

Signal and Systems

L. Palopoli
email:palopoli@dit.unitn.it

Tel. +39 0461883967

Signal and Systems

- Signal and systems are useful models to
- produce
- manipulate
- transmit
- store
relevant information on our reality

Modeling reality

- Modeling: act of representing a system or a subsytem formally
- Models are expressed using a modeling language
- A modeling language comprises
- a set of symbols,
- a set of rules to combine them (syntax)
- A set of rules for interpreting combinations of symbols (semantics)

Relevant aspects to model

Example

Signal

- Mathematical background
- Signals
- Systems

Signals

Bins signal is a function identified by four things

- the name (f, g, sin, cos, sound, ...)
- the domain (a set)
- the range (a set)
- the graph or assignment (for every domain element, a range element)
- Every element in the domain is associated to one and only one element in the range
- If all elements in the range are paired the function is said onto

Example

sin, cos

1 Domain : Reals .
2 Range: $[-1,1]=\{x \in$ Reals $\mid-1 \leq x \leq 1\}$.
3 Graph : for each real x, the real $\sin (x) \in[-1,1]$

Graph

Formally, the graph of a function can be thought of as a set of pairs :

$$
\begin{aligned}
& \{(x, y) \in(\text { Reals } x[-1,1]) \mid y=\sin (x)\} \\
& \quad=\{\ldots,(0,0), \ldots,(\pi / 2,1), \ldots,(\pi, 0), \ldots,(3 \pi / 2,-1), \ldots\} .
\end{aligned}
$$

Graph (continued)

If domain and range of a function are finite, then the graph can be given by a table :

x	y	$f(x, y)=x \wedge y$
true	true	true
true	false	false
false	true	false
false	false	false

Example Voice

Voice: Time \rightarrow Pressure
Domain $=$ Time $=[0,1]$
Range $=$ Pressure $=$ Reals
Impossible to handle for a computer graph(Voice $)=\{$ red points $\} \in$ Time X
Pressure Time

Example Voice - (continued)

DigitizedVoice: DiscreteTime \rightarrow Integer16 Domain $=$ DiscreteTime $=[0,1 / 8000,2 / 8000]$ Range $=$ Integer16 graph $($ DigitizedVoice $)=\{$ red points $\} \in$ DiscreteTime X Integer16

Example Image

Monochromelmage: VertPos X HorPos \rightarrow Intensity Domain = VertPos X HorPos $=[\mathrm{a}, \mathrm{b}] \mathrm{X}[\mathrm{c}, \mathrm{d}]$ Range $=$ Intensity $=[$ IntensityBlack, IntensityWhite] graph(Monochromelmage $=[[x, y]$, Intensity $(x, y)]$

Example Digitised Image

१yo

Closeup
MonochromeDigitisedlmage: DiscreteVertPos X DiscreteHorPos \rightarrow DiscreteIntensity Domain $=$ DiscreteVertPos X DiscreteHorPos $=\{0,1, \ldots .299\} \times\{0,1,2, \ldots, 299\}$
Range $=$ DiscreteIntensity $=\{0,1, \ldots, 256\}$
graph(MonochromeImage $=[[\mathrm{x}, \mathrm{y}]$, DiscreteIntensity $(\mathrm{x}, \mathrm{y})]$

Digitised Colour Image

DigitisedColourImage: DisVertPos X DisHorPos \rightarrow DisIntensity ${ }^{3}$ Domain $=$ DisVertPos \times DisHorPos $=\{0, \ldots, 299\} \times\{0, \ldots, 199\}$
Range $=$ DisIntensity ${ }^{3}=\{0, \ldots, 255\} \times\{0, \ldots, 255\} \times\{0, \ldots, 255\}$
graph(Monochromelmage $=[[x, y],[\operatorname{IntensityR}(x, y)$, Intensity $G(x, y)$, Intensity $B(x, y)]$

Example Sequences

- Sometimes there is no relation whatsoever with Physical time
- Example: Sequence of Events
- \{turn on, start, gear 1, gear 2, gear 1, stop\}
- Sequnces are functions whose domain are the natural

An important concept: function composition

- If $\mathrm{g}: \mathrm{X} \rightarrow \mathrm{Y}, \mathrm{f}: \mathrm{Y} \rightarrow \mathrm{Z}$, then $\mathrm{f} \times \mathrm{g}: \mathrm{X} \rightarrow \mathrm{Z}$ is defined as follows: $[x, z] \in \operatorname{graph}\left(f^{\circ} g\right)$ if and only if there exists $y \in Y$ such that
- $[\mathrm{x}, \mathrm{y}] \in \operatorname{graph}(\mathrm{g})$
$-[y, z] \in \operatorname{graph}(f)$

Example Compressed Image

- Total colours with RGB coding : 256^{3}
- It's a lot, and takes a lot of memory!
- Many compression formats use a colour map (e.g., compuserve GIF)

Space of signals

- For two sets X, Y
$[X \rightarrow Y]=\{\mathrm{f} \mid$ domain $(\mathrm{f})=X$ and range $(\mathrm{f})=Y\}$
- Examples:
- Sounds: [Time \rightarrow Pressure]
- MicSounds: [Time \rightarrow Voltage]
- BitSequences: [Natural $\rightarrow\{0,1\}]$
- Images: [\{0,...,Xres-1\} X \{0,...,Yres-1\} -\{0,..,255\} ${ }^{3}$]
- Movies: [\{0,1/30,2/30,...\} \rightarrow Images]

Ways for defining a signal

- Declarative (denotational) definition
- The signal is identified by expliciting the mathematical relation between the paired elements
- Example:
$\forall t \in$ Time,$s(t)=\sin (\omega t)$

Nays for defining a signal

- Imperative (operational) definition
- The signal is identified by indicating a way to compute the pairwise association
- Examples
- A lookup table
- Computer Procedure:
const double w = double s(double t) \{ return $\sin \left(w^{*} t\right)$;
\}

Physical modeling

$$
f(t)=m a(t)=-k x(t)
$$

- Acceleration's definition:
- Differential equation

$$
\ddot{x}(t)=a(t)
$$

$$
\ddot{x}(t)=-\frac{k}{m} x(t)
$$

Tuning fork

- The solution of the differential equation is the family of signals:

$$
\begin{gathered}
x(t)=A \cos (\omega t+\phi) \\
\text { where } \omega=\sqrt{\frac{k}{m}}
\end{gathered}
$$

- Values for A and ϕ are determined by the initial conditions

Outline

Mathematical background
Signals
Systems

Systems

सnyol

$$
\text { Behaviours }(S)=\{(x, y) \text { s.t. } x \in[D \rightarrow R] \wedge y=S(x)\}
$$

- A system is a function whose domain and range are signal spaces
- A behaviour is an input/output pair
- A system could in principle be specified by listing all of its behaviours but this is utmost impractical
- To specify a system we need:
- a domain (input signals)
- a range (output signals)
- the graph

Memoryless systems

- Previous inputs values are forgotten (do not influence current value)
- Formally, given a domain X and range Y for signals and a function $f: Y \rightarrow Y$, we can define a memoryless system

$$
S:\left[\begin{array}{ll}
X \times & Y
\end{array}\right] \rightarrow[X \times Y]
$$

- by

$$
\forall x \in X \text { and } \forall u \in[X \times Y], \quad(S(u))(x)=f(u(x)) .
$$

- Example:
- consider a continuous time system that operates as follows:

$$
\forall t \in \text { Reals, } y(t)=x^{2}(t)
$$

- according to our definition this is a memoryless system!!

What about this?

$\forall t \in$ Reals, $y(t)=\frac{1}{M} \int_{t-M}^{t} x(\tau) d \tau=\frac{1}{M} \int_{0}^{M} x(t-\tau) d \tau$

- Is this system memoryless?
- No!!, the integral operator uses the past story of $x(t)$

Continuous-time systems

- Consider a class of systems operating on the class of ContSignals.
- ContSignals signals could be
- [Time -> Reals], or [Time -> Complex] where Time $=$ Real or Time $=$ Real
- Frequently continuous time systems are defined by means of differential equations

Example

- Motion of a particle
- the applied force is an input signal

$$
\begin{gathered}
f(t)=m a(t) \\
\forall t \in \text { Real with } t \geq 0, \ddot{x}(t)=\frac{f(t)}{m}
\end{gathered}
$$

- Integrating twice

$$
\begin{gathered}
\dot{x}(t)=\dot{x}(0)+\int_{0}^{t} \frac{f(\tau)}{m} d \tau \\
x(t)=x(0)+\dot{x}(0) t+\int_{0}^{t}\left[\int_{0}^{s} \frac{f(\tau)}{m} d \tau\right] d s
\end{gathered}
$$

- Block representation

- Example evolution:

$$
\begin{gathered}
f(t)=1, x(0)=1, \dot{x}(0)=1 \rightarrow x(t)=1+t+\frac{1}{m} \frac{t^{2}}{2} \\
f(t)=\cos (\omega t), x(0)=0, \dot{x}(0)=0 \rightarrow x(t)=-\frac{1}{m} \frac{\cos (\omega t)-1}{\omega^{2}}
\end{gathered}
$$

Sinusoidal signal
whose amplitude decrease with the frequency

Discrete-time equations

- Consider a class of systems operating on the class of DiscSignals.
- DiscSignals signals could be
- [Time -> Reals], or [Time -> Complex] where Time $=$ Integers, Time $=$ Natural or Time $=$ Natural ${ }_{0}$
- Frequently discrete-time systems are defined by means of difference equations

Example

- Consider a system:
$S:\left[N_{\text {aturals }}^{0}->\right.$ Reals] $->\left[N_{\text {Naturals }}^{0}->\right.$ Reals] where for all $x \in\left[\right.$ Naturals ${ }_{0} \rightarrow$ Reals $], S(x)=y$ is given by:

$$
\forall n \in \operatorname{Integers} y(n)=\frac{x(n)+x(n-1)}{2}
$$

- This operation is a moving average and it can be generalised as follows:

$$
\forall n \in \operatorname{Integers} y(n)=\frac{\sum_{i=0}^{N-1} x(n-i)}{N}
$$

Example - (continued)

- Step responses

- The effect is smoothing variations (very much used in wall street!)

Block diagrams

- Thus far we use block diagrams informally
- They can be defined as a full-fledged visual syntax
- a system is described as an interconnection of other systems, each of which transforms incoming input signals into outgoing output signals
- Advantages against textual specification are compactness and hierarchical composition

Block diagrams - (continued)

$$
\begin{aligned}
& \begin{array}{l}
x \in X \\
X=\left[D_{X} \rightarrow R_{X}\right]
\end{array} \rightarrow \mathrm{S}: \mathrm{X} \quad \begin{array}{l}
y \in Y \\
Y=\left[D_{Y} \rightarrow R_{Y}\right]
\end{array}, ~
\end{aligned}
$$

- Blocks are sytems
- Arrows connecting blocks are labeled by signals
- Connecting a system inputs to some other system's outputs amounts to function composition

Cascade connection

- For the connection to make sense it must hold

$$
\operatorname{Range}\left(\mathrm{S}_{1}\right) \subseteq \operatorname{Domain}\left(\mathrm{S}_{2}\right)
$$

- The function is the composition:

$$
\forall \mathrm{x} \in \mathrm{X}, \mathrm{~S}(\mathrm{x})=\mathrm{S}_{2}\left(\mathrm{~S}_{1}(\mathrm{x})\right)
$$

A more complicated example

- By visual inspection:

$$
\forall(\mathrm{x}, \mathrm{w}) \in \mathrm{X} \times \mathrm{W}, \mathrm{~S}^{\prime}(\mathrm{x}, \mathrm{w})=\mathrm{S}_{2}\left(\mathrm{w}, \mathrm{~S}_{1}(\mathrm{x})\right)
$$

A much more complicated example

$$
S^{\prime}: X \times W \rightarrow \mathrm{Z}
$$

- By visual inspection:
S^{\prime} is at both sides of the expression!!

$$
\forall(x) \in X, S^{\prime}(x)=S_{2}\left(S^{\prime}(x), S_{1}(x)\right)
$$

Fixed point

- The definition above is actually an equation

$$
\begin{aligned}
& \text { set } \mathrm{y}=\mathrm{S}^{\prime}(\mathrm{x}) \\
& \mathrm{y}=\mathrm{S}_{2}\left(\mathrm{y}, \mathrm{~S}_{1}(\mathrm{x})\right)
\end{aligned}
$$

- The solution of the equation y is called a fixed point
- Difficulties
- y is a function
- the fixed point may not exist
- if the fixed point exists it might not be unique

