
Functional testing

Adapted from lessons 2/3 by Mohammad Mousavi –
Eindhoven Univ. Of Technology, available from the

web.

Objectives

Define and use functional (black box) testing

• Nominal testing

• Boundary testing

• Robustness testing

• Equivalence testing

• Decision tables

• Classification trees

Functional testing

• Program is an input from a certain domain to a certain
range

… …
• I={i1, i2, … in} with D(ik) being the range of the possible values

of ik

• impossible (impractical) to check all input/output
combinations (range of system function): Di1 × Di2 × ... × Din

– need to choose some

I O

i1

i2

Nominal testing

• For each input we select a value in the range of the
admissible ones

• ... or possibly a set of randomly selected ones ...

• Problem
– Very likely we tried a very small fraction of all the possible inputs

– Can we select the “most meaningful ones”?

i1

i2

Assumptions of boundary testing

• program is an input from a certain domain to a certain
range

• domain comprises (product of)

– independent values

– Continuous (not boolean/discrete) values (ordered, in an interval,
taking all values in the interval)

• Rationale: most errors occur at extremes

– (< instead of <=, counters off by one)

• also called: stress testing

• technique also applicable to range boundaries

Boundary testing

Choose 4 candidate values for

each input in the range [a, b]:

– at the 2 extremes (a and b),

– near the 2 extremes

(predecessor of a and

successor of b).

Choose nominal values for all

other variables.

Single-failure assumption: each

failure is the result of a single bug
(and a single error)

Assuming n input variables, 4n + 1
test-cases.

i1

i2

a b

c

d

Boundary testing: mortgage example

Spec: Write a program that takes three inputs: gender

(boolean), age([18-55]), salary ([0-10000]) and outputs the
total mortgage for one person

Mortgage = salary * factor,

where factor is given by the following table.

Category Male Female

Young (18-35 years) 75 (18-30 years) 70

Middle (36-45 years) 55 (31-40 years) 50

Old (46-55 years) 30 (41-50 years) 35

Boundary testing: mortgage example

Program solution

int mortgage (bool male, int age, int salary)

{

if (male) then

return ((18 age < 35)?(75 salary) : (31 age

< 40)?(55 salary) : (30 salary))

else // female

return ((18 age < 30)?(75 salary) : (31 age

< 40)?(50 salary) : (35 salary));

}

(12 bugs inside !!)

Boundary testing: mortgage example

Spec: Write a program that takes three inputs: gender (boolean),
age([18-55]), salary ([0-10000]) and outputs the total mortgage for one
person

int mortgage (bool male, int age, int salary)

{

if (male) then

return ((18 age < 35)?(75 salary) : (31 age < 40)?(55 salary) : (30

salary))

else // female

return ((18 age < 30)?(75 salary) : (31 age < 40)?(50 salary) : (35

salary));

}

age: extremes: 18, 55(?). near extremes: 19, 54. nominal: 25.

salary: extremes: 0, 10000. near extremes: 1, 9999. nominal: 5000.

male: true, false. nominal: true.

No boundaries: define type-specific boundaries (e.g., 0 and

MAXINT for integers).

Boundary testing: mortgage example

Gender Age Salary Output Correct Pass/Fail

male 18 5000 75*5000 75*5000 P

male 19 5000 75*5000 75*5000 P

male 25 5000 75*5000 75*5000 P

male 54 5000 30*5000 30*5000 P

male 55 5000 30*5000 30*5000 P

male 25 0 75*0 75*0 P

male 25 1 75*1 75*1 P

male 25 9999 75*9999 75*9999 P

male 25 10000 75*9999 75*10000 P

female 25 5000 75*5000 70*5000 F

Boundary testing

• Observations

– strange technique for booleans: decision-table-based

technique (yet to come)

– not suitable due to the dependency between age and

gender

– more combinations to be tested: wait for a few slides!

– finer partitioning needed: wait till next session

Robustness BV testing

In addition to the 4 candidates,

choose 2 more candidates just
beyond the extremes

– Predicting the output:

tricky

– Suitable for PL’s with

weak typing (testing
exception handling)

Assuming n input variables,
6n + 1 test-cases.

i1

i2

a b

c

d

Robustness BV testing: mortgage example

Gender Age Salary Output Correct Pass/Fail

male 17 5000 30*5000 niet F

male 56 5000 75*5000 too late F

male 25 -1 75*-1 invalid salary F

male 25 10001 75*10001 75*10000(?) F

Worst-case BV testing

multiple-fault assumption: a

fault may be the result of a
combination of errors

all combinations of 5 values

for all variables

5n test-cases

i1

i2

a b

c

d

Worst-case+ robustness testing

combination of worst

case and robustness BV

Testing

all combinations of 7

values for all variables

7n test-cases

i1

i2

a b

c

d

Combine w. Random …

combination with

randomly selected

values
i1

i2

a b

c

d

Special values

using domain knowledge

finding corresponding boundaries for internal variables

in combination with the techniques mentioned before

Gender Age Salary Output Correct Pass/Fail

male 18 1 75*1 75*1 P

male 35 1 55*1 75*1 F

male 36 1 55*1 55*1 P

male 45 1 30*1 55*1 F

male 46 1 30*1 30*1 P

male 55 1 30*1 30*1 P

female 18 1 75*1 70*1 F

female 30 1 35*1 70*1 F

female 31 1 50*1 50*1 P

female 40 1 35*1 50*1 F

female 41 1 35*1 35*1 P

female 50 1 35*1 35*1 P

Equivalence classes (weak)

Define equivalence classes
on the domain (range) of
input (output) for each
variable: (independent input)

(weak) cover equivalence
classes for the domain of
each variable: single fault
assumption

how many test-cases are
needed?

– max(n,m) = the minimal number
of tokens in an m × n grid such
that each row and column
contains at leats one token?

also called: (equivalence,
category) partition method

i1

i2

a b

c

d

Equivalence classes: mortgage example

age: [18-30], [31-35], [36-40], [41,45], [46-50], [51-55]

salary: [0-10000]

male: as strange as boundary value! true, false

Spec: Write a program that takes three inputs: gender (boolean),
age([18-55]), salary ([0-10000]) and outputs the total mortgage for one
person

Mortgage = salary * factor,

where factor is given by the following table.

Category Male Female

Young (18-35 years) 75 (18-30 years) 70

Middle (36-45 years) 55 (31-40 years) 50

Old (46-55 years) 30 (41-50 years) 35

Equivalence classes: mortgage example

Gender Age Salary Output Correct Pass/Fail

male 20 1000 75*1000 75*1000 P

female 32 1000 50*1000 50*1000 P

male 38 1000 55*1000 50*1000 P

female 42 1000 35*1000 35*1000 P

male 48 1000 30*1000 30*1000 P

female 52 1000 35*5000 too late! F

Equivalence classes (strong)

cover all combinations of

equivalence classes for

the domain of all

variables:

multiple fault assumption

number of test-cases

∏
x
(S

x
)

i1

i2

a b

c

d

Equivalence classes: mortgage example

Gender Age Salary Output Correct Pass/Fail

female 20 1000 75*1000 70*1000 F

female 32 1000 50*1000 50*1000 P

female 38 1000 50*1000 50*1000 P

female 42 1000 35*1000 35*1000 P

female 48 1000 35*1000 35*1000 P

female 52 1000 35*5000 too late! F

male 20 1000 75*1000 75*1000 P

male 32 1000 50*1000 75*1000 F

male 38 1000 55*1000 50*1000 P

male 42 1000 30*1000 55*1000 F

male 48 1000 30*1000 30*1000 P

male 52 1000 30*1000 30*1000 P

Weak Robust EC

includes weak normal;

adds out of range test-

cases for each variable

number of test-cases

(maxx |Sx|) + 2n

i1

i2

a b

c

d

Strong robust EC: mortgage example

Gender Age Salary Output Correct Pass/Fail

male 17 1000 30*1000 too young! F

female 56 1000 35*1000 too late F

male 36 -1 55*-1 0 F

female 36 10001 50*10001 50*10000 F

Strong Robust EC

Same as strong normal but

also checks for all out of
range combinations

Number of test-cases

∏x (|Sx| +2)

i1

i2

a b

c

d

Weak robust EC: mortgage example

Gender Age Salary Output Correct Pass/Fail

male 17 1000 30*1000 too young! F

female 56 1000 35*1000 too late F

female 17 1000 35*1000 too young! F

male 56 1000 30*1000 too late F

male 36 -1 55*-1 0 F

female 36 10001 50*10001 50*10000 F

. . .

Combined with WCT

Techniques can be combined

Es: Robust WCT + Robust EC

Combined with BV

Strong EC + Robust BV

number of test-cases:

∏x 4(|Sx| +1), whopping

>100 test-cases for the mortgage
example (it catches all 12 bugs!)

too many for any real-life program

e.g., 5 vars., each 5 partitions:

8 million test-cases
1 sec. for each test-case:

3 months testing!

Problems

• No constraints on the

equivalence classes

• Dependencies among

different variables not

taken into account

• No choice among relevant

classes (e.g., apply worst-

case testing on some and

boundary values on

others)

