
Controller Area Network

Marco Di Natale

Scuola Superiore S. Anna- Pisa, Italy

CAN bus

Controller Area Network
– Publicly available standard [1]

http://www.semiconductors.bosch.de/pdf/can2spec.pdf

Serial data bus developed by Bosch in the 80s
– Support for broadcast and multicast comm

– Low cost

– Deterministic resolution of the contention

– Priority-based arbitration

– Automotive standard but used also in automation,
factory control, avionics and medical equipment

– Simple, 2 differential (copper) wire connection

– Speed of up to 1Mb/s

– Error detection and signalling

Architecture Model: An example automotive system

All the color lines in

the drawing are

CAN buses!
Fwd EOCM

ECM

SAS

TCM

IMU

BCM

IPC AMP

ONSTAR
GMLAN

EPS
EHPS

SCM

RADIO

(Silver Box)

Map 2 Adas

Brake

ITBC AFL

Rear / Side EOCM
Vehicle Path

Front

Front

Camera

Stg Torque

Overlay

EPS/EHPS

Strg Torq Ctrl

LRR_F

ObjDetect

MRR_LR MRR_RR MRR_LF MRR_RF
MRR_L

SBZA_L

MRR_R

SBZA_R

Service Only

Lane Keeping

PosOverlay

EPS
EHPS

CAN bus

Purpose of this Lesson

– Yet another communication protocol standard ?

– Develop time analysis for real-time messages

– Study the effect on timing of multiple layers (HW and
SW)

– Understand how firmware can affect the time
determinism and spoil the priority assignment

– Understand how device drivers and middleware

layers influence the timing behavior

– Present multiple views for the time analysis (worst-

case, stochastic, simulation-based)

CAN bus

A CAN-based system

Peripheral

HW

System

SW

Appl.

SW

Device

drivers
RTOS

Middleware

Application

Firmware

(MAC layer

implementation)

TX buffers

(TXobjects)

typically 1 to 32

RX buffers

(RXobjects)

typically 1 to 32

CAN bus

CAN standard (MAC protocol)

– Fixed format messages with limited size

– CAN communication does not require node (or

system) configuration information (addresses)

• Flexibility – a node can be added at any time

• Message delivery and routing – the content is identified by an
IDENTIFIER field defining the message content

• Multicast – all messages are received by all nodes that can
filter messages based on their IDs

• Data Consistency – A message is accepted by all nodes or
by no node

CAN bus

Frame types

DATA FRAME

• Carries regular data

REMOTE FRAME

• Used to request the transmission of a DATA FRAME with the
same ID

ERROR FRAME

• Transmitted by any unit detecting a bus error

OVERLOAD FRAME

• Used to force a time interval in between frame transmissions

CAN bus

DATA FRAME

CAN bus

DATA FRAME

Start of frame – 1 dominant bit. A frame can only start when the
bus is IDLE. All stations synchronize to the leading edge of the
SOF bit

Identifier – 11 (or 29 in version 2.0) bits. In order from most
significant to least significant. The 7 most significant bits cannot
be all recessive

RTR – remote transmission request, dominant for REQUEST
frames, recessive for DATA frames

CONTROL – (see figure) maximum data length is 8 (bytes) other
values are not used

CAN bus

DATA FRAME (conitinued)

Data – 0 to 8 bytes of data

CRC – 15 CRC bits plus one CRC delimiter bit (recessive)

ACK – two bits (SLOT + DELIMITER) all stations receiving the
message correctly (CRC check) set the SLOT to dominant (the
transmitter transmits a recessive). The DELIMITER is recessive

END OF FRAME – seven recessive bits

Bit stuffing

any sequence of 5 bits of the same type requires the
addition of an opposite type bit by the TRANSMITTER

(and removal from the receiver)

CAN bus

Some considerations …

1 11+1

29+3
6 0-64 15+1 2 3

SOF Arbitration Control Data CRC ACK EOF

Protocol overhead

(minimum with no stuffing)

64/111 = 0.576 data efficiency (73.4% protocol overhead)

Worst case frame length

34 bits subject to stuffing

64 + (64 + 34)/4 + 47 = 111 + 24 = 135

7

CAN bus

Arbitration

All nodes are synchronized on the SOF bit

The bus behaves as a wired-AND (wired-OR)

An example …

00101011010 01111010010 00111110110

Id = 0x15a Id = 0x3d2 Id = 0x1f6

0 0 0

0

sof

0

0 1 0

0

1 10 1

1 0

1011010

1 0

CAN bus

The type of arbitration implies that the bit time is at least twice the
propagation latency on the bus

This defines a relation between the maximum bus length and the
transmission speed. The available values are

5000 m10 kbit/s

2500 m20 kbit/s

1000 m50 kbit/s

500 m125 kbit/s

250 m250 kbit/s

100 m500 kbit/s

50 m800 kbit/s

25 m1 Mbit/s

Bus lengthBit rate
node A

node B

node A starts
transmitting a bit

node B
overwrites

node A reads the effect
of changes by B

M
in

im
u

m
 b

it
 t

im
e

ti
m

e

CAN bus

Bit time

The bit edge

lies here

Twice the

propagation

delay

Compensate

edge phase

errors

CAN bus

Error and fault containment

There are 5 types of error

BIT ERROR

The sender monitors the bus. If the value found on the bus is
different from the one that is sent, then a BIT ERROR is detected

STUFF ERROR

Detected if 6 consecutive bits of the same type are found

CRC ERROR

Detected by the receiver if the received CRC field does not match
the computed value

FORM ERROR

Detected when a fixed format field contains unexpected values

ACKNOWLEDGEMENT ERROR

Detected by the transmitter if a dominant value is not found in the
ack slot

CAN bus

A station detecting an error transmits an ERROR FLAG.

For BIT, STUFF, FORM, ACKNOWLEDGEMENT errors, it

is sent in the immediately following bit.

For CRC it is sent after the ACK DELIMITER

The ERROR FLAG is part of an ERROR FRAME

CAN bus

An ERROR FRAME is simply the superposition of ERROR
FLAGS from different nodes, plus an ERROR DELIMITER

There are two types of error flags:

An ACTIVE ERROR flag consists of 6 consecutive dominant bits

A PASSIVE ERROR flag consists of 6 consecutive recessive bits

The superposition of all the error flags goes from 6 to 12 bits

The error delimiter consists of 8 recessive bits

CAN bus

Fault containment

Each node can be in 3 states:

Error active

Error passive: limited error signalling and transmission features

Bus off: cannot influence the bus

Each node has two counters:

TRANSMIT ERROR COUNT:

increased – (list) by 8 when the transmitter detects an error …

decreased – by 1 after the successful transmission of a message
(unless it is 0)

RECEIVE ERROR COUNT:

increased – (list) by 1 when the node detects an error, by 8 if it
detects a dominant bit as the first bit after sending an error flag …

decreased – (if between 1 and 127 by 1, if >127 set back to a value
between 119 and 127) after successful reception of a message

CAN bus

Fault containment

Each node can be in 3 states:

Error active

Error passive: limited error signalling and transmission features

Bus off: cannot influence the bus

error

active

error

passive

bus off

TRANSMIT ERROR COUNT ≥≥≥≥ 128 or

RECEIVE ERROR COUNT ≥≥≥≥ 128
TRANSMIT ERROR COUNT ≥≥≥≥ 256

TRANSMIT ERROR COUNT ≤≤≤≤ 127 and

RECEIVE ERROR COUNT ≤≤≤≤ 127

TRANSMIT ERROR COUNT = 0 and

RECEIVE ERROR COUNT = 0 and …

CAN bus

Error detection
Possible problems on the last but one bit [7]

CAN misbehavior is possible because of the different error
detection mechanisms at the transmitter and receiver
sites

A message is valid for the transmitter is there is no error
until the end of the frame

A message is valid for the receiver is there is no error until
the last but one bit of the frame (last bit is do not care)

If the receiver accepts the message, it may have an
inconsistent message duplicate
Use of sequence numbers fixes the duplicate error
…but does not prevent messages from being received in different

orders

If the sender fails before retransmitting there may be an
inconsistent message omission …

CAN bus

Timing Analysis (and inversions) – Ideal behavior

Assumption 1: nodes are not synchronized,

nor any assumption on local clocks is used

by the MW and driver levels

Assumption 2: messages are always

transmitted by nodes based on their priority

(ID) – ideal priority queue of messages

Assumption 3: periodic

messages, but no assumption on

the message phases

CAN bus

Timing Analysis (and inversions) – Ideal behavior

id = 0x103

id = 0x261

id = 0x304

id = 0x122

id = 0x141

id = 0x111

id = 0x202

id = 0x103

id = 0x111

id = 0x141

id = 0x202

id = 0x122

id = 0x261id = 0x304

CAN bus

Timing Analysis – worst case latency – Ideal behavior

id = 0x103

id = 0x261

id = 0x304

id = 0x122

id = 0x141

id = 0x111

id = 0x202

Critical instant theorem: for a preemptive priority based scheduled resource, the

worst case response time of an object occurs when it is released together with

all other higher priority objects and they are released with their highest rate

CAN bus

Timing Analysis – worst case latency – Ideal behavior

id = 0x103

id = 0x261

id = 0x304

id = 0x122

id = 0x141

id = 0x111

id = 0x202

id = 0x261

spend time in local queue
(higher priority messages are transmitted with max rate)

Ii

id = 0x103

id = 0x111

Message
transmission time

Ci

Mi

Message Mi starts its
transmission

id = 0x122
id = 0x141
id = 0x202

CAN bus

Timing Analysis – worst case latency – Ideal behavior [2]

The transmission of a message cannot be preempted

id = 0x261

qi = time spent in local queue

Ii

id = 0x103

id = 0x111

Message
transmission time

Ci

Mi

Message Mi starts its
transmission

id = 0x304

Bi

interference from higher priority messages

blocking from lower priority messages

iii IBq +=

iii Cqw +=

∑
∈

=

)(

,

ihpj

jii II
j

ihpj j

i
ii C

T

q
Bq ∑

∈ 










+=

)(

j

j

i
ji C

T

q
I












=

,
Fixed point formula: solved iteratively by

setting qi(0)=0 until the minimum solution

is found

CAN bus

The worst case response time analysis has been (partly)
refuted and revised in [9]

An example (SAE benchmark) for a 125 kb/s bus [3]

101029

101018

101067

5526

5515

5524

5513

5522

55011

DTSizeMsg

10001000117

10001000116

10001000315

100100114

100100113

100100412

2050111

1010310

DTSizeMsg

9

8.4

7.88

4.28

3.68

3.16

2.56

2.04

1.44

R

38.68

38.68

29.76

29.24

19.8

19.28

18.6

9.68

R

0.60

0.52

0.92

0.60

0.52

0.60

0.52

0.60

0.52

C

0.52

0.52

0.68

0.52

0.52

0.76

0.52

0.68

C

CAN bus

An example (Ci computed for maximum size, bus speed 500 kb/s)

ECU612.5122msg23

ECU120121msg22

ECU110120msg21

ECU430119msg20

ECU120118msg19

ECU525117msg18

ECU120116msg17

ECU325115msg16

ECU325114msg15

ECU225113msg14

ECU212.5112msg13

ECU312.5111msg12

ECU120110msg11

ECU1100109msg10

ECU1100108msg9

ECU4100107msg8

ECU45000106msg7

ECU212.5105msg6

ECU410104msg5

ECU312.5103msg4

ECU26.25102msg3

ECU110101msg2

ECU110100msg1

ECUTiIDMessage

ECU41000145msg46

ECU6500144msg45

ECU3500143msg44

ECU2500142msg43

ECU3500141msg42

ECU3250140msg41

ECU3250139msg40

ECU4250138msg39

ECU3100137msg38

ECU3100136msg37

ECU4100135msg36

ECU3100134msg35

ECU9500133msg34

ECU150132msg33

ECU550131msg32

ECU350130msg31

ECU820129msg30

ECU810128msg29

ECU730127msg28

ECU225126msg27

ECU420125msg26

ECU4100124msg25

ECU312.5123msg24

ECU910168msg69

ECU5100167msg68

ECU150166msg67

ECU150165msg66

ECU41000164msg65

ECU41000163msg64

ECU21000162msg63

ECU91000161msg62

ECU131000160msg61

ECU51000159msg60

ECU121000158msg59

ECU111000157msg58

ECU71000156msg57

ECU101000155msg56

ECU11000154msg55

ECU31000153msg54

ECU41000152msg53

ECU61000151msg52

ECU41000150msg51

ECU910149msg50

ECU41000148msg49

ECU31000147msg48

ECU41000146msg47

CAN bus

In reality, this analysis can give optimistic results!

A number of issues need to be considered …

– Priority enqueuing in the sw layers

– Availability of TxObjects at the adapter

– Possibility of preempting (aborting) a transmission attempt

– Finite copy time between the queue and the TxObjects

– The adapter may not transmit messages in the TxObjects by
priority

But first ….

– Let’s examine the functional and architecture-level models and
the MW, RTOS and driver management policies

CAN bus

Functional and architecture-level models and the MW,
RTOS and driver management policies

Functional blocks

Functional
Model

signals

signal-to-message
mapping

RxTask

Transmission modes (1)

TxObject

TxTask

3

4

9

1

4

9

3

1

Interrupt

interrupt based

TX driver

RxObjects

Receiving node

3

Interrupt

handler latency

1

3

Transmitting node

CAN bus

In reality, this analysis can give optimistic results!

A number of issues need to be considered …

– Priority enqueuing in the sw layers

– …

If the messages are not enqueued by priority, additional
priority inversion may occur. This may happen because of

the way messages are enqueued in the SW layers

(MW/drivers), for example if a FIFO queue is used

CAN bus

In reality, this analysis can give optimistic results!
A number of issues need to be considered …

– …
– Availability of TxObjects at the adapter
– Finite copy time between the queue and the TxObjects

Adapters typically only have a limited number of TXObjects
or RxObjects available

CAN bus

A number of issues need to be considered …

– …

– Availability of TxObjects at the adapter

• Let’s check the controller specifications!

CAN bus

What happens if only one TxObject is available?

– Assuming preempatbility of TxObject

id = 0x103

id = 0x261

id = 0x304

id = 0x122 id = 0x2a1

id = 0x2d2

id = 0x261

id = 0x341

id = 0x122

id = 0x103

preemption

id = 0x261

Priority inversion for =x261

AFTER its queuing time

CAN bus

What happens if two TxObjects are available?

CAN bus

In reality, because of the polling-based management at the
receiving side, designers prefer to use as many Objects as

possible for the porpose of receiving messages and only
one (or a very limited number) for message transmission !

id = 0x103

id = 0x261

id = 0x323

id = 0x143

id = 0x1af

id = 0x263

id = 0x2a3

!!!!

!!!!

CAN bus

In reality, this analysis can give optimistic results!

A number of issues need to be considered …

– …

– Possibility of preempting (aborting) a transmission attempt

And the TxObjects are usually not preempted!

CAN bus

A number of issues need to be considered …

– …

– The adapter may not transmit messages in the TxObjects by
priority

• Let’s check the controller specifications!

!!!!

CAN bus

In this case, especially if coupled with non-preemptability of
TxObjects, the priority order of the queue may be completely
subverted.

– Think of the problems in the implementation of a preemtpive
policy!

id = 0x103

id = 0x261

id = 0x323

id = 0x143

id = 0x1af

id = 0x263

id = 1

id = 2

id = 0x0afid = 3

id = 0x28d

id = 0x2a3

!!!!

!!!!

CAN bus

Finally …

– The driver management policies may be different from what you
would expect …

TxTask

Transmission modes (1)

TxObject

TxTask

3

4

9

1

4

9

3

3

4

9

1

4

9

3

Polling Task

1 1 3

Interrupt

interrupt based

TxObject

polling based

3

Interrupt

handler latency
Polling task

period

CAN bus

Some examples of non-ideal behavior…

Violation of Priority-based Queuing

1.857316 1 110 Rx d 8 00 09 BF 00 00 06 00 00

1.857548 1 120 Rx d 8 03 85 23 83 06 EA 03 85

1.857696 1 170 Rx d 3 01 00 86

1.858256 1 124 Rx d 5 00 03 83 03 85

……

3.877361 1 110 Rx d 8 00 09 C4 00 00 06 00 00

3.877597 1 120 Rx d 8 03 83 23 81 06 EA 03 82

3.877819 1 308 Rx d 7 00 80 2A 00 00 00 AD

3.878309 1 124 Rx d 5 00 03 81 03 83

......

4.017366 1 110 Rx d 8 00 09 C4 00 00 06 00 00

4.017600 1 120 Rx d 8 03 85 23 80 06 EA 03 81

4.017768 1 348 Rx d 4 08 48 43 FF

4.018312 1 124 Rx d 5 00 03 80 03 85

Message nameMessage name

Frame IDFrame ID

ECUECU

Period (ms)Period (ms)

Message 0x170,

0x308, 0x 348

transmitted before

0x124

msg1 110 ECU1 10

msg2 120 ECU1 10

msg3 124 ECU1 10

msg4 170 ECU1 500

msg5 308 ECU1 100

msg6 348 ECU1 250

msg7 410 ECU1 100

msg8 510 ECU1 500

Possible Effect of Interrupt Service

Message nameMessage name

Frame IDFrame ID

ECUECU

Period (ms)Period (ms)

0.222236 1 150 Rx d 8 40 00 09 60 3F FF F6 9F

0.222527 1 380 Rx d 8 09 42 20 00 70 40 FC BF

0.222766 1 151 Rx d 8 00 FF 09 22 00 00 0F 3F

……

0.297743 1 150 Rx d 8 C0 00 09 60 3F FD F6 9D

0.297989 1 410 Rx d 8 00 00 00 96 2B 00 00 00

0.298229 1 151 Rx d 8 00 FF 09 25 00 00 0F 3F

……
0.322497 1 150 Rx d 8 40 00 09 60 3F FF F6 9F

0.322733 1 388 Rx d 8 21 12 68 19 00 00 DC 80

0.322978 1 151 Rx d 8 00 FF 09 21 00 00 0F 3F

Message 0x380,

0x410, 0x 388

transmitted before

0x151

msg1 150 ECU1 12.5

msg2 151 ECU1 12.5

msg3 320 ECU1 100

msg4 520 ECU1 100

A trace with problems ...
t=1503560 Id:0F1 Len:32 Act:1503440 Lat:120 REF
t=1503750 Id:1E1 Len:24 Act:1493440 Lat:10310
t=1504410 Id:0C1 Len:64 Act:1504238 Lat:172 REF
t=1504650 Id:0C5 Len:64 Act:1504238 Lat:412
t=1504900 Id:1C7 Len:56 Act:1504830 Lat:70
t=1505170 Id:1E5 Len:64 Act:1504238 Lat:932
t=1506360 Id:1F1 Len:64 Act:1493440 Lat:12920 REF
t=1507960 Id:0C9 Len:56 Act:1506850 Lat:1110 REF
t=1508190 Id:191 Len:64 Act:1506850 Lat:1340
t=1508910 Id:1F3 Len:16 Act:1493440 Lat:15470 REF
t=1511250 Id:3C9 Len:64 Act:1493440 Lat:17810 REF
t=1512390 Id:524 Len:64 Act:1512280 Lat:110 REF
t=1512570 Id:528 Len:40 Act:1512280 Lat:290
t=1513580 Id:0F1 Len:32 Act:1513440 Lat:140 REF
t=1513780 Id:1F3 Len:16 Act:1513440 Lat:340

4.870

ms

ECU=xxx #Tx=10 #M=15
Id=0F1 EP=10 TP=0 ECU:BCM_hsCAN
Id=120 EP=5000 TP=0 ECU:BCM_hsCAN
Id=12A EP=100 TP=0 ECU:BCM_hsCAN
Id=130 EP=1000 TP=0 ECU:BCM_hsCAN
Id=138 EP=1000 TP=0 ECU:BCM_hsCAN
Id=1E1 EP=30 TP=0 ECU:BCM_hsCAN
Id=1F1 EP=100 TP=0 ECU:BCM_hsCAN
Id=1F3 EP=20 TP=0 ECU:BCM_hsCAN
Id=3C9 EP=100 TP=0 ECU:BCM_hsCAN
Id=3F1 EP=250 TP=0 ECU:BCM_hsCAN
Id=4E1 EP=1000 TP=0 ECU:BCM_hsCAN
Id=4E9 EP=1000 TP=0 ECU:BCM_hsCAN
Id=514 EP=1000 TP=0 ECU:BCM_hsCAN
Id=52A EP=1000 TP=0 ECU:BCM_hsCAN
Id=771 EP=1000 TP=0 ECU:BCM_hsCAN

ECU=xxx #Tx=10 #M=15
Id=0F1 EP=10 TP=0 ECU:BCM_hsCAN
Id=120 EP=5000 TP=0 ECU:BCM_hsCAN
Id=12A EP=100 TP=0 ECU:BCM_hsCAN
Id=130 EP=1000 TP=0 ECU:BCM_hsCAN
Id=138 EP=1000 TP=0 ECU:BCM_hsCAN
Id=1E1 EP=30 TP=0 ECU:BCM_hsCAN
Id=1F1 EP=100 TP=0 ECU:BCM_hsCAN
Id=1F3 EP=20 TP=0 ECU:BCM_hsCAN
Id=3C9 EP=100 TP=0 ECU:BCM_hsCAN
Id=3F1 EP=250 TP=0 ECU:BCM_hsCAN
Id=4E1 EP=1000 TP=0 ECU:BCM_hsCAN
Id=4E9 EP=1000 TP=0 ECU:BCM_hsCAN
Id=514 EP=1000 TP=0 ECU:BCM_hsCAN
Id=52A EP=1000 TP=0 ECU:BCM_hsCAN
Id=771 EP=1000 TP=0 ECU:BCM_hsCAN

A trace with problems ...
t=1493860 Id:0F1 Len:32 Act:1493440 Lat:420
t=1494120 Id:0C5 Len:64 Act:1493620 Lat:500
t=1494350 Id:184 Len:48 Act:1493620 Lat:730
t=1494640 Id:1E5 Len:64 Act:1493620 Lat:1020
t=1494850 Id:0C9 Len:56 Act:1494352 Lat:498
t=1495090 Id:1E9 Len:64 Act:1493620 Lat:1470
t=1495320 Id:191 Len:64 Act:1494352 Lat:968
t=1495510 Id:2F9 Len:40 Act:1493620 Lat:1890
t=1495650 Id:1A1 Len:24 Act:1494352 Lat:1298
t=1495860 Id:1C3 Len:40 Act:1495109 Lat:751
t=1496810 Id:120 Len:40 Act:1493440 Lat:3370 REF
t=1499010 Id:12A Len:64 Act:1493440 Lat:5570 REF
t=1500890 Id:130 Len:40 Act:1493440 Lat:7450 REF
t=1501240 Id:138 Len:40 Act:1493440 Lat:7800 REF
t=1501860 Id:0F9 Len:64 Act:1501718 Lat:142 REF
t=1502060 Id:199 Len:64 Act:1501718 Lat:342
t=1502410 Id:524 Len:64 Act:1502280 Lat:130 REF
t=1502590 Id:528 Len:40 Act:1502280 Lat:310
t=1503560 Id:0F1 Len:32 Act:1503440 Lat:120 REF
t=1503750 Id:1E1 Len:24 Act:1493440 Lat:10310
t=1504410 Id:0C1 Len:64 Act:1504238 Lat:172 REF
t=1504650 Id:0C5 Len:64 Act:1504238 Lat:412
t=1504900 Id:1C7 Len:56 Act:1504830 Lat:70
t=1505170 Id:1E5 Len:64 Act:1504238 Lat:932
t=1506360 Id:1F1 Len:64 Act:1493440 Lat:12920 REF
t=1507960 Id:0C9 Len:56 Act:1506850 Lat:1110 REF
t=1508190 Id:191 Len:64 Act:1506850 Lat:1340
t=1508910 Id:1F3 Len:16 Act:1493440 Lat:15470 REF
t=1511250 Id:3C9 Len:64 Act:1493440 Lat:17810 REF
t=1512390 Id:524 Len:64 Act:1512280 Lat:110 REF
t=1512570 Id:528 Len:40 Act:1512280 Lat:290
t=1513580 Id:0F1 Len:32 Act:1513440 Lat:140 REF
t=1513780 Id:1F3 Len:16 Act:1513440 Lat:340

msgA (med) – ECU1 msgB (med) – ECU1

Message latencies – ECU1/interrupt based

The latencies of medium and low priority messages follow a typical
shape in which offset and rise time depend on the message priority.

minimum latency (local
higher priority messages
that are always enqueued

at the same time)

variable latency
(depending on possible

interference from local or
remote messages)

msgC (med) – ECU2 msgD (low) – ECU2

Message latencies – ECU2/Polling based

The latencies of medium and low priority messages follow a staircase
cdf and the values are grouped in spikes separated by (approx.) the
period of the polling task.

CAN bus

How about the average latency behavior ?

Other types of analysis are possible

By simulation

– Probably the only one that can capture effects like finite copy
times, insufficient number of buffers, non-preemptability of
TxObjects …

Stochastic analysis

– See recent work with Haibo Zeng [8].

– Suprisingly close to the results of trace analysis with non-
preemptable single TxObjects and finite copy times!

Experimental Results

• Probability Mass Function for Medium Priority Message

– Mixture of blocking and interference

Msg23 (Priority=25)

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50 1.00 1.50 2.00 2.50 3.00

Message Response Time (ms)

P
ro

b
a

b
il

it
y

Simulation

Stochastic Analysis

Worst Casel Analysis

Experimental Results

Msg39 (Priority=25)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

Message Response Time (ms)

P
ro

b
a
b

il
it

y

Simulation

Stochastic Analysis

Worst Case Analysis

• Cumulative Distribution Function for Medium Priority Message

– Mixture of blocking and interference

Experimental Results

• Cumulative Distribution Function for Low Priority Messages

– Increasing errors

Trace analysis vs. Stochastic predictions

MsgA: Medium Priority

Msg 0x320

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 50 100 150 200 250 300 350 400 450

Response Time (0.01ms)

P
ro

b
a
b

il
it

y Analysis w/o Jitter (cdf)

Experiment (cdf)

Analysis w Jitter (cdf)

Possible causes ?

CAN bus

Bibliography
[1] CAN Specification, Version 2.0. Robert Bosch GmbH. Stuttgard, 1991,

http://www.semiconductors.bosch.de/pdf/can2spec.pdf

[2] K. Tindell, H. Hansson, and A. J. Wellings, Analysing real-time communications:
Controller area network (can),' Proceedings of the 15th IEEE Real-Time Systems
Symposium (RTSS'94), vol. 3, no. 8, pp. 259--263, December 1994.

[3] H. Kopetz, A solution to an automotive control system benchmark, Institut fur
Technische Informatik, Technische Universitat Wien, Tech. Rep., April 1994.

[4] Gergeleit M., H. Streich. Implementing a Distributed High-Resolution Real-Time clock
using the CAN-Bus. Proceedings of the 1st International CAN Conference. Mainz,
Germany 1994.

[5] D. Lee and G. Allan. Fault-tolerant Clock synchronisation with Microsecond-precision
for CAN Networked Systems. Proceedings of the 9th International CAN Conference,
Munich, Germany, 2003.

[6] A. Meschi M. Di Natale M. Spuri Priority Inversion at the Network Adapter when
Scheduling Messages with Earliest Deadline Techniques , Euromicro Conference on
Real-time systems, L’Aquila, Italy 1996.

[7] Jose Rufino and Paulo Verissimo and Guilherme Arroz and Carlos Almeida and Luis
Rodrigues "Fault-Tolerant Broadcasts in CAN", Symposium on Fault-Tolerant
Computing", 150-159, 1998.

[8] Stochastic Analysis of Controller Area Network Message Response Times, Haibo
Zeng, Paolo Giusto, Marco Di Natale, Alberto Sangiovanni Vincentelli, submitted to
the 2008 RTAS

[9] R. Davis, A. Burns, R. Bril, and J. Lukkien. Controller area network (can)
schedulability analysis: Refuted, revisited and revised. In RTN06, Dresden, Germany,
July 2006.

