Performance Analysis of Synchronous Models Implementations on Loosely
Time-Triggered Architectures

Chung-Wei Linf, Marco Di Natale*, Haibo Zeng®, and Alberto Sangiovanni-Vincentelli

EECS Department, University of California at Berkeley' Scuola Superiore Sant’ Anna* General Motors R&D?

E-Mails: cwlin@eecs.berkeley.edu, marco@sssup.it, haibo.zeng @ gm.com, alberto @eecs.berkeley.edu

Abstract

Synchronous languages are used in the most popular soft-
ware and system modeling environments because of the avail-
ability of tools for validation and verification by simulation
or model checking. A mapping of synchronous models onto
Loosely Time-Triggered Architecture (LTTA) that preserves
the communication flows has been defined in [5] together with
an estimate of lower bounds on the timing performance. The
mapping makes use of feedback queues as a backpressure
mechanism. In this work, we propose the use of Real-Time
Calculus (RTC) as a general model for the timing analysis of
such systems, leveraging the work in [3] where RTC was used
to analyze multimedia systems with processing pipelines. To
apply the analysis to the implementation of synchronous mod-
els into LTTA, several additions and fixes to the original anal-
ysis are needed. In this paper, we present our early ideas and
solutions to these problem.

1. Introduction

Synchronous (reactive) models of computation (SR) are
the foundation of several modeling and analysis tools to de-
scribe and validate systems functionality, including Simulink
and SCADE. SR models are popular because of a strong the-
oretical backing that allows predictability and formal verifi-
cation of properties.

However, the preservation of the formal properties of SR
models and therefore of the verification results require a for-
mally correct implementation, which is typically obtained us-
ing clock synchronization in a time-triggered architecture.
A time-triggered framework may be difficult to achieve, es-
pecially on distributed wireless networked systems or when
functionality needs to be deployed on an existing platform.
Therefore, it is important to investigate what are the condi-
tions and the performance for the implementation of a syn-
chronous model into a less constrained architecture, such as
the Loosely Time-Triggered Architecture (LTTA) [1]. An
LTTA architecture is a distributed architecture in which node
clocks are assumed to be loosely synchronized (to be compli-
ant with some types of global contract), the communication
bus is reliable and delivers messages with a bounded worst-
case delay. The architecture nodes provide basic task acti-
vation mechanisms and a communication mechanism called

Communication by Sampling (CbS).

In [5], it is demonstrated how a generic network of SR
machines can be implemented by a network of processes
communicating through bounded FIFO queues regardless of
the activation times of the FFP processes if the objective
is the preservation of the communication flows. A syn-
chronous model consists of a graph of communicating (pos-
sibly infinite-state) Mealy machines. All machines receive
streams of data (signals) as input(s) and produce output sig-
nals. For simplicity, we assume all the machines at the nodes
of the graph perform their computations synchronously and
at the same rate, triggered by events coming from a global
(logical) clock. The edges in the graph represent the signals
communicated from one machine to the other. In order to
allow for a well-formed composition, we assume that there
is at least one delay element in every graph loop. In [5] it
is demonstrated how a generic network of SR machines can
be implemented by a network of processes communicating
through bounded FIFO queues (Figure 1) regardless of the
activation times of the FFP processes.

finite FIFO
queue
(O
\M @
‘ X 5 X 4

My ()
X2 X3

Figure 1. From a synchronous network to an
FFP model.

The implementation is correct with respect to the preserva-
tion of the communication flows (the signals values), but not
with respect to the exact time when they are produced. Each
FFP process has the same structure. The computation of the
new state and output values is the same as in the original SR
machine. Communication occurs through the queues.

A process is triggered by its own clock, but it is executed
only if its input buffers are non-empty, and its output buffers
are non-full, otherwise it is stalled. In the LTTA network
model of [5] activation clocks can be arbitrary or character-
ized by a lower bound between any two ticks.

The performance analysis is a graph-based approach
which involves a reachability graph and the triggering order
of processes and uses a slow triggering policy which assumes
that, in each cycle, the process that is triggered next is the

one that does not enable other firings (the worst-case trigger-
ing order). This is why this approach may be too pessimistic.
Another problem is that it may suffer exponential numbers of
vertices in the analysis graph.

In the domain of real-time schedulability analysis, the
Real-Time Calculus (RTC) [2, 4] has been proposed as a gen-
eral framework for the modelling and analysis of the time
properties of embedded SW task systems. RTC has been re-
cently used for the analysis of task systems with feedback [3]
(tasks communicating by finite queues). Although the origi-
nal aim of the analysis are pipelined multimedia systems, we
found that after some changes and a few necessary fixes, its
concepts are applicable to the analysis of the LTTA imple-
mentation of synchronous models.

Our objective in this work is to use RTC to model and anal-
yse the mapping performance of [5]. In order to do so, we
need to overcome some limitations of the analysis in [3]:

e We need to derive the effective service curves (more de-
tailed introduction will be in Section 3) for fork and
merge topologies, extending the chain topology in [3].
The ability to analyze fork and merge topologies allows
to deal with general communication topologies.

e A more accurate and efficient approach to compute the
effective service curves of processes is desired. In [3],
only the effect of the last process is considered, where
the impact of middle processes is ignored, so the result-
ing effective service curve is too pessimistic.

e Fix a problem in [3] which may compute an effective
service curve to be 0, i.e., the process is always idle.

e By applying RTC to the analysis of synchronous mod-
els implemented in LTTA, we can improve the analysis
presented in [5], which can be quite time-consuming and
pessimistic.

The rest of this paper is organized as follows. Section 2
introduces the background knowledge. Section 3 presents our
approaches to performing analysis. Finally, conclusion and
future directions are in Section 5.

2. Real-Time Calculus and Feedback Control

Min-plus algebra is the basis of RTC. it is based on the
definition of a commutative semi-ring, where the operations
Min (minimum) and plus (sum) take the place of the addition
and multiplication operators we are used to. Given two func-
tions f(t) and g(t) where t € RT = [0, 00), the fundamental
operators defined by the algebra are:

Definition 1 The minimum, @, of f(t) and g(t) is:
(f ©9)(t) = min(f(2), g(t)). (1)
Definition 2 The convolution, ®, of f(t) and g(t) is:

(fo9)®) £ (f(s) +9(t—s)). 2

= in
0<s<t

The zero element is the function f(¢) = oo and the unitary
element (for the convolution) is the function

00, otherwise;
The dual operation of the convolution is the deconvolution.
Definition 3 The deconvolution, @, of f(t) and g(t) is:

(f@9)(t) =sup(f(t +u) — g(u)). “4)

u>0
In addition, f*, the sub-additive closure of f is defined.

Definition 4

fFr=@r=roflofo. ; ©)

i>0

The Real-Time Calculus (RTC) uses the min-plus algebra
to analyze the timing performance of computation and com-
munication nodes. RTC is based on the concepts of input cu-
mulative function, output cumulative function, arrival curves,
and service curves. They are formally defined as follows:

Definition 5 An input cumulative function A(t) is the
amount of processing time that is requested in the time in-
terval [0, t].

Definition 6 An output cumulative function A'(t) is the
amount of processing time that completes (leaves the system)
in the time interval [0, t].

Definition 7 The increasing functions o*(t) and o'(t) are
the upper and lower arrival curves of a cumulative function
A(t), respectively, if

al(t) < A(t+s) — A(s) < a(t),Vs,t e RY. (6)

The output is produced by the system based on the input re-
quest and the availability of processing time, represented by
the service curve.

Definition 8 Given a system with input and output flows with
cumulative functions A(t) and A’ (t), respectively, increasing
functions 3"(t) and 3'(t) are the upper and lower service
curves of the system, respectively, if

(AR B () <A(t) < (A B*)(t),VteRT. (7)

The following theorem allows to compute the output ar-
rival curves:

Theorem 1 [2] Given a system with ", al, 8%, and B, the
upper and lower output arrival curves are:
a/u _ ((au ® 51},) 1% ﬁl) D ﬁu; (8)
ot = ((dopes)es, ©)

B B As+B, B B, P
4! By
OO,
1 2Ty 3
B, A TAY A2A3 A1A2A3
(a) (®) (©)

Figure 2. Computing the resulting effective ser-
vice curve of a sender process connected by a
finite FIFO queue to a receiver.

Finally, knowledge of the arrival and service curves for a pro-
cessing element allows to compute the maximal backlog, and
the maximal delay:

Theorem 2 /2] Given a system with a*, o!, 8%, and 3!, the
maximal backlog and the maximal delay are:

bmax = sup(a”(t) — B(1)); (10)
t>0

dmax = SU inf s)|. 11
tzlé)) (szo,au<t>§ﬁl(t+s><)) ()

RTC has been applied to the analysis of systems with feed-
back [3]. In [3], o/ and 5% are assumed to be 0 and oo, re-
spectively, so « and /3 represent the worst-case o* and /3,
respectively!. In order to explain the basic feedback mecha-
nism, two processes P, and P» connected by a finite queue
of length B, are shown in Figure 2 (a). To ensure that the
backlog of the second process does not exceed Bo, it must be
Ay — A3 < By or Ay < By + As. In order to bound A, the
first process P; must be stalled when the queue is full. This
can be obtained by limiting the incoming processed load to
the minimum between A; and By + As. This is equivalent
to a feedback control before P;, as shown in Figure 2 (b).
The load to P; therefore becomes A] = min(A;, By + Aj3)
(the queue is not shown any more since it is modeled by the
feedback condition). Given that A3 is computed based on
and A, and the latter is a function of the application of the
service curve 31 to Ay, it seems reasonable to model the need
for stalling the processing of A; by replacing the service 3y
with a modified or effective service curve y; computed as a
function of 31, 82 and By. This dependency is analytically
expressed by the theorem:

Theorem 3 [3] Given a system with two processes, the ef-
fective service curve of the first process is:

1 =01®[B1® (B2 + B2)]". (12)

The authors of [3] proceed to determine an upper bound for
the effective service curve of the first process (and the fol-
lowing) in a pipeline configuration as a closed form formula.
The effective service curve can then be estimated using the
following theorem:

IHowever, the derived effective service curve should be regarded as the
upper service curve to ensure that the buffers will never overflow.

i3 B
ot
Bs B
LT
(a) (b

)
Figure 3. Fork and merge topologies.

Theorem 4 [3] Given a system of a chain with n processes,
the effective service curve of the first process is*:

n o= Ao |PRBi1®Bi+B)T|. 13)

i=1 j=1

We are interested in a more general formulation that allows
for the treatment of general graphs as opposed to simple
pipelines. Also, when extending the analysis, we found some
possible sources of pessimism that could be removed while at
the same time simplifying the analysis.

3. Performance Analysis of Process Graphs with
Finite Queues and LTTA Implementations

3.1. Fork and Merge Extensions

Handling fork and merge topologies is necessary for the
analysis of general graph configurations. The fork topology
is shown in Figure 3 (a). When process P finishes its compu-
tation, it writes the result to both output buffers. The effective
service curve of P; computed for the first branch is an up-
per bound of the service for P; that prevents overflow on the
corresponding buffer. The same is true for the curve for the
second branch. Therefore, the effective service curve of P;
can be obtained by considering the minimum service result-
ing from the constraints on both sides. The merge topology is
shown in Figure 3 (b). The successor process P can only start
its computation when both its input buffers are non-empty. In
this case, the problem does not come from the computation of
the effective service curve, which is the same as in the chain
topology, but from the computation of the output arrival curve
of the merging process.

3.2. Effect Propagation

The effective service curve computed in a closed form
in [3] is obtained by reasoning by induction. When extending
a system with n processes with an (n + 1)-th queue and pro-
cess, the effective service curve 7, is computed (as in Equa-
tion (12) by only considering the effect of 3,11 on 3,, but
leaving 1, B9, ..., fn—1 unchanged, instead of considering
their effective values v1,72,...,v,—1. Therefore, the for-
mula ignores the effects from vs,...,v,—1 on 1. The so-
lution in [3] is correct (in the sense that never overflows the
buffers) but may be pessimistic, i.e., there may be a solution
with higher throughput or lower delay. Preliminary experi-
mental results have shown some examples of this pessimism.

2The index 7 starts from 0 in [3].

Algorithm: Effect-Propagation(V, E, 5%, 5!, B)
1 Sort V' by the topology order

2fori=|V]|tol

3 if out-degree(v;)=0

4 =gy
5 =8
6 else

T =pe8® (v + B
8 =Bl
9 return «* and ~/

Figure 4. The Effect-Propagation algorithm.

i

1 i
(@) (b)

Figure 5. (a) The function f and (b) f°.

To solve the problem, we yield the compact and elegant
closed-form of the solution in [3] for an Effect-Propagation
algorithm, as shown in Figure 4. The algorithm follows the
reverse topology order and propagates the effects from the last
process to the first process (Lines 1-2). In each iteration, it
uses the service curve of the next process to update the service
curve of the current process (Lines 3—8). The proposed solu-
tion has two additional advantages: (1) unlike Equation (13)
which can only be applied to a chain topology, the algorithm
computes the effective service curves for all processes in a
general graph configuration and (2) uses |V| — 1 less @ op-
eration and the same numbers of other operations, compared
with Equation (13).

3.3 Improved Effective Service Curve Analysis

The formula for computing the effective service curve
in [3] may compute a function identically equal to 0, i.e., the
process is always idle. For example, for the f function shown
in Figure 5 (a), the “powers” f? have the general shape shown
in Figure 5 (b), and for an infinite number of products, the re-
sultis f* = 0. Hence, whenever, the function 51 ® (82 + B3)
in Equation (12) has an initial interval in which it is zero, the
effective service curve computed in this way will be identi-
cally 0. In reality, it suffices that 5, (¢) = 0 for ¢ € [0, €] for
this to happen. We are developing an improved analysis to fix
this problem.

4. LTTA Analysis using RTC

RTC can be used for the analysis of LTTA implementa-
tions of SR models with different levels of accuracy. At the
FFP level, the methods outlined in the previous sections can
be used. However, the model needs to be completed by the
model of the events activating the FFP processes and the ini-
tial service curves. The most common implementation of the
FFP processes is as periodic tasks triggered by a stream of
periodic events with jitter. The service curve will be linear

‘'T'T'T T T T T T+J T+J T+J
(@) (b) ©
Figure 6. (a) A service curve with clock period
T, (b) (upper and lower) service curves with

period 7" and clock drift, and also (c) jitter J.

for the highest priority task (3(t) =) and computed accord-
ing to the priority order for the lower priority tasks. In this
case, a periodic service with clock period 7' can be modelled
by a service curve shown in Figure 6 (a). Then, we can mod-
elled the clock drift by the upper and lower services curves
shown in Figure 6 (b). They describe the best and worst cases
of the service, but they all guarantee that the clock period is
T'. Furthermore, a jitter J can be modelled by modifying the
lower service curve as shown in Figure 6 (c). These curves
are lazy so that the effective service curve searching in Sec-
tion 3.3 is indeed required. A more accurate model of a dis-
tributed LTTA implementation should include the delays on
the bus communications. In this case, additional processes
are needed to represent the network transmission activities
and the corresponding delays, on the forward, as well as in
the back-pressure communication links.

5. Conclusion and Future Work

Our objective is to use RTC to model and analyse the map-
ping performance of the mapping of synchronous models into
LTTA as in [5]. In order to do so, we need to overcome some
limitations of the analysis in [3]. By applying RTC to the
analysis of synchronous models implemented in LTTA, we
want to improve the analysis presented in [5], which can be
quite time-consuming and pessimistic.

References

[1] A. Benveniste, P. Caspi, P. L. Guernic, H. Marchand, J.-
P. Talpin, and S. Tripakis, “A protocol for loosely time-
triggered architectures,” Proc. of Second Intl Conf. on
Embedded Software, pp. 252-265, 2002.

[2] J.-Y. L. Boudec and P. Thiran, “Network calculus: a the-
ory of deterministic queuing systems for the internet,”
LNCS 2050, Springer, 2004.

[3] A. Bouillard, L. T. X. Phan, and S. Chakraborty,
“Lightweight modeling of complex state dependencies
in stream-processing systems,” Proc. of IEEE Real-Time
and Embedded Technology and Applications Sym., pp.
195-204, 2009.

[4] C.-S Chang, “Performance guarantees in communica-
tion networks,” Springer, 2000.

[5] S. Tripakis, C. Pinello, A. Benveniste, A. Sangiovanni-
Vincentelli, P. Caspi, and M. Di Natale, “Implement-
ing synchronous models on loosely time-triggered ar-
chitectures,” IEEE Trans. on Computers, vol. 57(10),
pp- 1300-1314, 2008.

