
Task Implementation and Schedulability Analysis
of Synchronous Finite State Machines

Marco Di Natale
Scuola Superiore S. Anna, marco@sssup.it

Haibo Zeng
GM R&D Palo Alto, CA, haibo.zeng@gm.com

Abstract

Model-based design of embedded control systems using
Synchronous Reactive (SR) models is among the best prac-
tices for software development in the automotive and aero-
nautics industry. Previous research focused on the concur-
rent implementation of the dataflow part of SR models, in-
cluding the optimization of the block-to-task mapping and
the optimization of the communication buffers. When the
system is composed of blocks implementing finite state ma-
chines, as in modeling tools like Simulink and SCADE, the
task implementation can be further optimized with respect
to time and memory. In this paper we analyze problems and
opportunities in the implementation and analysis of finite
state machine subsystems. We define the constraints and ef-
ficient policies for the block to task implementation and we
introduce the schedulability analysis of these systems.

1 Introduction
The development of complex embedded systems is sub-

ject to tight cost and performance constraints. Automatic
code generation tools producing a software implementation
of an application model, defined according to a high level
(possibly visual) language or formalism, are being adopted
to increase productivity and reduce the number of errors in
the development of embedded software.

In the development of embedded controllers, the use of
the Simulink formalism and modeling tool, together with
associated code generation tools such as Real-Time Work-
shop (RTW) and Embedded Coder (EC) from MathWorks
and TargetLink of dSPACE is becoming widespread. The
market relevance of Simulink is such that rules and auto-
matic translation tools have been developed for converting
a Simulink diagram into an equivalent Lustre [11] or Es-
terel description [6] for the purpose of formal verification of
properties and/or provably correct code generation. Com-
mercial products (e.g., Design Verifier) for the verification
of properties of Simulink models and for the automatic gen-
eration of tests with guaranteed coverage are also available.

Traditional (worst case) schedulability analysis is based
on a black-box model of tasks. With the advent of model-

based design and automatic code generation tools, tasks are
increasingly the result of automatic optimization techniques
and knowledge about the models and the system reaction
attributes is the starting point. This additional knowledge
can be leveraged in several ways: to build an efficient task
model according to some constraints or performance met-
rics of interest, or to build a more accurate model of the task
for the purpose of timing analysis. In this work we focus on
the very popular finite state machine (FSM) abstraction and
we discuss schedulability model for synchronous FSMs.

A block implementing an FSM receives as input a set
of signals and a set of events obtained from other signals.
As a result of its reaction, the block updates a set of output
signals. The events triggering the reaction of the block are
obtained from periodic signals and can be assumed periodic
themselves.

There is plenty of work on task modeling frameworks in
the literature. We borrow the concept of task graph to illus-
trate the expressiveness of each model framework. A task
in the model can be represented by a task graph where the
vertices represents the subtasks and the edges are the pos-
sible flows of control. The task graphs for the existing task
models are: a single vertex for classic periodic task model
[8] and its generalization on the possible activations (spo-
radic tasks, or with explicit deadline); a chain of vertices
for the multiframe model [9] and generalized multiframe
task model [3]; directed trees for the recurring branching
task model [2], and [1] which generalizes [2] by allow-
ing for branches of different length; directed acyclic graph
for the recurring real-time task model in [4]. Timed au-
tomata with tasks [10] is a generalization of all the above
models, which allows the underlying task graph to be any
structure. The code implementation of synchronous state
machines has been discussed at length by Berry [12] Ben-
veniste and Caspi [14]. The scheduling problem needs to
account for the partial order in the execution of blocks re-
quired by the Mealy semantics of the state machines and
also for the need to complete the system reaction by the time
a new event arrives in the system. However, most of the dis-
cussed implementations consist of static scheduling of code
in a single task implementation. For multitask implementa-

tions previous works focused mostly on the implementation
of the intertask communication [13], rather than the real-
time analysis or the synthesis of an efficient task structure.
On the commercial side, the problem of guaranteeing flow
preservation in a multitask implementation of communicat-
ing blocks executing at different rates is solved by Simulink
using Rate Transition (RT) blocks. A Rate Transition block
buffers any transition between blocks at different rates. It
behaves like a Zero-Order Hold block for fast to slow tran-
sitions, or a Unit Delay block plus a Hold block (Sample
and Hold) for slow to fast transitions.

RT blocks for fast to slow transitions require an addi-
tional set of output variables for communication between
the sender and the receiver and additional code for the out-
put update function of the block. The memory overhead is
equal to the size of the communication link. RT blocks for
slow to fast transitions require additional sets of state and
output variables and the corresponding additional code for
the state update and the output update functions. The mem-
ory overhead is double the size of the communication link.
In addition, this type of RT blocks results in an additional
functional delay equal to the period of the slower block.

Our contributions The code generation methods of com-
mercial tools like EC/RTW and SCADE implementations
assume a single periodic task implementation for each FSM.
However, a multi-task implementation can provide more
flexibility and efficiency in terms of schedulability. In the
case of Stateflow blocks communicating with other blocks
in a multirate model, a multitask implementation can avoid
the addition of Rate Transition (RT) blocks between tasks
with different periods, saving on the associated memory
overhead. In this work, we reason about the possible multi-
task implementations for FSMs and their benefits on real-
time schedulability and memory usage.

With the observation that the task graph of an FSM can
be naturally cyclic, the currently available task models ei-
ther lack enough expressive power to capture the FSM be-
havior, or can be exponentially difficult to calculate the de-
mand and request bound functions for schedulability anal-
ysis. This calls into the question of practical viability of
an exact schedulability analysis for synchronous FSM task
models, especially for large size problems. In this work,
we look at the approximation algorithms which are fast but
provide tight bound on the demand and request bound func-
tions.

2 Synchronous FSM abstract model
A synchronous model consists of a graph of communi-

cating Mealy finite state machines. Each FSM block can
be characterized by a set of input signals {i1, i2, . . . in},
a set of trigger events {e1, e2, . . . em} and a set of out-
put signals {o1, o2, . . . op}. The internal behavior follows

the semantics and notation of extended (hierarchical and
concurrent) Statecharts. The FSM is defined by a tuple
{S, S0, I,O,E,T}, where S = {S1, S2, . . . Sq} is a set
of states, S0 ∈ S is the initial state, I = {i1, i2, . . . in}
and O = {o1, o2, . . . op} are the input and output values,
where each ij (oj) is a signal, also denoted as sj . Each
signal is a function defined on a discrete time domain and
with values in a given range. The discrete time domain of
each signal sj is defined as k · tj , where tj is the signal’s
period. E are the activation (or trigger) events. Each event
ej is bound to occur only at time instants belonging to a
periodic time base, with period tj . However, at each time
k · tj the event may or may not be present (alternatively, the
machine will stutter). The periods of all signals and events
are multiple of a base period t0, with phase 0. T is the
set of transition rules, where each θj ∈ T consists of a tu-
ple θj = {Ssj , Sdj , ej , gj , aj , pj}, where Ssj is the source
state, Sdj is the destination state, ej ∈ E is an event, gj
is a guard condition (an expression of the input and out-
put signals and internal values values), aj is an action and
pj is the transition priority. Priorities associated to tran-
sitions are used to discriminate which transition should be
performed when two or more events are active and two or
more corresponding transitions can be taken out of a state.
The transition with higher priority (smaller p) is selected.
Figure 1 shows an example of the graphical notation that
is used to describe states, transitions and the events, guards
and actions associated with each state. Following the orig-
inal Statecharts specification, from which it is derived, the
actual Stateflow semantics also allow concurrent states, su-
perstates, entry actions, exit actions, and while actions, join
transitions and other constructs. However, while these ex-
tensions simplify the definition and the structure of FSMs,
they are semantically equivalent, and can be translated, to
the definitions for standard (flat) FSMs as described earlier
in the paragraph.

Synchronous FSM adds constraints on the events and the
reactions of the FSM. All events occur with periods as mul-
tiples of the base period and with the same phase, therefore
events arriving at the same time are quite common. Also,
the reaction of the FSM occurs in logical zero time, that
is, it must satisfy the synchronous assumption, where the
reaction of a network of (possibly FSM) blocks completes
before the next event is processed.

3 Task Implementation of the FSM

The RTW/EC code generator implicitly assumes a
single-task implementation. According to this model, the
task period is assigned as the greatest common divisor of
the period of the triggering events. For example, the sin-
gle task implementation of FSM of Figure 1 has a period of
1ms. However, this is not the only option for the implemen-
tation. As shown in Section 3.2, several possible multi-task

8

e

[cond] / {action }

[cond] / {action }

2

[cond] / {action }

S2

S3

1 [cond] / {action }

/ {action }51

1 [cond]6
[cond] / {action }

2 2

1 1 1

{action }3

2

3

7

3

/ {action }
2

44

7

8

6

e3s3

10 ms

e2s2

5 ms

s1 e1

2 ms

e

e

eS1

e

e || e

ee
0.75

0.5

0.15

3

0.25

4

0.1

2 2

1

2 1

2

1

0.1

0

0.3

0.05

Figure 1. An example of FSM description

implementations exist, which may give the advantage in the
following two aspects: 1) real-time schedulability; 2) mem-
ory usage. Multi-task implementations give at least as much
design freedom as a single-task implementation on block to
task mapping and priority assignment. In addition, multi-
task implementations possibly impose looser deadline re-
quirements. The possible advantage on the memory side
relates to the possibility of avaoding rate transition blocks
altogether.

3.1 Single­task Implementation

e

S2

S1
e1

1

/ {action (); o }1 1

e

e

2s2

s1 e

S3
/ {action (); o }

1

2

F 5 ms

2 ms

/ {action (); o }
2 3/ {action (); o }

4

2 2 1

2

2F

5 ms

2 ms

1 ms

1 ms F 3

1

o1

o2

e 2

1

0.15

0.3 0.1

0.25

Figure 2. AnFSM with two trigger events
We first look at an example with two trigger events, as in

Figure 2. Suppose the FSM connects to two other blocks,
where o1 is the input to F1 with a period 2ms, and o2 the
input to F2 with a period 5ms. The Simulink code gener-
ation tools will adapt a Rate Transition (RT) block on both
outgoing links. For the example in Figure 2, if the FSM
is implemented with a single task, its period is assigned as
1ms and thus two RT blocks, one for each output link, are
required to guarantee the semantics preservation of the gen-
erated code.

3.2 Multi­task Implementation
A multi-task implementation can possibly save some of

this memory overhead. For the example in Figure 2, there
is only one state S2 with multiple out-going transitions, and
the transition activated with event e2 has a higher priority
than the one with e1. Based on this fact, a two-task imple-
mentation, one task for the transitions associated with each
event e1 and e2, is shown in Figure 3. Task τ1, on the top of
the figure, implements the transitions and the associated ac-
tions activated by event e1, thus its period is the same as e1

2 S2

5 ms

task1@2ms

2 ms

/ {action (); o }2

F

4 2

2

task2@5ms

1

1

/ {action (); o }1 1

1 / {action (); o }3

o1

o2

2

F3

1e

Sx

S

e

S1

S3

1

e

2S

e

e

e

S3

2

/ {action (); o }
2

2

0.25

inhibit

0.1

1

0.15

0.3

Figure 3. The multi­task implementation of the
example in Figure 2

(2ms). Task τ2, on the bottom of the figure, implements the
transitions and the associated actions activated by event e2,
thus its period can be regarded as 5ms. When both e1 and
e2 appear, then the transition associated with the higher pri-
ority should be selected and the other transition should be
disabled. This can be implemented by adding a signal from
τ2 to τ1 (denoted by the dashed line in Figure 3): whenever
a transition from τ2 is enabled, this signal is on and τ1 is dis-
abled. This implementation is possible because transitions
activated by e2 (implemented in τ2) always have priority
higher than those associated with e1 (implemented in τ1).

92 4 5 6 81 3 70

Figure 4. The deadline of the multi­task imple­
mentation in Figure 3

As in Figure 4, the third instance of τ1 in the hyperpe-
riod, has a deadline equal to 1ms because the second in-
stance of τ2 is activated 1ms later with a higher priority than
τ1. All the other instances of τ1 have a deadline equal to the
period (2ms). The deadline of task τ2 is always 5ms as it has
a higher priority than τ1. The state variable (denoted as Sx

in the figure) is shared between task τ1 and τ2. This sharing,
however, does not require any protection mechanism to en-
sure data consistency because preemption between τ1 and
τ2 is not possible as long as task deadlines are met.

Clearly, not all FSMs are defined in such a way that all
transitions from the same source state can be ordered by
priority according to the triggering event. An example is
the FSM of Figure 2 with an additional transition from S1

to S3, activated by e1 with priority higher priority than the
one associated with e2.

In this case, one possible implementation consists of

mapping the transitions triggered by events for which there
is no strict priority order into one task, executed at the great-
est common divisor of the events periods. The other transi-
tions can be implemented by one task for each event, exe-
cuted at the corresponding rate. For our example, the tran-
sitions out of S1 and S2 are implemented in task τ1, and the
remaining transition from S3, is implemented in τ2. τ1 can
be triggered by both e1 and e2, thus runs at the gcd period
of 1ms, while τ2 has the same period as e2 at 5ms.

4 Schedulability Analysis of the FSM
When modeling the FSM for schedulability, besides the

structure of the machine and the rate information about its
trigger events, it is also necessary to associate a worst-case
execution time γj to each action aj . For schedulability
analysis of these task models, two concepts, the Demand
Bound Function (DBF) and Request Bound Function (RBF)
[5], are very useful. The request (demand) bound function
of task τi in the interval of length t, denoted as rbfi(t)
(dbfi(t)), is defined as the maximum amount of cumula-
tive execution requirement by jobs of τi that have activation
times (both activation times and deadlines) within any time
interval of length t. For tasks with static priority and pre-
emptive scheduling, a sufficient schedulability condition is

∀t,∃t′ ≤ t s.t. t′ −
∑

j∈hp(i) rbfj(t
′) ≥ dbfi(t) (1)

where hp(i) is the set of tasks with priority higher than τi.
According to the classic periodic task model [8], the

FSM of the example of Figure 1 has a period of 1ms and
a worst-case execution time of 0.75ms. This estimate, how-
ever is very pessimistic and can be easily improved upon.
In the example, the event sequence in the hyperperiod are
{e1||e2||e3, e1, e1, e2, e1, e1}, and the RBF is obtained by
an exhaustive search of the reachable states reacting to this
event sequence. The highest load within one hyperperiod
(10ms) is 1.9ms when starting from S3, as in Figure 5.

1

S3
2

e

1

S3

8

1

S2

e1e1

e

96

e

S2

e12

e

5

3

S3

2
S1S1

4

1

S2

e1

S

72

3 S3

e1e1e1
e1 e1 e1

S2

e1

e
2

3

e
S3

0

1S

2S

1S

S3

1S

S2

S

e

1.9

0.15

0.1

0.05

0.25 0.25 0.250.25

0.3

0.3

0.5

0.1

0.1

0.150.15

0.75

0.1

0.15

0.050.050.05

1.35

0

0

0

0

00

0 0

0

0

1.0

1.15

1.6

1.75

0.75

2.25

0.1

Figure 5. A better upper bound on the demand
bound function (starting from S3)

5 Conclusions and Future Work
When the system is composed of blocks implement-

ing finite state machines, as in modern modeling tools like
Simulink and SCADE, the previous techniques can be ap-
plied with significant pessimism. In this paper we analyze
problems and opportunities in the implementation of finite
state machine subsystems. We define the constraints and ef-
ficient policies for the block to task implementation and we
introduce the schedulability analysis of these systems. We
plan to formulate it as an optimization problem to find out
the best task implementation for such systems with respect
to memory usage or functional delays.

References
[1] Madhukar Anand. Conditional Models for Composi-

tional Design of Real-time Embedded Systems. PhD
thesis, University of Pennsylvania, Janurary 2008.

[2] S. Baruah. Feasibility analysis of recurring branching
tasks. Real-Time Syst., Euromicro Workshop on, 1998.

[3] S. Baruah, et al. Generalized multiframe tasks. Real-
Time Syst., 17(1):5–22, 1999.

[4] S. Baruah. Dynamic- and static-priority scheduling of
recurring real-time tasks. Real-Time Syst., 24(1):93–
128, 2003.

[5] S. Baruah, et al. Algorithms and complexity concern-
ing the preemptive scheduling of periodic, real-time
tasks on one processor. Real-Time Syst., 2:301–324,
October 1990.

[6] A. Benveniste, et al. The synchronous languages 12
years later. Proc. of the IEEE, 91, January 2003.

[7] S. Chakraborty, et al. On the complexity of scheduling
conditional real-time code. In Proc. of Workshop on
Algorithms and Data Structures, pages 38–49, 2001.

[8] C. L. Liu and James W. Layland. Scheduling algo-
rithms for multiprogramming in a hard-real-time en-
vironment. J. ACM, 20:46–61, January 1973.

[9] A. K. Mok and D. Chen. A multiframe model for real-
time tasks. In RTSS ’96, 22–29, 1996.

[10] C. Norström, et al. Timed automata as task models for
event-driven systems. In RTCSA ’99, 182–189, 1999.

[11] S. Tripakis, et al. Translating discrete-time simulink
to lustre. Trans. on Embedded Computing Sys.,
4(4):779–818, 2005.

[12] G. Berry, G. Gonthier The Esterel Synchronous Pro-
gramming Language: Design, Semantics, Implemen-
tation Science of Computer Programming vol. 19, n2,
pp 87-152, 1992.

[13] P. Caspi, N. Scaife, C. Sofronis, S. Tripakis
Semantics-preserving multitask implementation of
synchronous programs ACM Transactions on Embed-
ded Computing Systems, Vol. 7 (2), February 2008

[14] A. Benveniste, B. Caillaud, L. P. Carloni, P. Caspi, A.
L. Sangiovanni-Vincentelli Causality and Scheduling
Constraints in Heterogeneous Reactive Systems Mod-
eling. FMCO 2003: 1-16

