay equal to the period of the slowest block
— This is only because of the Rate monotonic scheduling
— Added delays decrease the performance of controls



RT blocks: Low rate/priority to high rate/priority

Low rate/ High rate/ low
high priority priority

Against RM and more difficult to

Or... letting the sender have a schedule

priority higher than the receiver

— —
B S T




Consistency issues

Consistency issues in the 1-1 communication between blocks
with different rates may happen:
— When blocks are executed in concurrent tasks (activated at different
rates or by asynchronous events)
— When a reader may preempt a writer while updating the communication
variables (reader with higher priority than writer)
— When the writer can preempt the reader while it is reading the
communication variables (writer with higher priority).
— Necessary condition for data inconsistency is the possibility of
preemption reader—writer or writer—reader

Also, we may want to enforce time determinism (flow preservation)



Consistency issues

b, o\ TT=1

T=2

« Also, a relaxed form of time determinism may be required

— Input coherency: when inputs are coming from multiple blocks, we want
to read inputs produced by instances activated by the same event



Guaranteeing data consistency

« Demonstrate impossibility of preemption between readers and writers

— Appropriate scheduling of blocks into tasks, priority assignment, activation
offsets and using worst-case response time analysis

« Avoid preemption between readers and writers
— Disabling preemption among tasks (blocks) (RES_SCHEDULER in OSEK)

« Allow preemption and protect communication variables

— Protect all the critical sections by
» Disabling interrupts
» Using (immediate) priority ceiling (semaphores/OSEK resources)

— Problem: need to protect each use of a communication variable. Advantage
(does not require extra buffer memory, but only the additional memory of the
protection mechanism)

— Lock-free/Wait-free communication: multiple buffers with protected copy
Instructions:

» Typically w. interrupt disabling or kernel-level code

- Problem: requires additional buffer memory (How much?). Advantafge: itis
possible to cluster the write/read operations at the end/beginning of a task,
with limited change to existing code.

- The best policy may be a mix of all the previous, depending on the
timing contraints of the application and on the communication
configuration.



Demonstrating impossibility of preemption

Assign priorities and offsets and use timing analysis to guarantee
absence of preemption

Input data:

— Mapping of functional blocks into tasks

— Order of functional blocks inside tasks

— Worst-case execution time of blocks (tasks)

— Priorities assigned to tasks

— Task periods

— (relative) Offset in the activation of periodic tasks (o, = minimum offset
between writer and reader activations, O, maximum "offset between the
activations)

Computed data

— Worst case response time of tasks/blocks (considering interferences and
preemptions) R, for the writer R, for the reader

Two cases:
— Periority writer > priority reader
— Priority reader > priority writer



Absence of preemption/High to low priority

« Condition for avoiding preemption writer—reader (no assumptions
about relative rates of reader/writer)

High priority Low priority

i — |




Absence of preemption/Low to high priority

« Condition guaranteeing absence of preemption or reader to writer
(reader—writer)

Low priority High priority

A 4 A 4
w L\ w L\

Both conditions are unlikely in practice '



Absence of preemption/Low to high priority

« These conditions are ultimately used by the Rate Transition block
mechanisms !!

Low High
priority priority

pri=3 pri=4 L/ pri=1 pri=2
T=2 T=2 H T=2 =1 |/

I
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i

Output ,
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X~ update 4% b 4L‘

Output update
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Avoiding preemption

 Disabling preemption

High priority p—— Low priority Low priority —— High priority

A

I [ ] —i.

The response time of the high priority block/task is affected, need to
check real-time properties




Preserving streams

« What buffering mechanisms are needed for the general
case ?
— Event-driven activation
— One-to-many communication
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Preserving streams

« What buffering mechanisms are needed for the general case ?
— Stream preservation (requirement)
— Event-driven activation
— One to many communication

» B
— " A §
* >
The value * C
produced by _
this instance Is read by this J b
' instance

... and needs to be
buffered in between

[N " :
?\N s

0-delay
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Preserving streams

» B
» A A
A S
*
This block _ » D
instance is Th.e entry is . ;
assigned a buffer written at running
entry at the time , time p

of its activation

The entry is used by the reader
at running time

fhohoh b b S h A

This reader

instanceis  "TTTTC > ? =,’l ? B
assigned the [ | -
the e of s ? — 1 ? <
activation

! ! ot oo



Preserving streams

« The time the buffer index is assigned (activation of the block) may
differ significantly from the time when the index is actually used (at
running time) because of scheduling delays

— Support from the OS is needed for assigning indexes at block
activation times

This block .
instance is Theentryis
assigned a buffer written at running

entry at the time. time |,
of its activation ‘

The entry is used by the reader
at running time

Yh b b b bS]

This reader g VB
instanceis  "TTTC > f >|* | $
assigned the -
buffer entry at g ) C
the time of its $ ? ? -
activation ? * ?

O D




Preserving streams

« Many issues

— Defining efficient mechanisms for assigning indexes to the writers and the
readers (if they are executed at kernel level)

— Sizing the communication buffers (given the system characteristics, how
many buffers are needed?)

What buffer
index is available

; It is not necessary to store all
at the time of the

writer activation ? these (6) values, there are at
\ most 3 readers at each time !
Q The entry is used by the reader
\ at running time
[ | R A
151 I | RO | RO | VA | M
This reader B
instanceis  "TTTTTTTC >~ f >|* | $
assigned the -
buffer entry at -7 ~ C
the time of its $ [ ] * 1 -~
activation
! f o t oo




Model implementation: multi-task

» Efficient but issues with data integrity
and time determinism Defined at Defined at

activation time activation time

ij(k)

o(m+1)

read at

0;(m) ij(k) o;(m+1) written at .
run time

run time
1 T 1 -

Q1: How many buffers you need?

to be used (at activation time) and

‘ | g Q2: How do you define the index
you pass to the runtime instance ?

read here ? or here ?
i, = 0;(m) i, = 0(m+1)



Buffer sizing methods

Two main methods

preventing concurrent accesses by computing an upper bound
for the maximum number of buffers that can be used at any
given time by reader tasks. This number depends on the
maximum number of reader instances that can be active at any
time.

Temporal concurrency control. The size of the buffer can be
computed by upper bounding the number of times the writer can
produce new values, while a given data item is considered valid
by at least one reader.



Bounding the maximum number of reader instances

« the size is equal to the maximum number N of reader task instances
that can be active at any time (the number of reader tasks if d<T),
plus two more buffers: one for the latest written data and one for use
by the writer [Chen97] (no additional information is available, and no
delays on the links).

The writer must discover the
available buffer index at runtime

Reader instance 1

[ s o
Reader instance 2 e—»
Reader instance 3 e—»
Reader instance 4 o—
[ e

FreeB

G
0
0

Use

Reader instance i

0 2 -1 0 2

1 0 4 1 4

Reader instance N e—— 2 2 -1 2 2
3 1 =1 3 1

4 0 5 4 5

5 0 7 5 7

A linked list implementation may 6 1 ~1 6 1

trade space for time (O(1) access) ! 0 - ! .



Temporal concurrency control

« Based on the concept of datum lifetime. The writer must not
overwrite a buffer until the datum stored in it is still valid for
some reader.

lifetime: 1,, = O+ max(R) wrter Lses
: = L ——
— 5 reader gets item i
| J _

The writer simply
writes at the next
(modulo N) index

Item | can be reused when
no reader can access it



Combination

A combination of the temporal concurrency control and the
bounded number of readers approaches can be used to obtain a
tighter sizing of the buffer.

Reader tasks are partitioned into two groups: fast and slow
readers. The buffer bound for the fast readers leverages the
lifetime-based bound of temporal concurrency control, and the
size bound for the slow ones leverages information on the
maximum number of reader instances that can be active at any
time. Overall, the space requirements are reduced.



Combination

- Readers of T,,; are sorted by increasing lifetime (I<l,,). The
bound

. L
_:\ BU_:E !'.:"; — T—w

* Applies to readers with lifetime </, (fast readers).
* Once jis chosen, the bound is

Buffer shared — N R
4 TR
among fast o L v Rr. 72
readers N Buw,; = T i Z T T based on the
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j = D..i"'\rrRuri| T the lifetime
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Wait free solution with flow preservation (slight modification to
Chen&Burns protocol)

Data: BUFFER [1.....NB]; NB: Num of buffers 1 ReaderLP_activation();
Data: READINGLP [1.....,n;;,]: ng,: Num of lower priority readers 2 begin
Data: READINGHP [1....nnp]: nipp: Num of higher priority readers 3 constant id; — Each lower priority reader has its unique id,
Data: PREVIOUS, LATEST 4 integer ridx;
1 GetBuf(): 5 READINGLP [id]=0:
2 begin 6 ridx = LATEST;
3 bool InUse [1.....NB]J; 7 CAS(READINGLP [id],0,ridx);
4 for i=1 to NB do InUse [i]=lalse; 8 ridx = READINGLP [id]:
5 InUse[LATEST]=true; 9 end
6 for i=1 10 nyp do 10 ReaderHP_activation();
7 _] = READINGLP [1] 11 begin
8 if j /=0 then InUse [j]=true: 12 constant id; — Each higher priority reader has its unique id:
9 end 13 integer ridx;
10 for i=1 1o np, do 14 READINGHP [id]=0;
11 i = READINGHP [i]; 15 ridx = PREVIOUS:;
12 if j /=0 then InUse [j]=true; 16 CAS(READINGHP [id],0,ridx);
13 end 17 ridk = READINGHP [id];
14 i=1; 18 end
15 while h_:U.s‘c [i] do ++i; RU ntlme part Reader_runtime():
16 return i; i begin
17 end (Iﬂ the task | Read data from BUFFER [ridx];
18 Writer_activation(); end
19 begin COde) . . .
20 integer widx, i; ACt|Vat|On‘t|me part
21 widx = GetBuf{();
» | PREVIOUS = LATEST: (supported by the OS
23 LATEST = widx:
2w | fori=I to np, do CAS(READINGHP [il. 0. PREVIOUS): or hooks)
25 for i=1 to ny, do CAS(READINGLP [i], 0, LATEST);
26 end
27 Writer_runtime();

28
29
30

begin
| Write data into BUFFER [widx ];
end




Multicore adaption of RT block

High rate to low rate communication: with explicit intercore activation
signal and with synchronized activation with offsets

T RT df
‘"B M B O [F _
shared
memory o Activation with jitter, receiver
activation deadline = period
T signal ‘ ‘
J + »
deadline
T RT df
S - N - N IO .
nfg;’f; ol 0 ol Negd fgr tim.e sync?lhronization
0., | | | Activation without jitter
T - | | | | receiver deadline < period
activation | + | + |
deadline

with offset



Multicore adaption of RT block

High rate to low rate communication: with explicit intercore activation
signal and with synchronized activation with offsets
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| - A R -

shared Y *

memory D\\ D\ []

- RTud deadline

B

|
shared : Y

memory D\

- sl

\J

Ka

-
]
\

Y

Y



Model-based design: a functional view

Advantages of model-based design
— Possibility of advance verification of correctness of (control) algorithms

« Possible approaches
1. The model is developed considering the implementation and the
platform limitations
— include from the start considerations about the implementation (tasking
model and HW)
«  PROS (apparent)

— use knowledge about the platform to steer the design towards a feasible solution
(in reality, this is often a trial-and-error manual process)

« CONS (true)
— the model depends on the platform (updates/changes on the platform create
opportunities or more often issues that need to be solved by changing the model)

— Analysis is more difficult, absence of layers makes isolating errors and causes of
errors more difficult
— the process is rarely guided by sound theory (how good is the platform selection
and mapping solution?)
— Added elements (Rate-transition blocks) introduce delays
2. The model is developed as a “pure functional” model according to
a formally defined semantics, irrespective of the possible
implementation

— The model is then refined and matched to a possible implementation
platform. Analysis tools check feasibility of an implementation that
refines the functional semantics and suggest options when no
implementation is feasible (more ...)



Model-based design: a functional view

« Advantages of model-based design starting from a purely functional
model

Possibility of advance verification of correctness of (control) algorithms
Irrespective of implementation
This allows an easier retargeting of the function to a different platform if
and when needed

» The functional design does not depend on the platform
The verification of the functional design can be perfomed by domain
experts (control engineers) without knowledge of SW or HW
implementation issues

« Necessary assets to leverage these advantages ...
— Capability of defining rules for the correct refinement of a functional

model into an implementation model on a given platform

— Capability of supporting design iterations to understand the tradeoffs

and the changes that are required when a given functional model
cannot be refined (mapped) on a given platform



Model-based development flow

* Platform-based design

Reuse of functions on different
architectures

Apbplication Space Functional model
m <:| Independent of Platform

Application
] nstance
FunCtlonal _______________ reflnement
Platform
specificatio .

P Fun_cttmrf]al Mod System platform model
Sy WA RE System <: (possibly the level of the SW
Architecture A;ﬁg'&gﬁ%‘re Stack implementation in tasks and messages)
Platform spa Independent from both and suitable for

exploration evaluation of mapping solutions

Platform
. Instance

Execution architecture model
Architecture Space Independent of Functionality

Reuse of resources to
implement different functions



Platform-dependent modeling: an example

B riwdemo_osek
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PBD and RTOS/platform

SR modeling
— _(Simulink)

Application
instance

Refinement info a set
of concurrent tasks
exchanging messages

Platform API
(OSEK/AUTOSAR)

Dist. system w.
asynchronous
network (CAN)

Dist. system w. time-
triggered network
(FlexRay)

Platform
instance

Single-processor |
w. priority-based

RTOS




Design/Scheduling trade-offs

— " T=4

However ...

 if the communication is fast-to-slow and the slow block completes
before the next instance of the fast writer, the RT block is not required

 if the communication is from slow to fast, it is possible to selectively
preserve the precedence order (giving higher priority to the slow block)
at the expense of schedulability

— Two tasks at the same rate, one high priority, the other low priority
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An approach

Required steps

« Definition of the network of functional blocks with
feedthrough dependencies

 Definition of the
synchronous sets

* Priority assignment
and mapping into
tasks

« Definition of the block
order inside tasks




Conclusions

« Schedulability theory and worst-case timing analysis ...

— From the run-time domain to the design domain (already
happening)

— From the analysis domain to the optimization (synthesis)
domain

— Complemented by sensitivity analysis and uncertainty
evaluation

* However ...
— Typical deadline analysis is not enough!

— Tasks and messages are not the starting point (semantics
preservation issues from functional models to tasking models)

— Worst case analysis needs to be complemented
— Mixed domains (time-triggered / event-triggered)

/1



Q&A

Thank you!




