
Mechanisms for Guaranteeing Data Consistency and Flow Preservation in
AUTOSAR Software on Multi-core Platforms

Haibo Zeng
General Motors R&D, haibo.zeng@gm.com

Marco Di Natale
Scuola Superiore S. Anna, marco@sssup.it

Abstract—The implementation of AUTOSAR runnables as
a set of concurrent tasks requires the protection of shared
communication and state variables implementing interface and
internal ports. In addition, in a model-based design flow, the re-
sults of the model validation and verification are retained only
if the code implementation preserves the semantic properties of
interest. Since AUTOSAR does not support the modeling of the
internal behavior of runnables, the most likely candidate for
the development of the functions behavior is Simulink, which is
based on a Synchronous Reactive semantics. Commercial code
generation tools offer solutions for preserving the signal flows
exchanged among model blocks allocated to the same core, but
do not scale to multicore systems. In this paper, we summarize
the possible options for the implementation of communication
mechanisms that preserve signal flows, and discuss the tradeoff
in the implementation of AUTOSAR models on multicore
platforms.

I. INTRODUCTION

The AUTOSAR (AUTomotive Open System ARchitec-
ture) development partnership, which includes several OEM
manufacturers, car electronics (Tier 1) suppliers, tool and
software vendors, has been created to develop an open
industry standard for automotive software architectures. The
current version includes a reference architecture, a common
software infrastructure, and specifications for the definition
of components and their interfaces. The latest metamodel
(version 4.0) [15] has an operational communication and
synchronization semantic and has been given a timing model
for the definition of event chains. However, similar to
the Unified Modeling Language (UML), the AUTOSAR
metamodel is mature in its static or structural part, but only
offers an incomplete behavioral description which lacks a
formal model of computation and a complete timed event
model.

A. SW Components, Runnables, and Tasks

In AUTOSAR, the functional architecture of the system
is a collection of SW components cooperating through their
interfaces (Figure 1). The conceptual framework providing
support for component communications is called Virtual
Functional Bus or VFB. Component interfaces are defined
as a set of ports for data-oriented or service-oriented com-
munication. In the case of data-oriented communication, the
port represents (asynchronous) access to a shared storage
which one component may write into and others may read

SW

SW

ECU 1 ECU 2

Virtual Function Bus

(VFB)

ECU

descriptions

System

constraints

component 1

SW

component 2

SW

component 3

Deployment tools

Basic Software

RTE RTE

Basic Software

component 1

SW

component 2

SW

component 3

Figure 1. AUTOSAR components, interfaces and runnables.

from. In the case of service-oriented communication, a client
may invoke the services of a server component. These
communications occur over the VFB, for which an imple-
mentation can be automatically generated depending on the
placement of the components in the physical architecture.
The definition of abstract components and the VFB nicely
abstracts functionality from the physical architecture. The
two are bound later in a process supported by tools for
automatic code generation.

The tools that are responsible for the automatic generation
of the VFB implementation take as input the hardware
platform description and placement constraints defined by
the user. They produce as a result the implementation of the
task model, the placement of tasks on the ECUs (Electronic
Control Units), and the communication and synchronization
layers. In AUTOSAR, this activity provides the configuration
of the Basic Software (the operating system and the device
drivers) and the generation of the Run-Time Environment
(RTE) realizing communications, including intra- and inter-
task, intra- and inter-ECU, and also event generation, for-
warding, and dispatching (synchronization).

The behavior of each AUTOSAR component is repre-
sented by a set of runnables, that is, procedures that can be
executed in response to events generated by the RTE, such
as timer activations (for periodic runnables), data writes on
ports, and the reception of a service call. Runnables may
need to update as well as use state variables for their com-
putations. This often requires exclusive access (write/read)



to such state variables. In AUTOSAR these variables are
labeled as InterRunnableVariables and can only be shared
among runnables belonging to the same SW component.
Data interactions among components occur when runnables
write into and read from interface ports. Runnables may read
and write explicitly (by calling API functions provided by the
RTE) or implicitly. In this case, the reading runnable reads
the port contents when it starts executing and writes the port
data at the end of its execution. The reading and writing
code is automatically generated by the AUTOSAR tools.
Inside the generated RTE, when communicating runnables
are mapped into different tasks that can preempt each other,
the variables implementing the communication port need to
be suitably protected to ensure consistency of the data.

With respect to scheduling, the code of the runnables is
executed by a set of threads in a task and resource model.
Runnables from different components may be mapped into
the same task and must be mapped in such a way that
ordering relations and causal dependencies are preserved.

In multi-core architectures, tasks can be scheduled with
partitioned or global scheduling. Under partitioned schedul-
ing, tasks are statically assigned to processors and each pro-
cessor is scheduled separately. Under global scheduling, all
tasks are scheduled using a single shared task-queue. They
are allocated dynamically and inter-processor migration is
allowed. Global scheduling algorithms can achieve higher
utilization bounds. However, the required job migration can
incur significant overheads [11]. Also, partitioned scheduling
is adopted and supported not only by AUTOSAR, but also
by commercial real-time operating systems (e.g. VxWorks,
LynxOS, and ThreadX). Due to these reasons, in this work
we assume partitioned scheduling.

B. Data Consistency

In multicore architectures, the protection of shared com-
munication buffers implementing AUTOSAR ports can be
performed in several ways.

• Lock-based: when a task wants to access the communi-
cation data while another task holds the lock, it blocks.
When the lock is released, the task is restored in the
ready state and can access the data. In multicore archi-
tectures with global locks, two options are possible. The
blocked task can release the CPU on which it executes
and be transferred on a (global) waiting list, or it may
spin on the CPU (busy-waiting).

• Lock-free: each reader accesses the communication
data without blocking. At the end of the operation, it
performs a check. If the reader realizes there was a
possible concurrent operation by the writer and it has
read an inconsistent value, it repeats the operation. The
number of retries can be upper bounded [8] [1].

• Wait-free: readers and writer are protected against
concurrent access by replicating the communication

buffers and by leveraging information about the time in-
stants when they access the buffer or other information
that constrains the access (such as priorities or other
scheduling related information) [6] [9].

The mapping of runnables into tasks, the configuration of
the task model, and the selection of the right mechanisms for
the implementation of the communication over ports have a
large impact on the performance of the system. Of course,
context switch overheads should also be considered when
defining the mapping.

Among lock-based mechanisms, the multiprocessor exten-
sion of the Priority Ceiling Protocol (MPCP) was developed
in [13] to deal with the mutual exclusion problem in the
context of shared-memory multiprocessors. In MPCP, tasks
that fail to lock on a resource shared with remote tasks
(global resource) are suspended, which allows other local
(and possibly lower priority) tasks to execute. MSRP, the
Multiprocessor extension to Stack Resource Policy [2], has
been proposed and compared with MPCP in terms of worst-
case blocking times [7]. A task that fails to lock on a global
resource keeps spinning instead of suspending as in MPCP,
thus keeping its processor busy. The Flexible Multiprocessor
Locking Protocol (FMLP) [4] combines the strengths of
the two approaches. In FMLP, short resource requests use
a busy-wait mechanism, while long resource requests are
handled using a suspension approach.

When the global shared resource is a communication
buffer (the case of interest for our study), another possibility
is wait-free methods. In [5], an asynchronous protocol is
proposed for preserving data consistency with execution-
time freshest value semantics in the single-writer to single-
reader communication on multiprocessors. A hardware-
supported Compare-And-Swap (CAS) instruction (required
by any mechanism for atomic access in multicores [8]) is
used to guarantee atomic reading position assignments and
pointer updates.

In the case of multiple reader tasks, the buffer size can be
defined by the reader instance method, which relies on the
computation of an upper bound for the maximum number of
buffers that can be used at any given time by reader tasks [5],
or by the lifetime bound method based on the computation
of an upper bound on the number of times the writer can
produce new values while a given data item is used by at
least one reader [10] [6].

A combination of the lifetime bound and reader instance
methods can be used to obtain a better buffer sizing [16].
The implementation of a wait-free communication method
that preserves Synchronous Reactive (SR, see Section I-C)
flows using the buffer sizing in [16] is presented in [17] for
the case of single-core OSEK implementations. However, an
implementation of wait-free communication methods with
the preservation of communication flows of SR models in
multicore platforms, while not particularly difficult, has not
been proposed until now. We present an outline of the



characteristics and tradeoffs of such an implementation as
opposed to other options including lock-based mechanisms
or the enforcement of an execution order or time synchro-
nization among tasks.

C. Preserving communication flows when implementing syn-
chronous (Simulink) models

AUTOSAR is agnostic with respect to the development
of runnable functionality. However, model-based design is
very popular in the automotive domain, because of the pos-
sibility to verify the functionality of controls by simulation
and formal methods. Typically the function model is first
defined according to the semantics of Synchronous Reactive
models like those created in MathWorks Simulink [12], and
later mapped into AUTOSAR components. In AUTOSAR,
behavior modeling is not mandatory to be complete, since
runnables are only required to be entry points to a program.

The Simulink functional model is defined as a network
of communicating blocks. Each block operates on a set
of input signals and produces a set of output signals. The
domain of the input function can be a set of discrete
points (discrete-time signal) or it can be a continuous time
interval (continuous-time signal). Continuous blocks are im-
plemented by a solver, executing at the base rate. Eventually,
every block has a sample time, with the restriction that the
discrete part is executed at the same rate or at an integer
fraction of the base rate.

A fundamental part of the model semantics is the rules
dictating the evaluation order of the blocks. Any block
for which the output is directly dependent on its input
(i.e., any block with direct feedthrough) cannot execute
until the block driving its input has executed. The set of
topological dependencies implied by the direct feedthrough
defines a partial order of execution among blocks. Before
Simulink simulates a model, it orders all blocks based upon
their topological dependencies, and (arbitrarily) chooses one
total execution order that is compatible with the partial
order imposed by the model semantics. Then, the virtual
time is initialized at zero. The simulator engine scans the
precedence list in order and executes all the blocks for which
the value of the virtual time is an integer multiple of the
period of their inputs. Executing a block means computing
the output function, followed by the state update function.
When the execution of all the blocks that need to be triggered
at the current instant of the virtual time is completed, the
simulator advances the virtual clock by one base rate cycle
and resumes scanning the block list.

The code generation framework follows the general rule
set of the simulation engine and must produce an imple-
mentation with the same behavior (preserving the seman-
tics). The Real-Time Workshop/Embedded Coder (RTW/EC)
code generator of MathWorks allows two different code
generation options: single task and fixed-priority multitask.
Single task implementations are guaranteed to preserve the

simulation-time execution semantics. However, this comes
at the cost of a very strong condition on task schedulability
and a single-task implementation is terribly inefficient in
multicore systems. In multitask implementations, the run-
time execution of the model is performed by running the
code in the context of a set of threads under the control of a
priority-based real-time operating system (RTOS). The RTW
code generator assigns each block a task priority according
to the Rate Monotonic scheduling policy.

Because of preemption and scheduling, in a multirate
system, the signal flows of the implementation can signifi-
cantly differ from the model flows. In case a high priority

T=1T=1

High priority

T=2

Low priority

write1 write2

read read 21read read

write write

τ1 2τ

τ1
τ1

τ1

2τ 2τ

2τ

T=2

Low priority High priority

Figure 2. Possible problems when blocks with different rates interact.

block/task τ1 drives a low priority block/task τ2 (left side
of Figure 2), there is uncertainty about which instance of τ1
produces the data consumed by τ2 (τ2 should read the values
produced by the first instance of τ1, not the second). Further-
more, the shared variables implementing the communication
channel must be protected for data consistency.

In case a low priority block/task drives a high priority
block/task, when the Rate Monotonic priority assignment is
used, there is the additional problem that reads are executed
before the corresponding writes, therefore a delay buffer
and an initial value are required. The right side of Figure 2
represents this case, where the high rate task τ2 is executed
before τ1 despite being its successor in the functional graph.

As a special case of wait-free mechanisms, the Simulink
solution for these problems (in a single-core implementa-
tion) consists in the Rate Transition (RT) block, providing
consistency of shared buffers, flow preservation, and time
determinism [12]. In the case of high-to-low rate/priority
transitions, the RT block output update function executes
at the rate of the receiver block (left side of Figure 3),
but within the task and at the priority of the sender block.
In low-to-high priority transitions (right side of Figure 3),
the RT block state update function executes in the context
of the low rate task. The RT block output update function
runs in the context of the high rate task, but at the rate of
the sender task, feeding the high rate receiver. The output
function uses the state of the RT that was updated in the
previous instance of the low rate task. RT blocks can only
be applied in a more restricted way than generic wait-free
methods [6]: the periods of the writer and reader need to be
harmonic, meaning one is an integer multiple of the other;



also, they only apply to one-to-one communication links.
One-to-n communication is regarded as n links and each of
them is buffered independently.

We refer to RT blocks associated to high priority to low
priority as direct feedthrough (DF) and those associated to
low priority to high priority transitions as unit delay (UD).
Both types result in additional buffer requirements, but RT
blocks of type UD also result in an additional delay. The
Rate Transition block of type DF behaves like a Zero-Order
Hold block, and RT block of type UD composes a Unit
Delay block plus a Hold block (Sample and Hold).

2

1 τ2 τ1 τ2

τ1

τ2

τ1

τ2 1read

T=1

High priority Low priority

T=2
∆

Rate
transition (hold)

T=2

Low priority
∆

Rate
transition

High priority

T=1

(sample and hold)

read read

write

hold(sample)
sample hold

write write

2 readread read 1

τ

Figure 3. The effect of the introduction of Rate Transition blocks on
single-CPU architectures.

The basic RT mechanism is clearly not sufficient when
the reader and the writer execute on different cores. In the
following we will analyze the mechanisms for guaranteeing
data consistency in inter-core communication and define the
possible tradeoffs. Lock-based mechanisms are sufficient
when the functionality is robust with respect to possible
time jitter in the communication data, as is assumed in most
cases of development based on handwritten code. However,
there are cases (most often when the development is based
on formal models) when the flow semantics among blocks
(runnables) should be preserved.

In the following, we first discuss the mechanisms for data
consistency in multicore systems in Section II, and analyze
the subset of the mechanisms that can also guarantee flow
preservation in Section III. In Section IV we use a motivating
example to discuss some of the tradeoffs and options, and
point out an opportunity to define an optimization problem
to find the best combination of these mechanisms. Finally,
conclusion and future work are discussed in Section V.

II. MECHANISMS FOR GUARANTEEING DATA
CONSISTENCY IN MULTICORE SYSTEMS

The mechanisms that can be used to guarantee data
consistency in multicore systems when the writer and at least
one of the readers are allocated on different cores are:

1) Explicit synchronization between the writer and the
reader, possibly supplemented by timing analysis, to
ensure that no read (write) can be performed while a
write (read) is in progress.

2) Wait free methods: communication buffers are repli-
cated and no simultaneous access to one buffer in-
stance by the writer and any of the readers.

3) Semaphore locks: multiprocessor versions of the im-
mediate priority ceiling semaphores, along the line of
MPCP, or MSRP.

In the following, we discuss the applicability/extension of
these mechanisms, including an analysis of the timing and
memory overheads associated to each of them. However,
first we need to shortly introduce the task model and the
foundation of timing analysis.

Unless otherwise specified, we will assume that each sub-
system/runnable ρi is defined to be activated by a periodic
event with period Ti. A runnable is characterized by a worst-
case execution time (when executed in isolation) γi, and it
is mapped into a task τj in such a way that the task period
is harmonic with the runnable period (the task period must
be an integer divisor). We denote the period of τj by Tj .
The mapping of runnables into tasks defines a sequential
execution order. We will use two indexes for a runnable
as in ρj,k, meaning that the runnable is the j-th among
those mapped to task τk. Finally, Ci denotes the worst-case
execution time of τi. Clearly, Ci =

∑
k γk,i.

In a system where tasks are independent and scheduled
by priority with preemption, the worst case response time
of task τi is

Ri = Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj (1)

where hp(i) indicates the indexes of all tasks allocated to
the same processor, with priority higher than τi. Similarly,
the worst case response time of runnable ρk,i is

Rk,i =
∑
p≤k

γp,i +
∑

j∈hp(i)

⌈
Rk,i

Tj

⌉
Cj (2)

The response time of a runnable will also be indicated with
a single index whenever the runnable has a single index
(without reference to the task into which it is mapped).

A. Explicit synchronization between writer and reader
For any pair of runnables ρi and ρj mapped to different

cores, we are interested in knowing whether the execution
of ρi and ρj can overlap. We denote the minimum offset
from the activation of ρi to the following activation of ρj
that is released later than ρi as oi,j , and the minimum offset
from ρj to ρi as oj,i. If the worst case response time Ri of
ρi is no greater than oi,j , then the finish time Fi of ρi is
Fi = Oi+Ri ≤ Oi+oi,j = Oj ≤ Sj , where Oi and Oj are
the release times of ρi and ρj respectively. Likewise, if the
response time Rj of ρj is no greater than oj,i, then the finish
time Fj of ρj is Fj = Oj +Rj ≤ Oj + oj,i = Oi ≤ Si. In
summary, if the following (sufficient) condition is satisfied

Ri ≤ oi,j
∧

Rj ≤ oj,i (3)

there is no overlap in the execution window of ρi and ρj , as
shown in Figure 4. Communication variables do not need to
be protected thus there is no timing and memory overhead.



reader

o

writer writer

reader

wr

R R

reader

r

rw

w

writer

o

Figure 4. Absence of overlap in the execution of the writer and the reader.

B. Wait-free communication buffers

The objective of wait-free methods is to avoid blocking
by ensuring that each time a writer needs to update the
communication data, it is reserved a new buffer area. At the
same time, readers are free to use other dedicated buffers.
Of course, as in the SR semantics, a reader that preempts a
writer (only possible if the reader has higher priority) will
access the latest buffer for which a write has been completed
(not the one currently being written).

Figure 5 shows the typical stages performed by the writer
and the reader in a wait-free protocol implementation.

Signal read completion

Writer

Step 1

Reader

Find a free buffer position

Write data

Find the latest written entry
Mark entry as in use

Step 3

Step 2 Read data

Signal write completion

Figure 5. Stages for Writer and Readers in a wait-free protocol.

These stages have been implemented in [5] by means of
an atomic Compare-And-Swap (CAS) operation. The CAS
takes three operands

Compare-and-Swap(mem, v1, v2)

where the value v2 is written into the memory location mem
only if the current value of mem is equal to v1. Otherwise,
the value at mem is left unchanged. The algorithm makes use
of three global sets of data. An array of buffers (BUFFER)
is sized so that there is always an available buffer for the
writer to write new data. An array READING that keeps
track in the i-th position what is the buffer index in use by
the i-th reader. When the reader is in the process of updating
this information, a value 0 is stored in this entry. Finally, a
variable LATEST keeps track of the latest BUFFER entry
that has been updated by the writer. The code for the writer
is shown in Algorithm 1. The writer updates the view of
what buffers are used by readers and then picks a free buffer
using the procedure GetBuf(). Then, it uses the buffer item
to write the newly produced data item and updates LATEST.
Finally, it uses CAS operation to ensure the consistency in
the updates of the READING indexes.

On the reader side, the code is in Algorithm 2. The reader
first looks for the latest entry updated by the writer, stores

Algorithm 1: Modified Chen’s Protocol for Writer
Data: BUFFER [1,...,NB]; NB: Num of buffers
Data: READING [1,...,n]; n : Num of readers
Data: LATEST

1 GetBuf();
2 begin
3 bool InUse [1,...,NB];
4 for i=1 to NB do InUse [i]=false;
5 InUse[LATEST ]=true;
6 for i=1 to n do
7 j = READING [i];
8 if j !=0 then InUse [j]=true;
9 end

10 i=1;
11 while InUse [i] do ++i;
12 return i;
13 end
14 Writer();
15 begin
16 integer widx, i;
17 widx = GetBuf();
18 Write data into BUFFER [widx];
19 LATEST = widx;
20 for i=1 to n do CAS(READING [i],0,widx);
21 end

Algorithm 2: Modified Chen’s Protocol for Readers
Data: BUFFER [1,...,NB]; NB: Num of buffers
Data: READING [1,...,nr]; nr : Num of readers
Data: LATEST

1 Reader();
2 begin
3 constant id; – Each reader has its unique id;
4 integer ridx;
5 READING [id]=0;
6 ridx = LATEST;
7 CAS(READING [id],0,ridx);
8 ridx = READING [id];
9 Read data from BUFFER [ridx];

10 end

it in the local variable ridx and then reads its contents.
This mechanism ensures data consistency with some

runtime overhead (its complexity is O(nr) where nr is the
number of readers), but it avoids the introduction of blocking
times. However, it requires a number of buffer replicas, thus
additional memory, if compared with lock-based methods.
The number of required buffers is nr + 2 in [5], which has
been improved in following researches [14] [16]. Finally, the
wait-free mechanism presented in [5] does not preserve the
flow semantics of SR models, given that the value being read
is simply the latest one updated by the writer and therefore
depends on the scheduling of the writer and the reader.

C. Lock-based mechanisms

MPCP (Multiprocessor Priority Ceiling Protocol) [13] is
the multiprocessor extension of the priority ceiling protocol
(PCP). Tasks use assigned priorities for normal executions,
and inherit the ceiling priority of the resource whenever
they execute a critical section on a shared resource. The



ceiling priority of a local resource is defined as the highest
priority of any task that can possibly use it. For a global
resource, its remote priority ceiling is required to be higher
than any task priority in the system. For this purpose, a base
priority offset which is higher than the priority of any task
is applied to all global resources. Jobs are suspended when
they try to access a locked global critical section and added
to a priority queue. The suspension of a higher priority task
blocked on a global critical section allows other local tasks
(possibly lower priority ones) to be executed and may even
try a lock on local or global critical sections. The worst-case
remote blocking time of a job is bounded as a function of
the duration of critical sections of other jobs, and does not
depend on the non-critical sections (see Equations (6)-(8)).

MSRP (Multiprocessor Stack Resource Policy) [7] is
a multiprocessor synchronization protocol, derived by ex-
tension from the Stack Resource Policy (SRP). For local
resources, the algorithm is the same as the SRP algorithm,
where tasks are allowed to access local resource through
nested critical sections. However, global critical sections
cannot be nested. A task that fails to lock on a global
resource keeps spinning instead of suspending as in MPCP,
thus keeping its processor busy. To minimize the spin
lock time (which is a wasted CPU time), tasks cannot be
preempted when executing a critical section on a global
resource to ensure that the resource be freed as soon as
possible. MSRP uses a First-Come-First-Serve queue (as
opposite to a priority-based queue in MPCP) for each global
resource to manage the tasks that fail to lock the resource.

FMLP (Flexible Multiprocessor Locking Protocol) [4] is
a flexible approach which combines the strengths of MPCP
and MSRP. It manages short resource requests by a busy-
wait mechanism (as in MSRP), and long resource requests
using a suspension approach (as in MPCP). The threshold to
determine whether a resource should be considered long or
short is specified by the user. Since FMLP allows resource
requests be nested, deadlock is prevented by grouping re-
sources and allowing only one job to access resources in
any given group at any time. Each group contains either
only short (protected by a non-preemptive queue lock) or
only long (protected by a semaphore) resources.

The mixture of spinning with short critical section and
suspension with long critical section makes the analysis of
FMLP very complex. For simplicity, in the following we
only summarize the timing analysis of MSRP and MPCP.
We assume periodic tasks under partitioned static priority
scheduling policies. With respect to memory, MPCP is a
suspension-based locking mechanism and does not allow
sharing the stack space of tasks. When using MSRP or any
spin-lock based policy, the execution of all tasks allocated
to the same processor can be perfectly nested (once a task
starts execution it cannot be blocked, but only be preempted
by a higher priority task which completes before it resumes
execution), therefore all tasks can share the same stack.

1) Timing Analysis of MPCP [11]: The execution of task
τi is defined as a set of alternate code sections in which the
task executes without the need of a (global or local) shared
resources, defined as normal execution segments, and critical
sections. The worst case execution time (WCET) can be de-
fined by a tuple {Ci,1, C

′
i,1, Ci,2, C

′
i,2, ..., C

′
i,s(i)−1, Ci,s(i)},

where s(i) is the number of normal execution segments of
τi, and s(i) − 1 is the number of critical sections. Ci,j

is the WCET of the j-th normal execution segment of τi
and C ′

i,j the WCET of the j-th critical section. πi denotes
the normal priority of τi (the higher the number, the lower
the priority), Ti the period, and Ei the CPU resource. The
global shared resource associated to the j-th critical section
of τi is denoted as Si,j . The remote priority ceiling for Si,j

is denoted as Πi,j , which is defined globally and can be
compared with critical sections for tasks on the same core
as well as other cores. The WCET Ci of τi is

Ci =
∑

1≤j≤s(i)

Ci,j +
∑

1≤j<s(i)

C ′
i,j (4)

The normal execution segment of a task can be blocked by
the critical section of each lower priority task on the same
core. For each of the s(i) normal execution segment, the
worst case local blocking time τi may suffer is the longest
critical section among all the lower priority tasks. Thus the
total local blocking time of τi is

Bl
i = s(i)×

∑
k:πk>πi&Ek=Ei

max
1≤m<s(k)

C ′
k,m (5)

τi can only be interfered by critical sections with a higher
remote priority ceiling once it enters its critical section. Also,
since the critical section has a higher priority than the normal
execution segment, in a critical section τi will only suffer
one such interference for each task on the same core. Thus
the response time of the j-th critical section is bounded by

W ′
i,j = C ′

i,j +
∑

k ̸=i:Ek=Ei

max
1≤m<s(k)&Πk,m<Πi,j

C ′
k,m (6)

The remote blocking time Br
i,j suffered in the j-th critical

section can be calculated by the following iterative formula

Br
i,j = max

πk>πi&Sk,m=Si,j

W ′
k,m

+
∑

πh<πi&Sh,n=Si,j

(

⌈
Br

i,j

Th

⌉
+ 1)W ′

h,n

(7)

where its initial value can be set as the first term on the right
hand side. The total remote blocking time is

Br
i =

∑
1≤j<s(i)

Br
i,j (8)

The worst case response time Ri of τi can be calculated
as the convergence of the following iterative formula

Ri = Ci +Bl
i +Br

i +
∑

πh<πi&Eh=Ei

⌈
Ri +Br

h

Th

⌉
Ch (9)



2) Timing Analysis of MSRP [7]: The spin block time
Li,j that a task τi needs to spend for accessing a global
resource Si,j can be bounded by

Li,j =
∑
E ̸=Ei

max
τk:Ek=E,1≤m<s(k)

C ′
k,m (10)

This is the time increment to the j-th critical section of τi,
thus its actual worst case execution time C∗

i is

C∗
i = Ci +

∑
1≤j<s(i)

Li,j (11)

MSRP maintains the same basic property of SRP, that is,
once a task starts execution it cannot be blocked. The local
blocking time Bl

i and remote blocking time Br
i are

Bl
i = max

k:πk>πi&Ek=Ei

max
1≤m<s(k)

C ′
k,m (12)

Br
i = max

k:πk>πi&Ek=Ei

max
1≤m<s(k)

C ′
k,m + Lk,m (13)

The worst case response time Ri of τi can be calculated as
the convergence of the following iterative formula

Ri = C∗
i +Bl

i +Br
i +

∑
πh<πi&Eh=Ei

⌈
Ri

Th

⌉
C∗

h (14)

D. Timing analysis with release jitter

The scheduling solutions can be based on a slightly
different task activation model. Besides the pure periodic
activation model, response time analysis can be performed
in the case when the activation of task instances can be
deferred by a bounded quantity of time from the periodic
activation signal. For task τi, the activation or release jitter
Ji is defined as the worst case delay from the periodic
activation signal to the true activation of the task instance.
When the system tasks are activated with release jitter, the
formula for computing the worst case response time changes.
For example, (1) must be revised as

Ri = R∗
i + Ji, R∗

i = Ci +
∑

j∈hp(i)

⌈
R∗

i + Jj
Tj

⌉
Cj (15)

Similarly, Equations (9) and (14) must be updated to
account for the release jitter.

Lock-based mechanisms do not guarantee the preservation
of SR flows and are not meant to. A discussion of mecha-
nisms for flow preservation in addition to data consistency
is the subject of the next section.

III. MECHANISMS FOR PRESERVING SR
COMMUNICATION FLOWS IN MULTICORE SYSTEMS

Of the previous general categories of protection mech-
anisms, only two can be adapted to also provide flow
preservation. Lock-based mechanisms are indeed based on
the assumption that the execution order of the writer and
reader is unknown and there is the possibility of one to

preempt the other while operating on the shared resource.
Therefore the possible options are:

1) enforcing synchronization in the scheduled execution
of the writer and its readers.

2) wait free methods with flow preservation.

A. Enforcing synchronization in the execution of the writer
and its readers

This case requires little changes to the timing conditions
for demonstrating the absence of preemption between the
writer and its readers. The main addition is the enforcement
of an execution order among writer and reader runnables
and the definition of a deadline for the reader task.

B. Wait-free communication buffers

Rate Transition blocks are in the general category of wait-
free communication methods (although they are a special im-
plementation for a restricted case). Therefore, their extension
to the communication of runnables executing on different
cores belongs to this section and is discussed first.

Local priorities of the writer and the reader are of course
not sufficient to enforce an execution order as in the single-
core case. Since the runnables are executed with partitioned
scheduling, there is generally no notion of global priority.

deadline

iτ
RT df

τ j

shared

memory

deadline
activation

with offset

o
1,2

iτ
RT df

τ j

shared

memory

activation

signal

Figure 6. Direct feedthrough RT blocks in multi-cores with two activation
options for the reader: event-triggered (top) and time-triggered (bottom)

For direct feedthrough RT block, the writer and reader
runnables (tasks) need to be scheduled as shown in Figure 6
for a communication link from τi and τj . The reader needs
to execute after the output update portion of the RT block
(following the first writer instance), and before the third
instance of the writer completes and the RT output update
function is executed again. This can be obtained in two ways
depending on the support provided by the operating system.

After the execution of the output update part of the RT
block which is on the same core as the writer runnable, an
activation signal can be sent to the receiver task (typically
realized as an inter-processor interrupt signal) as shown in
the upper part of the figure. As in the single processor case,
the implementation of the RT block consists of the update
function only. The variables shared between cores are the
output variable of the RT block. Since the receiver must



terminate before the next execution of the update function of
the RT block, the receiver is characterized by a base period
Tj , an activation jitter Jj equal to the worst case response
time of the writer runnable (including the RT block portion)
Ri, and a deadline Tj . This implementation does not require
any clock synchronization among the two cores (and their
schedulers). The problem lies in the activation jitter of the
receiver task, which impacts on the timing analysis of the
lower priority tasks executing on the same core.

A different option consists in the synchronized activation
of the writer and reader as in the bottom part of Figure 6.
In this case, the reader is activated by a periodic signal,
synchronized with the activation of the writer, with offset
oi,j no less than the worst-case response time Ri of the
writer τi. The absolute deadline is the same as in the
previous case, and the reader must be completed within
Tj − oi,j time units from its activation. The two conditions
on the offset and the receiver deadline can be summarized
by the following formula (regardless of whether Ti ≥ Tj or
Ti < Tj)

Ri ≤ oi,j
∧

Rj + oi,j ≤ Tj (16)

This implementation requires the synchronization of the two
schedulers. The feasibility of the receiver execution within
the deadline is similar to the previous case, but with the
advantage of activations without jitter.

deadline

iτ
RT ud

τ j

shared

memory

deadline

iτ
RT ud

τ j

shared

memory

activation

signal

Figure 7. Unit delay RT blocks in multi-cores with two activation options
for the writer: event-triggered (top) and time-triggered (bottom)

For unit-delay RT block, there are similar requirements
between the execution of the reader and the writer runnables
and the state update and output update parts of the RT block.
The situation is summarized in Figure 7. The global shared
variable is the state variable of the RT block. As in the
case of direct feedthrough blocks, there are two scheduling
options for the activation of the writer task, including the
state update part of the RT block. The writer task can be
activated by an interrupt signal, generated right after the
completion of the output update part of the RT block in
the receiver task. The other option is to be activated with
a set of periodic signals, synchronized with the activation
of the receiver task, with an offset equal to the worst case
response time of the output update function of the RT block.

The deadlines are similarly computed as the writer period,
or the difference between the writer period and the offset.

In the implementation of more general wait-free mech-
anisms providing a correct implementation of SR flows in
the case that periods are not harmonic, an additional effort
is required. Any correct implementation of an SR model
requires that the data item used by the reader be defined
based on the writer and reader task activation times. Both
tasks, however, are not guaranteed to start their execution at
their release times because of scheduling delays. Therefore,
the selection of the data that is written or read must be
delegated to the operating system (or a hook procedure
that is executed at the task activation time). At execution
time, the writer and the readers will use the buffer positions
defined at their activation times. Of course, as in the case of
the previously considered wait-free mechanisms, the writer
may produce multiple outputs before the reader finishes
reading the data. In this case, the implementation must
consist of an array of buffers in which pointers (indices)
are assigned to writers and readers to find the right entry.

In the general case of multiple reader tasks, the buffer
sizes can be defined by analyzing the relationship between
the writer and its reader task instances, as shown in [16].
With reference to the algorithm presented in the previous
sections, the writer and reader protocols need to be parti-
tioned in two sections, one executed at task activation time,
the other at runtime. The management of the buffer po-
sitions (READINGLP[], READINGHP[], PREVIOUS and
LATEST) are delegated to the operating system or a hook
procedure that is executed at the task activation time. The
write and read operations are executed at the runtime time,
using the buffer positions defined at their activation time.

Readers are divided in two sets according to different re-
quirements for flow preservation. Lower priority readers read
the value produced by the latest writer instance activated
before their activation (the communication link is direct
through). Higher priority readers read the value produced
by the previous writer instance (the communication link
has a unit delay). The two corresponding buffer entries
are indicated by the LATEST and PREVIOUS variables.
Two separate arrays, READINGLP[] and READINGHP[],
contain one entry for each low and high-priority readers
respectively, even if they are managed in the same way. The
writer updates all zero-valued elements of READINGHP[]
and READINGLP[] with the value of PREVIOUS and
LATEST respectively (lines 24 and 25 in Algorithm 3).
The pseudo code for the writer and readers is shown in
Algorithms 3 and 4, respectively.

When the reader executes on a different core than the
writer, if the communication link is direct feedthrough,
additional mechanisms need to be employed to ensure the
reader starts execution after the data is written. This is
because of the assumption that tasks (runnables) on different
cores are scheduled separately thus there is no guarantee



Algorithm 3: Modified Chen’s Protocol for SR flow
preservation - Writer part

Data: BUFFER [1,...,NB]; NB: Num of buffers
Data: READINGLP [1,...,nlp]; nlp: Num of lower priority readers
Data: READINGHP [1,...,nhp]; nhp: Num of higher priority readers
Data: PREVIOUS, LATEST

1 GetBuf();
2 begin
3 bool InUse [1,...,NB];
4 for i=1 to NB do InUse [i]=false;
5 InUse[LATEST]=true;
6 for i=1 to nlp do
7 j = READINGLP [i];
8 if j !=0 then InUse [j]=true;
9 end

10 for i=1 to nhp do
11 j = READINGHP [i];
12 if j !=0 then InUse [j]=true;
13 end
14 i=1;
15 while InUse [i] do ++i;
16 return i;
17 end
18 Writer activation();
19 begin
20 integer widx, i;
21 widx = GetBuf();
22 PREVIOUS = LATEST;
23 LATEST = widx;
24 for i=1 to nhp do CAS(READINGHP [i], 0, PREVIOUS);
25 for i=1 to nlp do CAS(READINGLP [i], 0, LATEST);
26 end
27 Writer runtime();
28 begin
29 Write data into BUFFER [widx];
30 end

that the writer will finish execution before the reader starts.
Like the case of RT blocks, this execution order can be
enforced by an activation signal sent to the reader (typically
realized as an inter-processor interrupt signal), or by the
synchronized activation of the writer and reader.

IV. OPTIMIZATION OPPORTUNITIES: A MOTIVATING
EXAMPLE

As stated in the previous section, several methods can be
used to ensure data consistency, time determinism, and flow
preservation. In some cases, it is possible to achieve safe
operation without additional costs, by simply enforcing the
synchronization of the writer and the reader and ensuring
no overlap in their execution. This sometimes requires the
careful selection of the mapping order of runnables into
tasks and the allocation of tasks to cores. In other cases,
several methods are available that offer tradeoffs between
the amount of additional memory, runtime overheads, and
additional blocking time imposed over tasks. These methods
can be used in a combination. For example, by assigning
an early execution order to runnables with large sets of
communication and shared state variables, then by prop-
erly configuring the activation offsets of tasks to guarantee

Algorithm 4: Modified Chen’s Protocol for SR flow
preservation - Readers

1 ReaderLP activation();
2 begin
3 constant id; – Each lower priority reader has its unique id;
4 integer ridx;
5 READINGLP [id]=0;
6 ridx = LATEST;
7 CAS(READINGLP [id],0,ridx);
8 ridx = READINGLP [id];
9 end

10 ReaderHP activation();
11 begin
12 constant id; – Each higher priority reader has its unique id;
13 integer ridx;
14 READINGHP [id]=0;
15 ridx = PREVIOUS;
16 CAS(READINGHP [id],0,ridx);
17 ridx = READINGHP [id];
18 end
19 Reader runtime();
20 begin
21 Read data from BUFFER [ridx];
22 end

absence of preemption when possible. For the variables
that still need to be protected, use spin-based mechanisms
for runnables with short global critical sections and the
other mechanisms to the remaining cases, possibly using
wait-free communication when the memory overheads for
the replicated buffers can be tolerated. By formalizing the
memory cost and the amount of additional execution time or
blocking time that is required by these methods, it should be
possible to define an optimization problem to find the best
system configuration.

1 S
1

S
2

E1 E2

32 bytes

τ

τ

τ

τ

4

τ

16 bytes
56

3

2

τ

Figure 8. An example dual-core system with two global shared resources.

As a motivating example, consider the system of Figure
8. Each of the two cores is executing three tasks, which
are indexed in priority order (τ1 has the highest priority, τ6
the lowest). The two global shared resources S1 and S2 are
used by tasks that are mapped to different cores. The shared
resources are the communication variables accessed by the
tasks, and the sizes of the variables for S1 and S2 are 32
and 16 bytes, respectively. The global critical sections on
S1 are assumed to have higher priorities than those on S2.
The parameters for the tasks including the priority πi, the
period Ti, and the execution time Ci, are given in Table I.
The deadlines are assumed to the be the same as the period.



Table I
TIMING ANALYSIS OF DIFFERENT MECHANISMS FOR DATA

CONSISTENCY (TIME UNIT: MILLISECOND)

τi Ei πi Ti Ci MPCP MSRP Wait-free
Bl

i Br
i Ri Bl

i Br
i Ri Ri

τ1 E1 1 5 {1, 0.5, 1} 2.0 0.5 5.0 0.5 1.0 4.5 2.5
τ2 E2 2 5 {1, 0.5, 1} 2.0 1.0 5.5 0.5 1.0 4.5 2.5
τ3 E1 3 10 {0.5,0.5,0.5} 1.0 1.5 9.0 0.5 1.0 9.5 4.0
τ4 E2 4 10 {0.5,0.5,0.5} 1.0 3.5 13.0 0.5 1.0 9.5 4.0
τ5 E2 5 10 {0.6,0.5,0.6} 0 3.5 18.2 0 0 13.2 8.2
τ6 E1 6 10 {0.6,0.5,0.6} 0 7.0 24.2 0 0 13.2 8.2

The timing analysis results for the tasks are shown in
Table I, comparing the possible implications using MPCP
(Equation (9)), MSRP (Equation (14)), and wait-free method
(Equation (1)) to guarantee the data consistency. In this
example, the length of the critical sections are all set to
be 0.5ms, which is relatively long. Because of the long
remote blocking due to global critical sections, and possible
back-to-back executions due to suspended tasks, the MPCP
mechanism performs poorly: the remote blocking time can
be as large as 7ms, and 4 out of 6 tasks are not schedu-
lable. MSRP mechanism can limit the local and remote
blocking time, but the system is still unschedulable. Wait-
free mechanism removes the blocking altogether at the price
of additional buffer memory and (small) timing overheads
for buffer access management. In the table, we show the
result of wait-free method assuming no timing overhead,
where all tasks are schedulable. In [17], the performance
of the implementations using the ePICos18 OSEK RTOS
is evaluated. On the 40 MHz-10 MIPS PIC18F452 pro-
cessor, the procedures for wait-free mechanisms needs 77
instruction cycle (or 7.7 µs). The timing overhead associated
to the management of the buffer pointers in the wait-free
mechanism is expected to be very short compared to the
duration of a critical section.

In our example, the memory overhead associated to the
wait-free method can be upper bounded by nr+2 additional
copies of the shared variable where nr is the number of
readers [5] (but results improving this bound are available,
e.g. [16]), thus for this example the total memory overhead
is (1 + 2)× 32 + (3 + 2)× 16 = 176 bytes.

V. CONCLUSION AND FUTURE WORK

In this paper, we described some of the issues in the
implementation of a set of AUTOSAR runnables into a set of
concurrent tasks on multicore platforms. The requirements
for the consistency of communication and state variables
and the possible additional requirements of flow preservation
(time determinism on the communication) can be satisfied
using several protection mechanisms. The available methods
offer tradeoffs between time response (and time overheads)
and demand for additional (RAM) memory. Memory costs
need to be analyzed, in light of the time constraints of the
application, to select the best mechanism for the application

runnables or possibly a combination of them within the same
application. As the future work, we plan to implement the
proposed algorithms for wait-free methods along with lock
based mechanisms (MPCP, MSRP, etc.) on an AUTOSAR
operating system, to characterize the associated timing and
memory overheads of these methods and compare them.

REFERENCES

[1] J. H. Anderson, S. Ramamurthy, and K. Jeffay. Real-
time computing with lock-free shared objects. ACM Trans.
Comput. Syst., 15:134–165, May 1997.

[2] T.P. Baker. A stack-based resource allocation policy for
realtime processes. In RTSS ’90: Proceedings of the 11th
IEEE Real-Time Systems Symposium, pages 191–200, 1990.

[3] A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le
Guernic, and R. de Simone. The synchronous languages 12
years later. Proceedings of the IEEE, 91, January 2003.

[4] A. Block, H. Leontyev, B. B. Brandenburg, and J. H. Ander-
son. A flexible real-time locking protocol for multiprocessors.
In Proc. IEEE Conference on Embedded and Real-Time
Computing Systems and Applications, pages 47–56, 2007.

[5] J. Chen and A. Burns. A fully asynchronous reader/write
mechanism for multiprocessor real-time systems. Technical
Report YCS 288, Department of Computer Science, Univer-
sity of York, May 1997.

[6] J. Chen and A. Burns. Loop-free asynchronous data sharing in
multiprocessor real-time systems based on timing properties.
In Proc. of International Conference on Real-Time Computing
Systems and Applications, pages 236–246, 1999.

[7] P. Gai, G. Lipari, and M. Di Natale. Minimizing memory
utilization of real-time task sets in single and multi-processor
systems-on-a-chip. In Proceedings of the 22nd IEEE Real-
Time Systems Symposium, pages 73–83, 2001.

[8] M. Herlihy. A methodology for implementing highly concur-
rent structures. In Proc. of ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 1990.

[9] H. Huang, P. Pillai, and K. G. Shin. Improving wait-free
algorithms for interprocess communication in embedded real-
time systems. In USENIX Annual Technical Conference,
pages 303–316, 2002.

[10] H. Kopetz and J. Reisinger. The non-blocking write protocol
NBW: A solution to a real-time synchronization problem. In
Proc. of IEEE Real-Time Systems Symposium, 1993.

[11] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated
task scheduling, allocation and synchronization on multipro-
cessors. In RTSS ’09: Proceedings of the 30th IEEE Real-
Time Systems Symposium, pages 469–478, 2009.

[12] MathWorks. The MathWorks Simulink and StateFlow User’s
Manuals. web page: http://www.mathworks.com.

[13] R. Rajkumar. Real-time synchronization protocols for shared
memory multiprocessors. In Proc. of International Confer-
ence on Distributed Computing Systems, pp. 116–123, 1990.

[14] C. Sofronis, S. Tripakis, and P. Caspi. A memory-optimal
buffering protocol for preservation of synchronous semantics
under preemptive scheduling. In Proc. of International
conference on Embedded software, pages 21–33, 2006.

[15] The AUTOSAR consortium. The AUTOSAR Standard, spec-
ification version 4.0. web page: http://www.autosar.org.

[16] G. Wang, M. Di Natale, and A. Sangiovanni-Vincentelli.
Improving the size of communication buffers in synchronous
models with time constraints. IEEE Transactions on Indus-
trial Informatics, 5(3):229–240, August 2009.

[17] G. Wang, M. Di Natale, and A. Sangiovanni-Vincentelli.
Optimal synthesis of communication procedures in real-time
synchronous reactive models. IEEE Transactions on Indus-
trial Informatics, 6(4):729–743, November 2010.


