Functional testing

Adapted from lessons 2/3 by Mohammad Mousavi —
Eindhoven Univ. Of Technology, available from the
web.

Objectives

Define and use functional (black box) testing
« Nominal testing

« Boundary testing

* Robustness testing

« Equivalence testing

« Decision tables

« Classification trees

Functional testing

* Program is an input from a certain domain to a certain
range

>

iz
o I={i, i,, ... i } with D(i,) being the range of the possible values
of i,
« Impossible (impractical) to check all input/output

combinations (range of system function): Di, x Di, x ... x Di,
— need to choose some

Nominal testing

« For each input we select a value in the range of the
admissible ones

A
l;

O -

%

« ... 0r possibly a set of randomly selected ones ...

* Problem
— Very likely we tried a very small fraction of all the possible inputs
— Can we select the “most meaningful ones”?

Assumptions of boundary testing

e program is an input from a certain domain to a certain
range

domain comprises (product of)
— Independent values

— Continuous (not boolean/discrete) values (ordered, in an interval,
taking all values in the interval)

Rationale: most errors occur at extremes
— (< Instead of <=, counters off by one)

also called: stress testing
technique also applicable to range boundaries

Boundary testing

Choose 4 candidate values for
each input in the range [a, b]:

— at the 2 extremes (a and b), i
— near the 2 extremes !
(predecessor of a and d
successor of b). 5
Choose nominal values for all * oo

other variables.

Single-failure assumption: each

failure is the result of a single bug a
(and a single error)

Assuming n input variables, 4n + 1
test-cases.

> o

Boundary testing: mortgage example

Spec: Write a program that takes three inputs: gender
(boolean), age([18-55]), salary ([0-10000]) and outputs the
total mortgage for one person

Mortgage = salary * factor,
where factor is given by the following table.

Category Male Female
Young (18-35 years) 75 (18-30 years) 70
Middle (36-45 years) 55 (31-40 years) 50

Old (46-55 years) 30 (41-50 years) 35

Boundary testing: mortgage example

Program solution

int mortgage (bool male, 1nt age, 1nt salary)

{
1f (male) then

return ((18 age < 35)? (75 salary) : (31 age
< 40)?(55 salary) : (30 salary))

else // female
return ((18 age < 30)?2 (75 salary) : (31 age
< 40)?(50 salary) : (35 salary));

(12 bugs inside !!)

Boundary testing: mortgage example

Spec: Write a program that takes three inputs: gender (boolean),
age([18-55]), salary ([0-10000]) and outputs the total mortgage for one
person

int mortgage (bool male, int age, int salary)

{
if (male) then

return ((18 age < 35)?(75 salary) : (31 age < 40)7?(55 salary) : (30
salary))

else // female
return ((18 age < 30)7?(75 salary) : (31 age < 40)?(50 salary) : (35

salary));

}

age: extremes: 18, 55(?). near extremes: 19, 54. nominal: 25.
salary: extremes: 0, 10000. near extremes: 1, 9999. nominal: 5000.
male: true, false. nominal: true.

No boundaries: define type-specific boundaries (e.g., 0 and
MAXINT for integers).

Boundary testing: mortgage example

Gender
male
male
male
male
male
male
male
male
male
female

Age
18
19
25
54
55
25
25
25
25
25

Salary
5000
5000
5000
5000
5000
0
1
9999
10000
5000

Output
75*5000
75*5000
75*5000
30*5000
30*5000
75*%0
75*1
75*%*9999
75*%*9999
75*5000

Correct Pass/Fail

75*5000
75*5000
75*5000
30*5000
30*5000
75*0

75*1

75*%9999

75*10000

70*5000

P

9 9 vl

Boundary testing

 Observations

— strange technique for booleans: decision-table-based
technique (yet to come)

— not suitable due to the dependency between age and
gender

— more combinations to be tested: wait for a few slides!
— finer partitioning needed: walit till next session

Robustness BV testing

In addition to the 4 candidates,
choose 2 more candidates just

beyond the extremes i] \
— Predicting the output:
tricky dg

— Suitable for PL’s with

weak typing (testing T
exception handling) c$
Assuming n input variables, oo

on + 1 test-cases.

Robustness BV testing: mortgage example

Gender Age Salary Output Correct Pass/Fail
male 17 5000 30*5000 niet F
male 56 5000 75*5000 too late F
male 25 -1 75*%-1 invalid salary F

male 25 10001 75*10001 75*10000 (?) F

Worst-case BV testing

multiple-fault assumption: a
fault may be the result of a
combination of errors

all combinations of 5 values
for all variables

5" test-cases

i]

de eo—o 32

c b4+ b 23
a Y

Worst-case+ robustness testing

combination of worst
case and robustness BV
Testing

all combinations of 7
values for all variables

/" test-cases

worst-case robustness

gt o,

worst-case

e "
boundary value

d

Combine w. Random ...

combination with
randomly selected

values

3
a b

Special values

using domain knowledge
finding corresponding boundaries for internal variables
iIn combination with the techniques mentioned before

Gender Age Salary Output Correct Pass/Fail
male 18 1 75*1 75*1 P
male 35 1 55*1 75*1 F
male 36 1 55*1 55*1 P
male 45 1 30*1 55*1 F
male 46 1 30*1 30*1 P
male 55 1 30*1 30*1 P
female 18 1 75*1 70*1 F
female 30 1 35*1 70*1 F
female 31 1 50*1 50*1 P
female 40 1 35*1 50*1 F
female 41 1 35*1 35*1 P
female 50 1 35*1 35*1 P

Equivalence classes (weak)

Define equivalence classes
on the domain (range) of
iInput (output) for each
variable: (independent input)

(weak) cover equivalence d

classes for the domain of
each variable: single fault
assumption

how many test-cases are
needed?

— max(n,m) = the minimal number
of tokens in an m x n grid such
that each row and column
contains at leats one token?

also called: (equivalence,
category) partition method

Equivalence classes: mortgage example

Spec: Write a program that takes three inputs: gender (boolean),
age([18-55]), salary ([0-10000]) and outputs the total mortgage for one
person

Mortgage = salary * factor,
where factor is given by the following table.

Category Male Female

Young (18-35 years) 75 (18-30 years) 70
Middle (36-45 years) 55 (31-40 years) 50
Old (46-55 years) 30 (41-50 years) 35

age: [18-30], [31-35], [36-40], [41,45], [46-50], [51-55]
salary: [0-10000]
male: as strange as boundary value! true, false

Equivalence classes: mortgage example

Gender
male
female
male
female
male

female

Age
20
32
38
42
48
52

Salary
1000
1000
1000
1000
1000
1000

Output

75*1000
50*1000
55*1000
35*1000
30*1000
35*5000

Correct Pass/Fail

75*1000
50*1000
50*1000
35*1000
30*1000

too late!

P

hH W WO W W

Equivalence classes (strong)

cover all combinations of
equivalence classes for
the domain of all
variables:

multiple fault assumption
number of test-cases

[1,(S,)

l;

d

A

Equivalence classes: mortgage example

Gender
female
female
female
female
female
female
male
male
male
male
male

male

Age
20
32
38
42
48
52
20
32
38
42
48
52

Salary
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

Output

75*1000
50*1000
50*1000
35*1000
35*1000
35*5000
75*1000
50*1000
55*1000
30*1000
30*1000
30*1000

Correct Pass/Fail

70*1000
50*1000
50*1000
35*1000
35*1000

too late!

75*1000
75*1000
50*1000
55*1000
30*1000
30*1000

F

v W & W 1 W K W W W WO

Weak Robust EC

Includes weak normal;
adds out of range test-
cases for each variable

number of test-cases
(max, |S,]) + 2n

Strong robust EC: mortgage example

Gender
male
female
male

female

Age
17
56
36
36

Salary Output Correct Pass/Fail
1000 30*1000 too young! F

1000 35*1000 too late F

-1 55*%*-1 0 F

10001 50*10001 50*10000 F

Strong Robust EC

Same as strong normal but
also checks for all out of

range combinations i; 4

Number of test-cases .

d
[, (IS +2) o
()

strong robust

\ ()

strong normal S ¢
™ b ®

weak normal

A — B: Test-cases of A
(faults detected by A) is a
subset of those of B.

Weak robust EC: mortgage example

Gender Age Salary Output Correct Pass/Fail
male 17 1000 30*1000 too young! F

female 56 1000 35*1000 too late F

female 17 1000 35*1000 too young! F

male 56 1000 30*1000 too late F

male 36 -1 55*-1 0 F

female 36 10001 50*10001 50*10000 F

Combined with WCT

Techniques can be combined

Es: Robust WCT + Robust EC

X

0090 © o090 0 e
g La igl,
® ° L , @
l01] JII *I
mluu- _-:H_T.m1-.m|m| P
l__.fl ® *_l l.l
- -2 1O
] “ [] “ L] _]
A
L K
e e e e

& I_ll [] Jll 1.
L

Combined with BV
Strong EC + Robust BV

number of test-cases:
[1, 4(]S,| +1), whopping

>100 test-cases for the mortgage
example (it catches all 12 bugs!)

too many for any real-life program
e.g., D vars., each 5 partitions:

8 million test-cases

1 sec. for each test-case:

3 months testing!

vt
-

i

o0® % gpe o eve

i-gei-gi-d

sde o -Ih -li--

i+. ® ede © edo e

S SERE B

b ¢ d x

Problems

* No constraints on the
equivalence classes

* Dependencies among
different variables not
taken into account

* No choice among relevant
classes (e.g., apply worst-
case testing on some and
boundary values on
others)

o0® % gpe o eve

o o Bt

ede o s0e o ede ®

iill ® ede © edo e

SREEE SR BEEE

b ¢ d x

