
Simulink, simulation, code generation and tasks

Marco Di Natale
Associate Professor, Scuola S. Anna - Italy, UTRC Visiting Fellow

Simulink model

Many things…

• A network of blocks

• Workspace variables

• Type declarations (bus objects)

• Matlab code (.m)

• Possibly external code

• Simulator configuration

• Code generation configuration

Simulink semantics and flow preservation

• The system is a network

of functional blocks bj

Blocks can be:

– regular (Dataflow) blocks or

– Stateflow (state machine)
blocks.

• Dataflow blocks can be of
type continuous, discrete or triggered

• Discrete blocks are activated at periodic time instants
and process input signals, sampled at periodic time

instants producing a set of periodic output signals and

the state updates.

Simulation flow

• Model is compiled before simulation

– Rates are computed, values/types are
propagated …

• Initialization stage at the beginning of the

simulation

– Init of simulation structure (entrate, uscite,
stati ecc.)

– Init matrices and variables

• Compute next simulation time for variable

rate

• Compute outputs at next major time step

• Update discrete states at next major time

step

• Integration of systems with continuous

state

• Terminate and cleanup

Functional representation: SR Simulink modeling

• Simulink system = networks of blocks

{ }nbbbS ,...,, 21=

• Blocks can be Regular or Stateflow blocks

• Regular blocks can be Continuous of Discrete type.

• All types operate on (right)continuous type signals.

• Blocks may have a state Sj or may be stateless.

bj
ij,p

ji
oj,p

jo

Functional representation: SR Simulink modeling

• Continuous-type blocks are defined by a set of differential
equations

• Discrete-type blocks are activated at events ej belonging
to a periodic sequence with 0 offset and period Tj

• When a model generates code, continuous blocks must
be implemented by a fixed-step solver, with period Tb

• Tb (base period) must be a divisor of any other Tj in the

system

bj
ij,p

ji
oj,p

jo

je

Functional representation: SR Simulink modeling

• At each ej the block computes its out update and

state update functions, updating the values on its
output signals

bj
ij,p

ji
oj,p

jo

je

),(, jjj

new

j iSfoS =

Simulink models (execution order - feedthrough)

Stateflow (or state machine)
blocks react to a set of events
ej,v, derived from signals
(generated at each rising or
falling edge).
As such, events belong to a set
of discrete time bases kTjv

Simulink models (execution order - feedthrough)

If two blocks bi and bj are in an input-output relationship
(one of the outputs of bi is the input of bj), and bj is of type
feedthrough), then

ji bb
1−

→

In case bj is not of type feedthrough, then the link has a delay,
ji bb →

bi bj

Semantics options

• Signals are persistent (Simulink)

T=3 T=2

4

4 4

5

5

6

6

4

4 ⊥

5

⊥

6

6

• Signals are not persistent

• Algebraic loops (causal loops without delays) result in a fixed

point and lack of compositionality

stutter

Semantics and Compositionality

• Semantics problem: systems compositions do not behave
according to the semantics of the components
– The problem is typical of SR semantics when there are causal cycles:

existence of a fixed point solution cannot be guaranteed (i.e. the system

may be ill-defined)

– When multirate blocks are in a causal loop the composition is always not

feasible

u=4

z=4 4

5

5

6

6
T=3 T=2

Algebraic loop

Absence of causality loop

u=f(x,y) z=g(u)

y=z
4=f(x,4)

AAAA BBBB

AAAA

AAAA

BBBB

Simulink models (execution order - feedthrough)

bi bj

May be a problem in a code implementation with (scheduling)
delays

Simulink models (execution order - feedthrough)

Let bi(k) represent the k-th occurrence of bi (belonging to the
set ∪v kTi,v if a state machine block, or kTi if a standard block),
a sequence of activation times ai(k) is associated to bi.

ni(t) is the number of times bi is activated before or at t.

In case bi →bj , if ij(k) is the input of the k-th occurrence of bj ,

then this input is equal to the output of the last occurrence of bi that is no later than the k-th occurrence of bj

ij(k) = oi(m); wherewherewherewhere m = ni(aj(k))

If the link has a delay , then the previous output value is read,
ij(k) = oi(m - 1):

bi bj

From model to code

• The code generation framework follows the general rule
set of the simulation engine and must produce an

implementation with the same behavior (preserving the
semantics).

• Goal 1: preservation of the synchronous assumption:

• The reaction (the outputs and the next state) of the

system must be computed before the next event in the
system.

• Goal 2: (looser property, equivalent to untimed

simulation), called flow preservation.

• The execution of the system must guarantee

• ij(k) = oi(m); where m = ni(aj(k)) (1)

Simulink models (feedthrough)

Most blocks are of type
feedthrough (output does
depend on input)
This implies a precedence
constraint in the
computation of the block
output functions

Dependencies
among outputs

Some blocks have
no state

Simulink models (SR)

SSSS
IIII OOOO

trigger

SSSS
IIII OOOO

trigger

Output Output Output Output
updateupdateupdateupdate rule

SSSS
IIII OOOO

trigger

State State State State
updateupdateupdateupdate rule

Simulink models (not feedthrough)

Integrator (output does
not depend on input but
only on state)

SSSS
IIII OOOO

trigger

Output Output Output Output
updateupdateupdateupdate rule

SSSS
IIII OOOO

trigger

State State State State
updateupdateupdateupdate rule

Example of generated code

SSSS
IIII OOOO

trigger

Output Output Output Output
updateupdateupdateupdate rule

SSSS
IIII OOOO

trigger

State updateState updateState updateState update
rule

Simulink models (feedthrough)

Most blocks are of type
feedthrough (output does
depend on input)
This implies a precedence
constraint in the
computation of the block
output functions

Dependencies
among outputs

Some blocks have
no state

Simulation of models

• Simulation of Multirate models

– order all blocks based upon their topological dependencies

– The RTW tool (meant for a single processor implementation)
generates a total order based on the partial order imposed by
the feedthrough semantics

– In reality, there are many such total orders that satisfy the
dependencies!

• Other choices are possible

• In multiprocessor implementations this can be leveraged to optimize the

implementation

– Then, for simulation, virtual time is initialized at zero

– The simulator scans the precedence list in order and execute all
the blocks for which the value of the virtual time is an integer
multiple of the period of their inputs

– Simulated execution means computing the block output and
then computing the new state

From Models to implementation

• Simulink case

From Simulink models to update functions

The result is a network of
functions (output/state
update) with a set of
partial orders

Each blockset is
characterized by an
execution rate

From Simulink models to update functions

Task implementations (of multirate systems)

• In multitask implementations, the run-time execution of
the model is performed by running the code in the

context of a set of threads under the control of a priority-

basedreal-time operating system (RTOS).

• The function-to-task mapping consists of a relation

between a block update function (or a set of them in the
case of an Stateflow block) and a task, and a static

scheduling (execution order) of the function code inside
the task.

• The i-th task is denoted as τi.

• M(fj, k, i) indicates that the step (update) function fj of

block bj is executed as the k-th segment of code in the

context of i.

• Legal task mappings must guarantee the block

execution constraints

Flow preservation

• The implementation of a SR model should preserve its semantics so to
retain the validation and verification results.

Simulation: zero logical

execution time and zero logical

communication time

A B

4 2 f(4,2)

D

tv=0 tv=1

C
4 2

A B

3 1

tv=2

A B

2 0

D

T=1

T=2

T=4

B

C

D

4

A

3
2

T=1

2 1
0

f(4,2)

f(p,t)

f(x,y)

From Models to implementation

• Simulink case (single task implementation)

From Models to implementation

• Simulink case (single task implementation)

Implementation of models

• Implementation runs in real-time (code implementing the blocks
behavior has finite execution time)

• Generation of code: Singletask implementation

From Models to implementation

• Simulink case (single task implementation)

rt_OneStep()

{

Check for interrupt overflow or other error

Enable "rt_OneStep" (timer) interrupt

ModelStep-- Time step combines output,logging,update

}

Single-rate rt_OneStep is designed to execute model_step

within a single clock period. To enforce this timing

constraint, rt_OneStep maintains and checks a timer
overrun flag.

Model implementation: single task

t=0 t=1 t=2 t=3 t=4

t=0 t=1 t=2 t=3 t=4

T=1

T=1

T=2

T=4

B

A 4

2

C

D

System base cycle =
time to execute the longest system reaction

• The implementation can
use
– Single task executing at

the base rate of the
system

– A set of concurrent tasks,
with typically one task for
each execution rate, and
possibly more.

From Models to implementation

• Multitask implementation

rt_OneStep()

{

Check for base-rate interrupt overflow

Enable "rt_OneStep" interrupt

Determine which rates need to run this time step

ModelStep(tid=0) --base-rate time step

For i=1:NumTasks -- iterate over sub-rate tasks

Check for sub-rate interrupt overflow

If (sub-rate task i is scheduled)

ModelStep(tid=i) --sub-rate time step

EndIf

EndFor

}

Generation of code: multitask mode

• The RTW code generator assigns each block a task identifier (tid)
based on its sample rate.

• The blocks with the fastest sample rates are executed by the task with
the highest priority, the next slowest blocks are executed by a task with
the next lower priority, and so on (Rate Monotonic)

1 1 12 4 4

Nondeterminism in time and value

• However, this can lead to the violation of the zero-execution time
semantics of the model (without delays) and even to inconsistent
state of the communication buffer in the case of
– low rate (priority) blocks driving high rate (priority) blocks.

– high rate (priority) blocks driving low rate (priority) blocks.

Model implementation: multi-task

Real-time execution: finite

execution time and

possible preemption
T=1

T=1
T=2

T=4

B

A 4

2

C

D

A B

4 2

tr=1

A B

3 1

A B

2 0

D

C

f(4,1)?

tr=0

4 1

tv=2

C

Inconsistent data

Model implementation: multi-task

Real-time execution: lack

of time determinism

(because of preemption)
T=1

T=1

T=2

T=4

B

A 4

2

C

D

A B

4 2

tr=1

A B

3 1

A B

2 0

D

f(3,1)

tr=0 31 tv=2

C

Behavior different from

simulation

Adding determinism: RT blocks

• Solution: Rate Transition blocks

– added buffer space and added latency/delay

– relax the scheduling problem by allowing to drop the

feedthrough precedence constraint

• The mechanism can only be implemented if the rates of
the blocks are harmonic (one multiple of the other)

– Otherwise, it is possible to make a transition to the gcd of

the blocks’ periods, at the price of additional space and

delay

• RT Blocks are only for intracore communication

RT blocks: High rate/priority to low rate/priority

High rate/

priority

Low rate/

priority

pri=1
T=1

pri=1
T=2

pri=2
T=2

COST
space: (possibly) 1
additional set of
variables for each
link
time: overhead of
RT implement.
performance: none

COST
space: (possibly) 1
additional set of
variables for each
link
time: overhead of
RT implement.
performance: none

Output
update
only

Consistency here is
guaranteed by proving
there is no preemption

RT blocks: Low rate/priority to high rate/priority

Low rate/

priority

High rate/

priority

pri=2
T=2

pri=2
T=2

pri=1
T=2

pri=1
T=1

Output
update

State
update

Output
update

RTRTRTRT----equivalentequivalentequivalentequivalent

COST
space: 2 additional
set of variables for
each link
time: overhead of
RT implement.
performance: 1-
unit delay (low rate
period)

COST
space: 2 additional
set of variables for
each link
time: overhead of
RT implement.
performance: 1-
unit delay (low rate
period) Consistency here is guaranteed

by proving there is no preemption

Limitations in the use of RT blocks (1)

Tradeoffs and design cycles

• RT blocks are not a functional entity
– but an implementation device

• RT Blocks are only required
– because of the selection of the RM scheduling policy

in slow to fast transitions

– because of the possibility of preemption

in both cases

• In both cases, time determinism (of communication) is obtained at
the price of additional memory

• In the case of slow to fast transitions, the RT block also adds a
delay equal to the period of the slowest block
– This is only because of the Rate monotonic scheduling

– Added delays decrease the performance of controls

RT blocks: Low rate/priority to high rate/priority

Low rate/

high priority

High rate/ low

priority

OrOrOrOr………… letting the sender have a letting the sender have a letting the sender have a letting the sender have a
priority higher than the receiverpriority higher than the receiverpriority higher than the receiverpriority higher than the receiver

Against RM and more difficult to Against RM and more difficult to Against RM and more difficult to Against RM and more difficult to
scheduleschedulescheduleschedule

Consistency issues

• Consistency issues in the 1-1 communication between blocks
with different rates may happen:

– When blocks are executed in concurrent tasks (activated at different

rates or by asynchronous events)

– When a reader may preempt a writer while updating the communication

variables (reader with higher priority than writer)

– When the writer can preempt the reader while it is reading the

communication variables (writer with higher priority).

– Necessary condition for data inconsistency is the possibility of

preemption reader→writer or writer→reader

• Also, we may want to enforce time determinism (flow preservation)

Consistency issues

• Also, a relaxed form of time determinism may be required

– Input coherency: when inputs are coming from multiple blocks, we want

to read inputs produced by instances activated by the same event

b1

b2

b3

T=2

T=1

Guaranteeing data consistency

• Demonstrate impossibility of preemption between readers and writers
– Appropriate scheduling of blocks into tasks, priority assignment, activation

offsets and using worst-case response time analysis

• Avoid preemption between readers and writers
– Disabling preemption among tasks (blocks) (RES_SCHEDULER in OSEK)

• Allow preemption and protect communication variables
– Protect all the critical sections by

• Disabling interrupts

• Using (immediate) priority ceiling (semaphores/OSEK resources)

– Problem: need to protect each use of a communication variable. Advantage
(does not require extra buffer memory, but only the additional memory of the
protection mechanism)

– Lock-free/Wait-free communication: multiple buffers with protected copy
instructions:

• Typically w. interrupt disabling or kernel-level code

- Problem: requires additional buffer memory (How much?). Advantage: it is
possible to cluster the write/read operations at the end/beginning of a task,
with limited change to existing code.

- The best policy may be a mix of all the previous, depending on the
timing contraints of the application and on the communication
configuration.

Demonstrating impossibility of preemption

• Assign priorities and offsets and use timing analysis to guarantee
absence of preemption

• Input data:
– Mapping of functional blocks into tasks

– Order of functional blocks inside tasks

– Worst-case execution time of blocks (tasks)

– Priorities assigned to tasks

– Task periods

– (relative) Offset in the activation of periodic tasks (owr = minimum offset
between writer and reader activations, Owr maximum offset between the
activations)

• Computed data
– Worst case response time of tasks/blocks (considering interferences and

preemptions) Rr for the writer Rw for the reader

• Two cases:
– Priority writer > priority reader

– Priority reader > priority writer

Absence of preemption/High to low priority

• Condition for avoiding preemption writer→reader (no assumptions
about relative rates of reader/writer)

High priority Low priority

Owr
Tw

Rr

Rr ≤ Tw - Owr
Rr ≤ Tw - Owr

w

r

Absence of preemption/Low to high priority

• Condition guaranteeing absence of preemption or reader to writer
(reader→writer)

Low priority High priority

owr

Rw

owr ≥ Rw
owr ≥ Rw

Both conditions are unlikely in practiceBoth conditions are unlikely in practice

Tr

Rw Owr=owr=0
∧

Rw ≤ Tr

Owr=owr=0
∧

Rw ≤ Tr

r

w

r

w

Absence of preemption/Low to high priority

• These conditions are ultimately used by the Rate Transition block
mechanisms !!

Tr

Rw

Owr=owr=0
∧

Rw ≤ Tr

Owr=owr=0
∧

Rw ≤ Tr

r

w

Low

priority

High
priority

pri=3
T=2

pri=4
T=2

pri=1
T=2

pri=2
T=1

Output update Output update

Avoiding preemption

• Disabling preemption

High priority Low priority

The response time of the high priority block/task is affected, need to
check real-time properties

The response time of the high priority block/task is affected, need to
check real-time properties

Low priority High priority

Preserving streams

• What buffering mechanisms are needed for the general

case ?

– Event-driven activation

– One-to-many communication

A
B

C

D

A

B

C

D

0-delay
behavior

Preserving streams

• What buffering mechanisms are needed for the general case ?

– Stream preservation (requirement)

– Event-driven activation

– One to many communication

A
B

C

D

A

B

C

D

0-delay
behavior

The value
produced by
this instance Is read by this

instance
… and needs to be
buffered in between

Preserving streams

A
B

C

D

A

B

C

D

This block
instance is
assigned a buffer
entry at the time
of its activation

The entry is
written at running
time

This reader
instance is
assigned the
buffer entry at
the time of its
activation

The entry is used by the reader
at running time

Preserving streams

• The time the buffer index is assigned (activation of the block) may
differ significantly from the time when the index is actually used (at
running time) because of scheduling delays

– Support from the OS is needed for assigning indexes at block

activation times

A

B

C

D

This block
instance is
assigned a buffer
entry at the time
of its activation

The entry is
written at running
time

This reader
instance is
assigned the
buffer entry at
the time of its
activation

The entry is used by the reader
at running time

Preserving streams

• Many issues

– Defining efficient mechanisms for assigning indexes to the writers and the

readers (if they are executed at kernel level)

– Sizing the communication buffers (given the system characteristics, how

many buffers are needed?)

A

B

C

D

What buffer
index is available
at the time of the
writer activation ?

This reader
instance is
assigned the
buffer entry at
the time of its
activation

The entry is used by the reader
at running time

It is not necessary to store all

these (6) values, there are at

most 3 readers at each time !

Model implementation: multi-task

• Efficient but issues with data integrity

and time determinism

bi bj
oi(m) ij(k) oi(m+1)

oi(m)
ij(k)

Defined at
activation time

read at
run time

oi(m+1)

Defined at
activation time

written at
run time

Q1:Q1:Q1:Q1: How many buffers you need? How many buffers you need? How many buffers you need? How many buffers you need?
Q2: Q2: Q2: Q2: How do you define the index How do you define the index How do you define the index How do you define the index
to be used (at activation time) and to be used (at activation time) and to be used (at activation time) and to be used (at activation time) and
you pass to the runtime instance ?you pass to the runtime instance ?you pass to the runtime instance ?you pass to the runtime instance ?

Q1:Q1:Q1:Q1: How many buffers you need? How many buffers you need? How many buffers you need? How many buffers you need?
Q2: Q2: Q2: Q2: How do you define the index How do you define the index How do you define the index How do you define the index
to be used (at activation time) and to be used (at activation time) and to be used (at activation time) and to be used (at activation time) and
you pass to the runtime instance ?you pass to the runtime instance ?you pass to the runtime instance ?you pass to the runtime instance ?

read here ?
ik = oi(m)

or here ?
ik = oi(m+1)

Buffer sizing methods

Two main methods

• preventing concurrent accesses by computing an upper bound
for the maximum number of buffers that can be used at any
given time by reader tasks. This number depends on the
maximum number of reader instances that can be active at any
time.

• Temporal concurrency control. The size of the buffer can be
computed by upper bounding the number of times the writer can
produce new values, while a given data item is considered valid
by at least one reader.

Bounding the maximum number of reader instances

• the size is equal to the maximum number N of reader task instances
that can be active at any time (the number of reader tasks if d≤T),
plus two more buffers: one for the latest written data and one for use
by the writer [Chen97] (no additional information is available, and no
delays on the links).

Reader instance 1

Reader instance 3
Reader instance 4

Reader instance N

Reader instance i

Reader instance 2

The writer must discover the
available buffer index at runtime

A linked list implementation may
trade space for time (O(1) access)

Temporal concurrency control

• Based on the concept of datum lifetime. The writer must not
overwrite a buffer until the datum stored in it is still valid for
some reader.

writer uses
index i

reader gets item i

The writer simply
writes at the next
(modulo N) index

Owr

Tw

lifetime lwr = Owr+ max(Rri)

i i+1 i-1

Item I can be reused when
no reader can access it

i

dri

Combination

• A combination of the temporal concurrency control and the
bounded number of readers approaches can be used to obtain a
tighter sizing of the buffer.

• Reader tasks are partitioned into two groups: fast and slow
readers. The buffer bound for the fast readers leverages the
lifetime-based bound of temporal concurrency control, and the
size bound for the slow ones leverages information on the
maximum number of reader instances that can be active at any
time. Overall, the space requirements are reduced.

Combination

• Readers of τwi are sorted by increasing lifetime (li≤li+1). The
bound

• Applies to readers with lifetime ≤ lj (fast readers).
• Once j is chosen, the bound is

Buffer shared
among fast
readers based on the

number of reader
instances inside
the lifetime

Wait free solution with flow preservation (slight modification to
Chen&Burns protocol)

Runtime part
(in the task
code)

Activation-time part
(supported by the OS
or hooks)

High rate to low rate communication: with explicit intercore activation
signal and with synchronized activation with offsets

Multicore adaption of RT block

Activation with jitter, receiver

deadline = period

Need for time synchronization

Activation without jitter

receiver deadline < period

Multicore adaption of RT block

High rate to low rate communication: with explicit intercore activation
signal and with synchronized activation with offsets

Model-based design: a functional view

• Advantages of model-based design
– Possibility of advance verification of correctness of (control) algorithms

• Possible approaches
1. The model is developed considering the implementation and the

platform limitations
– include from the start considerations about the implementation (tasking

model and HW)
• PROS (apparent)

– use knowledge about the platform to steer the design towards a feasible solution
(in reality, this is often a trial-and-error manual process)

• CONS (true)
– the model depends on the platform (updates/changes on the platform create

opportunities or more often issues that need to be solved by changing the model)
– Analysis is more difficult, absence of layers makes isolating errors and causes of

errors more difficult
– the process is rarely guided by sound theory (how good is the platform selection

and mapping solution?)
– Added elements (Rate-transition blocks) introduce delays

2. The model is developed as a “pure functional” model according to
a formally defined semantics, irrespective of the possible
implementation

– The model is then refined and matched to a possible implementation
platform. Analysis tools check feasibility of an implementation that
refines the functional semantics and suggest options when no
implementation is feasible (more …)

Model-based design: a functional view

• Advantages of model-based design starting from a purely functional
model

– Possibility of advance verification of correctness of (control) algorithms

– Irrespective of implementation

– This allows an easier retargeting of the function to a different platform if
and when needed

• The functional design does not depend on the platform

– The verification of the functional design can be perfomed by domain
experts (control engineers) without knowledge of SW or HW
implementation issues

• Necessary assets to leverage these advantages …

– Capability of defining rules for the correct refinement of a functional
model into an implementation model on a given platform

– Capability of supporting design iterations to understand the tradeoffs
and the changes that are required when a given functional model
cannot be refined (mapped) on a given platform

Model-based development flow

• Platform-based design

Architecture Space

Functional
Platform
specification

Architecture
Platform space
exploration

Functional Model
interface

Platform
instance

Architecture
Platform

Application
instance

System
Platform
Stack

Reuse of resources to
implement different functions

Functional model
Independent of Platform

Reuse of functions on different
architectures

Application Space

Execution architecture model
Independent of Functionality

System platform model
(possibly the level of the SW

implementation in tasks and messages)
Independent from both and suitable for

evaluation of mapping solutions

refinement

Platform-dependent modeling: an example

PBD and RTOS/platform

Platform

instance

Application

instance

Platform API
(OSEK/AUTOSAR)

Refinement into a set
of concurrent tasks
exchanging messages

Single-processor
w. priority-based
RTOS

Single-processor
w. priority-based
RTOS

SR modeling
(Simulink)

SR modeling
(Simulink)

Dist. system w.
asynchronous
network (CAN)

Dist. system w.
asynchronous
network (CAN)

Dist. system w. time-
triggered network
(FlexRay)

Dist. system w. time-
triggered network
(FlexRay)

Design/Scheduling trade-offs

However ...

• if the communication is fast-to-slow and the slow block completes
before the next instance of the fast writer, the RT block is not required

• if the communication is from slow to fast, it is possible to selectively
preserve the precedence order (giving higher priority to the slow block)
at the expense of schedulability

– Two tasks at the same rate, one high priority, the other low priority

T=4T=4T=4T=4 T=2T=2T=2T=2

T=4T=4T=4T=4 T=2T=2T=2T=2

T=1T=1T=1T=1 RTRTRTRTRTRTRTRT
RTRTRTRT

No RT, no No RT, no No RT, no No RT, no delaydelaydelaydelay

An approach

Required steps
• Definition of the network of functional blocks with

feedthrough dependencies

F1
t1=1 F2

t2=1
F3

t3=2 F5
t5=1

F9
t1=2 F10

t2=2

F12

t3=1

F11
t11=1

F7

t7=2

F8
t8=2

F4
t4=1• Definition of the

synchronous sets

• Priority assignment
and mapping into
tasks

• Definition of the block
order inside tasks

Type1 RTType2 RT

71

Conclusions

• Schedulability theory and worst-case timing analysis …

– From the run-time domain to the design domain (already
happening)

– From the analysis domain to the optimization (synthesis)

domain

– Complemented by sensitivity analysis and uncertainty

evaluation

• However …

– Typical deadline analysis is not enough!

– Tasks and messages are not the starting point (semantics
preservation issues from functional models to tasking models)

– Worst case analysis needs to be complemented

– Mixed domains (time-triggered / event-triggered)

Q&A

Thank you!

