
Simulink, simulation, code generation and tasks

Marco Di Natale
Associate Professor, Scuola S. Anna - Italy, UTRC Visiting Fellow



Simulink model

Many things…

• A network of blocks

• Workspace variables

• Type declarations (bus objects)

• Matlab code (.m)

• Possibly external code

• Simulator configuration

• Code generation configuration



Simulink semantics and flow preservation

• The system is a network 

of functional blocks bj

Blocks can be: 

– regular (Dataflow) blocks or 

– Stateflow (state machine) 
blocks. 

• Dataflow blocks can be of
type continuous, discrete or triggered

• Discrete blocks are activated at periodic time instants
and process input signals, sampled at periodic time

instants producing a set of periodic output signals and 

the state updates.



Simulation flow

• Model is compiled before simulation

– Rates are computed, values/types are 
propagated …

• Initialization stage at the beginning of the 

simulation

– Init of simulation structure (entrate, uscite, 
stati ecc.)

– Init matrices and variables

• Compute next simulation time for variable

rate

• Compute outputs at next major time step

• Update discrete states at next major time

step

• Integration of systems with continuous

state

• Terminate and cleanup



Functional representation: SR Simulink modeling

• Simulink system = networks of blocks

{ }nbbbS ,...,, 21=

• Blocks can be Regular or Stateflow blocks

• Regular blocks can be Continuous of Discrete type.

• All types operate on (right)continuous type signals.

• Blocks may have a state Sj or may be stateless. 
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Functional representation: SR Simulink modeling

• Continuous-type blocks are defined by a set of differential
equations

• Discrete-type blocks are activated at events ej belonging
to a periodic sequence with 0 offset and period Tj

• When a model generates code, continuous blocks must
be implemented by a fixed-step solver, with period Tb

• Tb (base period) must be a divisor of any other Tj in the 

system
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Functional representation: SR Simulink modeling

• At each ej the block computes its out update and 

state update functions, updating the values on its
output signals
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Simulink models (execution order - feedthrough)

Stateflow (or state machine) 
blocks react to a set of events 
ej,v, derived from signals 
(generated at each rising or 
falling edge).
As such, events belong to a set 
of discrete time bases kTjv



Simulink models (execution order - feedthrough)

If two blocks bi and bj are in an input-output relationship
(one of the outputs of bi is the input of bj ), and bj is of type 
feedthrough), then

ji bb
1−

→

In case bj is not of type feedthrough, then the link has a delay,
ji bb →

bi bj



Semantics options

• Signals are persistent (Simulink)
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• Signals are not persistent

• Algebraic loops (causal loops without delays) result in a fixed

point and lack of compositionality

stutter



Semantics and Compositionality

• Semantics problem: systems compositions  do not behave 
according to the semantics of the components
– The problem is typical of SR semantics when there are causal cycles: 

existence of a fixed point solution cannot be guaranteed (i.e. the system 

may be ill-defined)

– When multirate blocks are in a causal loop the composition is always not 

feasible 
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Simulink models (execution order - feedthrough)

bi bj

May be a problem in a code implementation with (scheduling) 
delays



Simulink models (execution order - feedthrough)

Let bi(k) represent the k-th occurrence of bi (belonging to the 
set ∪v kTi,v if a state machine block, or kTi if a standard block),
a sequence of activation times ai(k) is associated to bi. 

ni(t) is the number of times bi is activated before or at t.

In case bi →bj , if ij(k) is the input of the k-th occurrence of bj , 

then this input is equal to the output of the last occurrence of bi  that is no later than the k-th occurrence of bj

ij(k) = oi(m); wherewherewherewhere m = ni(aj(k))

If the link has a delay , then the previous output value is read,
ij(k) = oi(m - 1):

bi bj



From model to code

• The code generation framework follows the general rule
set of the simulation engine and must produce an

implementation with the same behavior (preserving the 
semantics). 

• Goal 1: preservation of the synchronous assumption:

• The reaction (the outputs and the next state) of the 

system must be computed before the next event in the 
system.

• Goal 2: (looser property, equivalent to untimed

simulation), called flow preservation.

• The execution of the system must guarantee

• ij(k) = oi(m); where m = ni(aj(k)) (1)



Simulink models (feedthrough)

Most blocks are of type 
feedthrough (output does 
depend on input)
This implies a precedence 
constraint in the 
computation of the block 
output functions

Dependencies 
among outputs

Some blocks have 
no state



Simulink models (SR)

SSSS
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trigger
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Output Output Output Output 
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trigger

State State State State 
updateupdateupdateupdate rule



Simulink models (not feedthrough)

Integrator (output does 
not depend on input but 
only on state)

SSSS
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Output Output Output Output 
updateupdateupdateupdate rule
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State State State State 
updateupdateupdateupdate rule



Example of generated code
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State updateState updateState updateState update
rule



Simulink models (feedthrough)

Most blocks are of type 
feedthrough (output does 
depend on input)
This implies a precedence 
constraint in the 
computation of the block 
output functions

Dependencies 
among outputs

Some blocks have 
no state



Simulation of models

• Simulation of Multirate models

– order all blocks based upon their topological dependencies 

– The RTW tool (meant for a single processor implementation) 
generates a total order based on the partial order imposed by 
the feedthrough semantics

– In reality, there are many such total orders that satisfy the 
dependencies!

• Other choices are possible

• In multiprocessor implementations this can be leveraged to optimize the 

implementation 

– Then, for simulation, virtual time is initialized at zero

– The simulator scans the precedence list in order and execute all
the blocks for which the value of the virtual time is an integer
multiple of the period of their inputs

– Simulated execution means computing the block output and 
then computing the new state



From Models to implementation

• Simulink case



From Simulink models to update functions



The result is a network of 
functions (output/state 
update) with a set of 
partial orders

Each blockset is 
characterized by an 
execution rate

From Simulink models to update functions



Task implementations (of multirate systems)

• In multitask implementations, the run-time execution of
the model is performed by running the code in the 

context of a set of threads under the control of a priority-

basedreal-time operating system (RTOS). 

• The function-to-task mapping consists of a relation 

between a block update function (or a set of them in the 
case of an Stateflow block) and a task, and a static

scheduling (execution order) of the function code inside 
the task. 

• The i-th task is denoted as τi.

• M(fj, k, i) indicates that the step (update) function fj of

block bj is executed as the k-th segment of code in the 

context of i.

• Legal task mappings must guarantee the block 

execution constraints



Flow preservation

• The implementation of a SR model should preserve its semantics so to 
retain the validation and verification results. 

Simulation: zero logical

execution time and zero logical

communication time
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From Models to implementation

• Simulink case (single task implementation)



From Models to implementation

• Simulink case (single task implementation)



Implementation of models

• Implementation runs in real-time (code implementing the blocks
behavior has finite execution time)

• Generation of code: Singletask implementation



From Models to implementation

• Simulink case (single task implementation)

rt_OneStep()

{

Check for interrupt overflow or other error

Enable "rt_OneStep" (timer) interrupt

ModelStep-- Time step combines output,logging,update

}

Single-rate rt_OneStep is designed to execute model_step

within a single clock period. To enforce this timing 

constraint, rt_OneStep maintains and checks a timer 
overrun flag.



Model implementation: single task

t=0 t=1 t=2 t=3 t=4

t=0 t=1 t=2 t=3 t=4
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System base cycle = 
time to execute the longest system reaction

• The implementation can 
use 
– Single task executing at 

the base rate of the 
system

– A set of concurrent tasks, 
with typically one task for 
each execution rate, and 
possibly more. 



From Models to implementation

• Multitask implementation

rt_OneStep()

{

Check for base-rate interrupt overflow

Enable "rt_OneStep" interrupt

Determine which rates need to run this time step

ModelStep(tid=0) --base-rate time step

For i=1:NumTasks -- iterate over sub-rate tasks

Check for sub-rate interrupt overflow

If (sub-rate task i is scheduled)

ModelStep(tid=i) --sub-rate time step

EndIf

EndFor

}



Generation of code: multitask mode

• The RTW code generator assigns each block a task identifier (tid) 
based on its sample rate. 

• The blocks with the fastest sample rates are executed by the task with 
the highest priority, the next slowest blocks are executed by a task with 
the next lower priority, and so on (Rate Monotonic)

1 1 12 4 4



Nondeterminism in time and value

• However, this can lead to the violation of the zero-execution time 
semantics of the model (without delays) and even to inconsistent
state of the communication buffer in the case of 
– low rate (priority) blocks driving high rate (priority) blocks.

– high rate (priority) blocks driving low rate (priority) blocks. 



Model implementation: multi-task

Real-time execution: finite 

execution time and 

possible preemption
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Model implementation: multi-task

Real-time execution: lack

of time determinism

(because of preemption)
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Adding determinism: RT blocks

• Solution: Rate Transition blocks

– added buffer space and added latency/delay

– relax the scheduling problem by allowing to drop the 

feedthrough precedence constraint

• The mechanism can only be implemented if the rates of 
the blocks are harmonic (one multiple of the other)

– Otherwise, it is possible to make a transition to the gcd of 

the blocks’ periods, at the price of additional space and 

delay 

• RT  Blocks are only for intracore communication



RT blocks: High rate/priority to low rate/priority

High rate/ 

priority

Low rate/ 

priority

pri=1
T=1

pri=1
T=2

pri=2
T=2

COST
space: (possibly) 1 
additional set of 
variables for each 
link
time: overhead of 
RT implement.
performance: none 

COST
space: (possibly) 1 
additional set of 
variables for each 
link
time: overhead of 
RT implement.
performance: none 

Output 
update 
only

Consistency here is 
guaranteed by proving 
there is no preemption



RT blocks: Low rate/priority to high rate/priority

Low rate/ 

priority

High rate/ 

priority

pri=2
T=2

pri=2
T=2

pri=1
T=2

pri=1
T=1

Output 
update

State 
update

Output 
update

RTRTRTRT----equivalentequivalentequivalentequivalent

COST
space: 2 additional 
set of variables for 
each link
time: overhead of 
RT implement.
performance: 1-
unit delay (low rate 
period) 

COST
space: 2 additional 
set of variables for 
each link
time: overhead of 
RT implement.
performance: 1-
unit delay (low rate 
period) Consistency here is guaranteed 

by proving there is no preemption



Limitations in the use of RT blocks (1)



Tradeoffs and design cycles

• RT blocks are not a functional entity
– but an implementation device

• RT Blocks are only required 
– because of the selection of the RM scheduling policy

in slow to fast transitions

– because of the possibility of preemption

in both cases

• In both cases, time determinism (of communication) is obtained at 
the price of additional memory 

• In the case of slow to fast transitions, the RT block also adds a 
delay equal to the period of the slowest block
– This is only because of the Rate monotonic scheduling

– Added delays decrease the performance of controls 



RT blocks: Low rate/priority to high rate/priority

Low rate/ 

high priority

High rate/ low

priority

OrOrOrOr………… letting the sender have a letting the sender have a letting the sender have a letting the sender have a 
priority higher than the receiverpriority higher than the receiverpriority higher than the receiverpriority higher than the receiver

Against RM and more difficult to Against RM and more difficult to Against RM and more difficult to Against RM and more difficult to 
scheduleschedulescheduleschedule



Consistency issues

• Consistency issues in the 1-1 communication between blocks
with different rates may happen:

– When blocks are executed in concurrent tasks (activated at different

rates or by asynchronous events)

– When a reader may preempt a writer while updating the communication 

variables (reader with higher priority than writer)

– When the writer can preempt the reader while it is reading the 

communication variables (writer with higher priority). 

– Necessary condition for data inconsistency is the possibility of

preemption reader→writer or writer→reader

• Also, we may want to enforce time determinism (flow preservation)



Consistency issues

• Also, a relaxed form of time determinism may be required

– Input coherency: when inputs are coming from multiple blocks, we want

to read inputs produced by instances activated by the same event

b1

b2

b3

T=2

T=1



Guaranteeing data consistency

• Demonstrate impossibility of preemption between readers and writers
– Appropriate scheduling of blocks into tasks, priority assignment, activation 

offsets and using worst-case response time analysis

• Avoid preemption between readers and writers
– Disabling preemption among tasks (blocks) (RES_SCHEDULER in OSEK)

• Allow preemption and protect communication variables
– Protect all the critical sections by

• Disabling interrupts 

• Using (immediate) priority ceiling (semaphores/OSEK resources)

– Problem: need to protect each use of a communication variable. Advantage 
(does not require extra buffer memory, but only the additional memory of the 
protection mechanism)

– Lock-free/Wait-free communication: multiple buffers with protected copy 
instructions:

• Typically w. interrupt disabling or kernel-level code

- Problem: requires additional buffer memory (How much?). Advantage: it is
possible to cluster the write/read operations at the end/beginning of a task, 
with limited change to existing code.

- The best policy may be a mix of all the previous, depending on the 
timing contraints of the application and on the communication 
configuration.



Demonstrating impossibility of preemption

• Assign priorities and offsets and use timing analysis to guarantee 
absence of preemption

• Input data:
– Mapping of functional blocks into tasks

– Order of functional blocks inside tasks

– Worst-case execution time of blocks (tasks)

– Priorities assigned to tasks

– Task periods

– (relative) Offset in the activation of periodic tasks (owr = minimum offset 
between writer and reader activations, Owr maximum offset between the 
activations)

• Computed data
– Worst case response time of tasks/blocks (considering interferences and 

preemptions) Rr for the writer Rw for the reader

• Two cases: 
– Priority writer > priority reader

– Priority reader > priority writer 



Absence of preemption/High to low priority

• Condition for avoiding preemption writer→reader (no assumptions
about relative rates of reader/writer)

High priority Low priority

Owr
Tw

Rr

Rr ≤ Tw - Owr
Rr ≤ Tw - Owr

w

r



Absence of preemption/Low to high priority

• Condition guaranteeing absence of preemption or reader to writer
(reader→writer)

Low priority High priority

owr

Rw

owr ≥ Rw
owr ≥ Rw

Both conditions are unlikely in practiceBoth conditions are unlikely in practice

Tr

Rw Owr=owr=0
∧

Rw ≤ Tr

Owr=owr=0
∧

Rw ≤ Tr

r

w

r

w



Absence of preemption/Low to high priority

• These conditions are ultimately used by the Rate Transition block 
mechanisms !!

Tr

Rw

Owr=owr=0
∧

Rw ≤ Tr

Owr=owr=0
∧

Rw ≤ Tr

r

w

Low 

priority

High 
priority

pri=3
T=2

pri=4
T=2

pri=1
T=2

pri=2
T=1

Output update Output update



Avoiding preemption

• Disabling preemption

High priority Low priority

The response time of the high priority block/task is affected, need to
check real-time properties

The response time of the high priority block/task is affected, need to
check real-time properties

Low priority High priority



Preserving streams

• What buffering mechanisms are needed for the general

case ?

– Event-driven activation

– One-to-many communication

A
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D

0-delay 
behavior



Preserving streams

• What buffering mechanisms are needed for the general case ?

– Stream preservation (requirement)

– Event-driven activation

– One to many communication

A
B

C

D

A

B

C

D

0-delay 
behavior

The value
produced by
this instance Is read by this

instance
… and needs to be 
buffered in between



Preserving streams

A
B

C

D

A

B

C

D

This block 
instance is
assigned a buffer 
entry at the time
of its activation

The entry is
written at running
time

This reader
instance is
assigned the 
buffer entry at 
the time of its
activation

The entry is used by the reader
at running time



Preserving streams

• The time the buffer index is assigned (activation of the block) may
differ significantly from the time when the index is actually used (at 
running time) because of scheduling delays

– Support from the OS is needed for assigning indexes at block 

activation times

A

B

C

D

This block 
instance is
assigned a buffer 
entry at the time
of its activation

The entry is
written at running
time

This reader
instance is
assigned the 
buffer entry at 
the time of its
activation

The entry is used by the reader
at running time



Preserving streams

• Many issues

– Defining efficient mechanisms for assigning indexes to the writers and the 

readers (if they are executed at kernel level)

– Sizing the communication buffers (given the system characteristics, how

many buffers are needed?)

A

B

C

D

What buffer 
index is available
at the time of the 
writer activation ?

This reader
instance is
assigned the 
buffer entry at 
the time of its
activation

The entry is used by the reader
at running time

It is not necessary to store all 

these (6) values, there are at 

most 3 readers at each time !



Model implementation: multi-task

• Efficient but issues with data integrity 

and time determinism

bi bj
oi(m) ij(k) oi(m+1)

oi(m)
ij(k)

Defined at 
activation time

read at 
run time

oi(m+1)

Defined at 
activation time

written at 
run time

Q1:Q1:Q1:Q1: How many buffers you need? How many buffers you need? How many buffers you need? How many buffers you need? 
Q2: Q2: Q2: Q2: How do you define the index How do you define the index How do you define the index How do you define the index 
to be used (at activation time) and to be used (at activation time) and to be used (at activation time) and to be used (at activation time) and 
you pass to the runtime instance ?you pass to the runtime instance ?you pass to the runtime instance ?you pass to the runtime instance ?

Q1:Q1:Q1:Q1: How many buffers you need? How many buffers you need? How many buffers you need? How many buffers you need? 
Q2: Q2: Q2: Q2: How do you define the index How do you define the index How do you define the index How do you define the index 
to be used (at activation time) and to be used (at activation time) and to be used (at activation time) and to be used (at activation time) and 
you pass to the runtime instance ?you pass to the runtime instance ?you pass to the runtime instance ?you pass to the runtime instance ?

read here ? 
ik = oi(m)

or here ? 
ik = oi(m+1)



Buffer sizing methods

Two main methods 

• preventing concurrent accesses by computing an upper bound 
for the maximum number of buffers that can be used at any 
given time by reader tasks. This number depends on the 
maximum number of reader instances that can be active at any 
time. 

• Temporal concurrency control. The size of the buffer can be 
computed by upper bounding the number of times the writer can 
produce new values, while a given data item is considered valid 
by at least one reader.



Bounding the maximum number of reader instances

• the size is equal to the maximum number N of reader task instances 
that can be active at any time (the number of reader tasks if d≤T), 
plus two more buffers: one for the latest written data and one for use 
by the writer [Chen97] (no additional information is available, and no 
delays on the links). 

Reader instance 1

Reader instance 3
Reader instance 4

Reader instance N

Reader instance i

Reader instance 2

The writer must discover the 
available buffer index at runtime

A linked list implementation may 
trade space for time (O(1) access)



Temporal concurrency control

• Based on the concept of datum lifetime. The writer must not 
overwrite a buffer until the datum stored in it is still valid for 
some reader.

writer uses 
index i

reader gets item i

The writer simply 
writes at the next 
(modulo N) index

Owr

Tw

lifetime lwr = Owr+ max(Rri)

i i+1 i-1

Item I can be reused when 
no reader can access it

i

dri



Combination

• A combination of the temporal concurrency control and the 
bounded number of readers approaches can be used to obtain a 
tighter sizing of the buffer. 

• Reader tasks are partitioned into two groups: fast and slow 
readers. The buffer bound for the fast readers leverages the 
lifetime-based bound of temporal concurrency control, and the 
size bound for the slow ones leverages information on the 
maximum number of reader instances that can be active at any 
time. Overall, the space requirements are reduced. 



Combination

• Readers of τwi are sorted by increasing lifetime (li≤li+1). The 
bound

• Applies to readers with lifetime ≤ lj (fast readers).
• Once j is chosen, the bound is

Buffer shared 
among fast 
readers based on the 

number of reader 
instances inside 
the lifetime



Wait free solution with flow preservation (slight modification to 
Chen&Burns protocol)

Runtime part 
(in the task 
code)

Activation-time part 
(supported by the OS 
or hooks)



High rate to low rate communication: with explicit intercore activation 
signal and with synchronized activation with offsets 

Multicore adaption of RT block

Activation with jitter, receiver

deadline = period

Need for time synchronization

Activation without jitter

receiver deadline < period



Multicore adaption of RT block

High rate to low rate communication: with explicit intercore activation 
signal and with synchronized activation with offsets 



Model-based design: a functional view

• Advantages of model-based design
– Possibility of advance verification of correctness of (control) algorithms

• Possible approaches
1. The model is developed considering the implementation and the 

platform limitations
– include from the start considerations about the implementation (tasking

model and HW)
• PROS (apparent) 

– use knowledge about the platform to steer the design towards a feasible solution
(in reality, this is often a trial-and-error manual process)

• CONS (true) 
– the model depends on the platform (updates/changes on the platform create 

opportunities or more often issues that need to be solved by changing the model)
– Analysis is more difficult, absence of layers makes isolating errors and causes of

errors more difficult
– the process is rarely guided by sound theory (how good is the platform selection

and mapping solution?)
– Added elements (Rate-transition blocks) introduce delays

2. The model is developed as a “pure functional” model according to
a formally defined semantics, irrespective of the possible
implementation

– The model is then refined and matched to a possible implementation
platform. Analysis tools check feasibility of an implementation that
refines the functional semantics and suggest options when no 
implementation is feasible (more …)



Model-based design: a functional view

• Advantages of model-based design starting from a purely functional
model

– Possibility of advance verification of correctness of (control) algorithms

– Irrespective of implementation

– This allows an easier retargeting of the function to a different platform if
and when needed

• The functional design does not depend on the platform

– The verification of the functional design can be perfomed by domain 
experts (control engineers) without knowledge of SW or HW 
implementation issues

• Necessary assets to leverage these advantages …

– Capability of defining rules for the correct refinement of a functional
model into an implementation model on a given platform

– Capability of supporting design iterations to understand the tradeoffs
and the changes that are required when a given functional model
cannot be refined (mapped) on a given platform



Model-based development flow

• Platform-based design 

Architecture Space

Functional
Platform
specification

Architecture
Platform space
exploration

Functional Model
interface

Platform
instance

Architecture
Platform

Application
instance

System
Platform
Stack

Reuse of resources to 
implement different functions

Functional model
Independent of Platform

Reuse of functions on different 
architectures

Application Space

Execution architecture model
Independent of Functionality

System platform model
(possibly the level of the SW 

implementation in tasks and messages)
Independent from both and suitable for

evaluation of mapping solutions

refinement



Platform-dependent modeling: an example



PBD and RTOS/platform

Platform

instance

Application

instance

Platform API 
(OSEK/AUTOSAR)

Refinement into a set 
of concurrent tasks 
exchanging messages

Single-processor 
w. priority-based 
RTOS

Single-processor 
w. priority-based 
RTOS

SR modeling 
(Simulink)

SR modeling 
(Simulink)

Dist. system w. 
asynchronous 
network (CAN)

Dist. system w. 
asynchronous 
network (CAN)

Dist. system w. time-
triggered network 
(FlexRay)

Dist. system w. time-
triggered network 
(FlexRay)



Design/Scheduling trade-offs

However ...

• if the communication is fast-to-slow and the slow block  completes 
before the next instance of the fast writer, the RT block is not required

• if the communication is from slow to fast, it is possible to selectively 
preserve the precedence order (giving higher priority to the slow block) 
at the expense of schedulability

– Two tasks at the same rate, one high priority, the other low priority

T=4T=4T=4T=4 T=2T=2T=2T=2

T=4T=4T=4T=4 T=2T=2T=2T=2

T=1T=1T=1T=1 RTRTRTRTRTRTRTRT
RTRTRTRT

No RT, no No RT, no No RT, no No RT, no delaydelaydelaydelay



An approach

Required steps
• Definition of the network of functional blocks with 

feedthrough dependencies

F1
t1=1 F2

t2=1
F3

t3=2 F5
t5=1

F9
t1=2 F10

t2=2

F12

t3=1

F11
t11=1

F7

t7=2

F8
t8=2

F4
t4=1• Definition of the 

synchronous sets 

• Priority assignment 
and mapping into 
tasks

• Definition of the block 
order inside tasks

Type1 RTType2 RT



71

Conclusions

• Schedulability theory and worst-case timing analysis …

– From the run-time domain to the design domain (already 
happening)

– From the analysis domain to the optimization (synthesis) 

domain

– Complemented by sensitivity analysis and uncertainty 

evaluation

• However …

– Typical deadline analysis is not enough!

– Tasks and messages are not the starting point (semantics 
preservation issues from functional models to tasking models)

– Worst case analysis needs to be complemented

– Mixed domains (time-triggered / event-triggered)



Q&A

Thank you!


