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Synchrony

• Each state machine in the composition reacts to external 
inputs simultaneously and instantaneously

• Our system react to external stimuli: for this reason they are 
called reactive

• Because our systems react synchronously to external 
inputs they are called synchronous/reactive (SR) 



Series (Cascade) Composition

Here, the output of machine A is the input of machine B.

The two machines react simultaneously (both on step n) 

Each machine has its own input, current state, and output.

The effect of the input xA(n) propagates instantaneously through 
the cascade at each step:  synchrony

We may view the cascade of two machines as a single machine.

(SA, IA, OA, ufA, siA) (SB, IB, OB, ufB, siB) 

A B

M

xA
yA xB yB



Series Composition:  Definition

Define the 5-uple for the composite machine:

States = StatesA x StatesB

initialState = (initialStateA, initialStateB ) 

update( (sA(n), sB(n)), x(n) ) = ( (sA(n+1), sB(n+1)), y(n) ) 

where (sA(n+1), yA(n)) = updateA(sA(n), x(n)) 

and (sB(n+1), y(n)) = updateB(sB(n), yA(n)) 

Inputs = InputsA

Outputs = OutputsB

(SA, IA, OA, ufA, siA) (SB, IB, OB, ufB, siB) 

A B

M

xA
yA xB yB





Series Composition:  Interconnection

Note that the “internal” output yA(n) is used as the “internal” input 
xB(n) to machine B.  

Thus, for the cascade connection to be valid, we must have

OutputsA ⊂⊂⊂⊂ InputsB

(SA, IA, OA, ufA, siA) (SB, IB, OB, ufB, siB) 

A B

M

xA
yA xB yB



Series Composition:  Diagram

The state diagram for the series composition is computed 
by the following algorithm:

1. Draw a circle for each state in StatesA x StatesB .

2. For each state, consider each possible input to machine A.

a) Find the corresponding next state in machine A.

b) Find the output of machine A, which forms the input of 
machine B.

c) Find the corresponding next state in machine B.

d) Find the output of machine B.

e) Draw the transition arrow to (sA(n+1), sB(n+1)).  

f) Label the transition arrow with the input to machine A 
and the output from machine B.



Series Composition:  Example1

Consider the cascade of machine A (1-unit delay) with itself 

Find the composite state response and output for input x = 1 
0 0 1. 

Machine A

s = (a, a), (b, a), (a, b), (a, a) , (b, a)

a(0)

1/1

0/1

1/0

0/0

b(1)

Machine A→A

y = 0 0 1 0

aa(00)

1/0

0/1

1/0

0/0

1/1

0/0 ba(10)

ab(01)

bb(11)

1/1

0/1



Series Composition:  Example2

Consider the cascade of machine A and machine B below, 
where the output of machine A is the input of machine B.

Find the composite state response and output for input x = 
1 0 0 . 

Machine A

s = (a, a), (b, a), (a, b), (a, a) 

a b

1/0

0/1

1/0

0/0

Machine B

a b

c 1/1

0/0

1/0

0/0

1/1

0/0

y = 0 0 0



Series Composition:  Diagram

Try drawing a single state diagram for machines A and B in the previous 
example:

a, a a, b a, c

b, a b, b b, c

0/0

1/0

1/0

0/0 0/0

1/0

0/0

1/0

0/1
0/1

1/0

Can we ever get to state (b, c)?

Can we ever get to states (a, c) or (b, b)?

Can we ever get a nonzero output?

1/0



Reachability

On its own, given its entire set of legal inputs, Machine B 
can reach state c and give an output of 1.

But, in cascade, the inputs of Machine B are limited to the 
possible outputs of Machine A.

Machine A cannot generate a sequence of outputs that 
would drive machine B into state c.  This behavior is not 
in BehaviorsA.

a b

a b

c 1/1

0/0

0/0

1/1

0/01/0

0/1

1/0

0/0

Machine A Machine B



Parallel Connection

Machine A

Machine B

yA

yB
xB

xA

M

States = StatesA x StatesB 

initialState = (initialStateA, initialStateB ) 

Output=(yA x yB) Intput=(xA x xB)

update( (sA(n), sB(n)), x(n) ) = ( (sA(n+1), sB(n+1)), (yA(n),yB(n))) 

• where (sA(n+1), yA(n)) = updateA(sA(n), xA(n)) 

• and (sB(n+1), yB(n)) = updateB(sB(n), yB(n)) 



More Complicated Connections

Here, we wish to have access to the individual output yA, 
even when treating the cascade as one big machine.

Sending a signal to more than one destination is called 
forking.

Note also that there is an additional external input into 
machine B.

Machine A

Machine B

yA

yB

xB,INT

xB,EXT

xA





More Complicated Connections

In the composite machine, we can express the input and 
output in the expected way using a set product:

Inputs = InputsA x InputsB,EXT Outputs = OutputsA x OutputsB

The set of inputs or outputs for a particular port (OutputsB, for 
example) is called a port alphabet.  

Machine A

Machine B

yA

yB

xB,INT

xB,EXT

xA Each arrow coming into or 
out of the composite 
machine originates from 
an interconnection point or 
port.  

Here, there are two input 
ports and two output ports.



Hierarchical composition

We can compose A and B and then C, or we can make it in 

the order A (BC) obtaining bisimilar machines (machines 

with the same behavior).

Machine A Machine B
yA yCxBxA

Machine C
yB xC

Machine A Machine B
yCxAB

Machine C
yAB xC

AB



Feedback/Loop composition = Fixed point

f(x) 

f(y) g(x)

Fixed point: x = f(x) 

Fixed point: x = f(y), y = g(x)

Composing y = g(f(y)) x

y

y



Solutions of fixed point formula

x= 0, x= 1

x= {}

x=
1

2

f(x)=x2

f(x)=x2+1

f(x)=-x+1

Problem: the result of the composition is no more a “system”, 

the way we defined it.

The output update is no more a function. It is not guaranteed 

to have a solution.

Examples:

x=x2

x=x2+1

x=-x+1

well-posed

2 solutions: ill-posed

no solutions: ill-posed



• Introduce two fictitious input symbols: react and absent

• Clearly the machine stuttering always works!

• We are interested in non-stuttering FP 

Particular case: sm with no external inputs

Machine A

OutputsA ⊆ InputsA

(s(n+1), y(n)) = UpdateA(s(n), y(n))

y(n) = OutputA(s(n), y(n)) Solving the FP problem
is the key point



Example 1

1 2

{true}/false
{false}/false

{true}/true

{false}/true

All arcs outgoing
from 1 output false

All arcs outgoing
from 1 output true

OutputsA = InputsA = {true, false, absent}

y(n) = outputA(s(n), y(n))



Example 1

1 2

{true}/false
{false}/false

{true}/true

{false}/true

The state determines
the output false = outputA(1, false) 

true = outputA(2, true)

Given the state and the output we
see if there is a fixed point solution



Example  - Equivalent machine

1 2

{true}/false
{false}/false

{true}/true

{false}/true

{react, react, react, react, … } → {false, true, false, true, …}

{react, absent} {true, false, 
absent}

false = outputA(1, false) 

true = outputA(2, true)



Example 2 

1 2

{true}/false
{false}/false

{true}/false

{false}/true

There is no fp
solution for state 2

false = outputA(1, false) 

y = outputA(2, y)



Example 3 

1 2

{true}/false
{false}/false

{true}/true

{false}/false

There are two fp
solutions for state 2

false = outputA(1, false) 

y = outputA(2, y)



Sufficient condition for well-formedness

• Feedback composition is well formed if for each loop there 
is at least one FSM (A) for which the output is state-
determined (all arcs outgoing from a state have the same 
output):

∀reachable sA(n), ∀ x(n)≠absent, updateA(sA(n), x(n))=b

A

M1

M2

M3

b
y1,S1=uf(b,S1)

y2,S2=uf(y1,S2)

y3,S3=uf(y2,S3)

b,SA=uf(y3,SA)



State-determined outputs

• Feedback composition is well formed if the output is state-
determined (all arcs outgoing from a state have the same 
output):

∀reachable s(n), ∀ x(n)≠absent, updateA(s(n), x(n))=b

• In this case the composition is defined as follows: 

states statesA

Inputs react , absent

Outputs OutputsA

initialState intialStateA

update s n , x n
updateA s n ,b where b output A s n , x n if x n react

s n , x n if x n absent



Example

• State-determined outputs ensure well-formedness also in 
more complex situations

1 2

{true}/false
{false}/false

{true}/true

{false}/true

1 2

{true}/false
{false}/false

{true}/false

{false}/true

{react, 
absent}

{true, false, 
absent}

Machine 1 is
state-determined



Example - (continued) 

• Suppose both machines are in their initial states

– The first emits false, which is propagated by the second: 

• Both go to 2

1 2

{true}/false

{false}/false

{true}/true

{false}/true

1 2

{true}/false

{false}/false

{true}/false

{false}/true

{react, 

absent}

{true, false, 

absent}

1,1
2,2

react/false



Example - (continued) 

• Now, suppose both are in 2:

– The top one emits true and the bottom one emits false

• The top 1 remains in 2 and the bottom one goes to 1

1 2

{true}/false

{false}/false

{true}/true

{false}/true

1 2

{true}/false

{false}/false

{true}/false

{false}/true

{react, 

absent}

{true, false, 

absent}

1,1
2,2

react/false

2,1

react/true



Example - (continued) 

• Now, suppose top machine is in 2 and the bottom be in 1:

– The top one emits true and the bottom one emits false

• The top 1 remains in 2 and the bottom one remains in 1

1 2

{true}/false

{false}/false

{true}/true

{false}/true

1 2

{true}/false

{false}/false

{true}/false

{false}/true

{react, 

absent}

{true, false, 

absent}

1,1
2,2

react/false

2,1

react/false

react/true



Example - (continued) 

• state (1,2) is unreachable

1 2

{true}/false

{false}/false

{true}/true

{false}/true

1 2

{true}/false

{false}/false

{true}/false

{false}/true

{react, 

absent}

{true, false, 

absent}

1,1
2,2

react/false

2,1

react/false

react/true

1,2

react/false



Consideration

• State-determined outputs is not a necessary 
condition for well-formedness

• The machine below is not state-determined ouput

1 2

{true}/maybe
{false}/false

{true}/true

{false}/maybe
{react, 
absent}

{true, false, 
maybe, absent}



Consideration

1 2

{true}/maybe
{false}/false

{true}/true

{false}/maybe
{react, 
absent}

{true, false, 
maybe, absent}

false = outputA(1, false) 

true = outputA(2, true)

1 fp solution for each
state



Consideration - (continued) 

Equivalent machine

1 2

{react}/false

{react}/true

{react, 
absent}

{true, false, 
maybe, absent}



Feedback with inputs

• Inputs and outputs can be expressed in product form

(StatesA, InputsA, OutputsA, updateA, initialStateA) 

InputsA2 OutputsA2OutputsA2 ⊂⊂⊂⊂InputsA

InputsA InputsA1 InputsA2

OuptusA OutputsA1 OutputsA2

OutputsA2 InputsA1

output A output A1 , output A2 where

ouput A1: statesA InputsA OuputsA1

ouput A2 : statesA IinputsA OuputsA2



The FP problem

• The fixed problem is to find the unknown 
y=(y1,y2) s.t.

which is equivalent to

x1 and s(n) are known: 

this is the crucial equation!Composition well formed

if there is a unique solution

to this!

output A s n , x1 n , y2 n y1 n , y2 n

output A1 s n , x1 n , y2 n y1 n

output A2 s n , x1 n , y2 n y2 n



The FP problem - (continued) 

• If the  composition is well formed it is described by

States StatesA

Inputs InputsA1

Outputs OutputsA1

initialState initialStateA

update s n , x n nextState s n , x n , output s n , x n

nextState s n , x n nextState A s n , x n , y2 n

output s n , x n output A s n , x n , y 2 n where

y 2 n output A2 s n , x n , y2 n



Constructive Procedure

• The direct construction of a feedback composition is very 
difficult for many state machines

• Constructive procedure:

– Begin with all unspecified signals unknown

– Starting from any machine try to determine as much as possible 
on the outputs

– Update the state machine with the newly acquired knowledge

– Repeat the process until all signals are specified or there is 
nothing new to learn 



Example

• We start assuming unkwnown symbol on the feedback 
loop

• Let's start from state a

a b

{0}/(0,1)
{1}/(1,1)

{1}/(1,0)

{0}/(0,0)
{react, 
absent}

{0,1, absent}

{0,1, absent}



Example - (continued) 

• The output is not state determined, however the second output is
bound to be 1

• The value of the feedback connection is changed from unknown to 1

a b

{0}/(0,1)
{1}/(1,1)

{1}/(1,0)

{0}/(0,0)
{react, 
absent}

{0,1, absent}

{0,1, absent}

?

1

1



Example - (continued) 

• Knowing the presence of 1 on the feedback loop a transition to state 
b is triggered

• We are done evaluating this transition and we move to state b

a b

{0}/(0,1)
{1}/(1,1)

{1}/(1,0)

{0}/(0,0)
{react, 
absent}

{0,1, absent}

{0,1, absent}

?

1

1



Example - (continued) 

• In b the output is not state determined, however the second output is 
bound to be 0

• The value of the feedback connection is changed from unknown to 0 
and the only possible solution is the reaction back in b

a b

{0}/(0,1)
{1}/(1,1)

{1}/(1,0)

{0}/(0,0)
{react, 
absent}

{0,1, absent}

{0,1, absent}

?

0

0



Example

The equivalent machine

a 2

{react}/(1,1)

{react}/(0,0)

{react, 
absent}

{0,1, absent}

{react, react, react, react, … } → {(1,1), (0,0), (0,0), (0,0), …}


