
Efficient Implementation of AUTOSAR Components with Minimal Memory Usage

Haibo Zeng
McGill University, haibo.zeng@gmail.com

Marco Di Natale
Scuola Superiore Sant’Anna, marco@sssup.it

Abstract—The implementation of AUTOSAR runnables in
a concurrent program executing as a set of tasks reveals
several issues and trade-offs because of the need to protect
communication and state variables, to guarantee deadlines and
preserve the flow semantics of the model and the objective of
using the least possible amount of memory. We discuss some of
these tradeoffs and options and outline a problem formulation
that can be used to compute the solution with minimum
memory requirements executing within the time constraints.

I. INTRODUCTION

The AUTOSAR development partnership has been created
to develop an open industry standard for automotive software
architectures, including the definition of components and
their interface. In AUTOSAR, the functional architecture of
the system is a collection of SW Components cooperating
through their interfaces on a conceptual framework called
Virtual Functional Bus or VFB. Components interfaces are
ports for data-oriented or service-oriented communication.
In the first case (of type Send-Receive), the port represents
(asynchronous) access to a shared storage in which one
component may write into and others may read from. In the
case of service-oriented communication, a client component
may invoke the services of a server component.

The behavior of each AUTOSAR component is repre-
sented by a set of runnables, procedures that can be executed
in response to events, such as timer activations (for periodic
runnables), or data writes on ports, or other application
signals. In this work, we restrict to runnables that are
activated in response to periodic timer events.

Runnables may need to update as well as use state vari-
ables for their computations, which requires exclusive access
(write/read) to such state variables. In AUTOSAR these
variables are labeled as InterRunnableVariables and can only
be shared among runnables belonging to the same compo-
nent. Of course, (data) interactions among components occur
when runnables write into and read from interface ports.
When communicating runnables are mapped into different
tasks that can possibly preempt each other, the variables
implementing the communication port need to be suitably
protected to ensure consistency of the data.

The implementation of runnables consists of the code
implementing the functionality. With respect to scheduling,
the runnables code is executed by a set of threads in a task
and resource model. Runnables from different components

may be mapped into the same task and must be mapped in
such a way that ordering relations are preserved.

In this paper, we deal with timing issues at the local level,
that is, for components mapped into tasks executing on
the same ECU. The mapping of runnables into tasks, the
configuration of the task model, and the selection of the
mechanisms for the implementation of the communication
over ports (protecting against data inconsistency and possi-
bly flow semantics violations) have a large impact on the
performance of the system. The selection of the communi-
cation mechanism and the protocol to protect state variables
leverages tradeoffs between time overhead for the execution
of the protocol, memory required for the implementation of
the mechanism and possible blocking time. In this work,
using the AUTOSAR model and definitions, we present a
scheme for the optimal selection of

• the execution order of runnables mapped into a task
• the assignment of preemption thresholds to tasks
• the selection of the appropriate mechanism for pro-

tecting communication variables and state variables
among a set of possible choices that includes pre-
emption disabling, lock-based methods (priority ceiling
semaphores), and wait-free methods.

within constraints defined on the application as
• deadlines for tasks and runnables
• the (optional) need to preserve the flow semantics on

communication links
with the objective of minimizing the use of RAM memory
for stack space and the implementation of communication.

II. SYSTEM MODEL: ASSUMPTIONS AND NOTATION

An AUTOSAR model of execution is represented by
a Directed Graph G = {V, E}, where V is the set of
vertices, representing the runnables, and E the set of edges
or links between runnables. Such a graph will have inputs
from sampling, source and constant blocks, representing the
signals from the controlled system or plant. At the other
end of the graph, the output signals are the result of the
controller’s computations. We assume an implementation on
a single processor where concurrent tasks are scheduled by
fixed priority. The notation is the following:
ρ = {ρ1, . . . , ρ|ρ|} is the set of runnables. A runnable ρi

reads from a set of input ports, denoted as E in
i , and a set

of output ports, denoted as Eout
i . Each runnable is activated

periodically, with period ti, which is also the sampling
period for the signals on the input ports. The signals are
processed by the runnable and the result of the computation
is a set of signal with the same rate, produced on the output
ports. We also denote the set of data ports accessed by ρi
as Ei = E in

i

∪
Eout
i .

E = {ε1, . . . , ε|E|} is the set of shared resources. We
consider the case of one-to-many communication: a shared
resource εi has a writer runnable, denoted as ρW(εi), and
a set of reader runnables ρR(εi). We also denote the set
of readers with higher (lower) priority than the reader
ρW(εi) as ρHR(εi) (ρLR(εi)). Mi denotes the size of the data
communicated over εi.

The execution time of a runnable ρi is characterized by
(Ci,0, Ci,1, ..., Ci,|E in

i |, ..., Ci,|E in
i |+|Eout

i |), where

• |E in
i | is the number of execution segments of ρi reading

from input ports;
• |Eout

i | is the number of execution segments of ρi writing
into output ports;

• Ci,0 is the total worst case execution time of the normal
execution segments;

• Ci,j , j = 1, ..., |E in
i | is the worst-case execution time of

the critical section on the j-th input port;
• Ci,|E in

i |+j , j = 1, ..., |Eout
i | is the worst case execution

time of the critical section on the j-th output port.

We also use Ci(εk) to denote the worst case execution
time of ρi accessing the input/output port εk, ∀εk ∈
E in
i

∪
Eout
i . The worst case execution time ci of the runnable

ρi also depends on the time overhead of the mechanism used
to protect the shared resources.
T = {τ1, . . . , τ|T |} is the set of tasks. Each task τi has a

priority Πi and an activation period Ti. Each task is periodic
with an offset equal to zero, thus all tasks start at the same
time instant t = 0. The task τi is also assigned with a unique
priority Πi.

A mapping relation m(ρi, τj , k) may be defined between
a runnable ρi and a task τj meaning that the code imple-
menting the runnable ρi is executed in the context of task τj
with ordering index k. A mapping relation is only possible
if the execution period of ρi is an integer multiple of τj ,
i.e. ti = ki · Tj for some integer ki. The deadline of the
ρi is defined as the period of the task τj it is mapped to,
thus Di = Tj , which is no greater than the period ti of ρi.
The priority order of runnables is inherited from the priority
order of the tasks they are mapped into, the priority πi of
runnable ρi is inherited from the priority of the task τh it
is mapped to, i.e. πi = Πh. If two runnables are mapped
to the same task, the mapping order index must match the
partial order in the execution of the runnables.

Besides the normal priority πi, a runnable ρi is also
assigned a preemption threshold γi with πi ≥ γi [4]. When
the runnable is activated, it is inserted in the ready queue
inside the task it is mapped to with the normal priority.

When the runnable starts execution, its priority is raised to
the preemption threshold level.

As summarized in [3], there are four different mecha-
nisms, all of which can guarantee data consistency, but only
two of them ensure flow preservation.
M1: Demonstrating absence of preemption. For any pair of
runnables ρi and ρj mapped to different tasks, with priority
πi > πj , we denote the minimum offset from the activation
of ρi to the following activation of ρj as oi,j . If the worst
case response time ri of ρi is no greater than oi,j , then there
can be no preemption from ρj to ρi. This can be applied for
both data consistency and flow preservation.
M2: Disabling preemption. Preemption can be disabled
for runnables with negligible time and memory overhead.
However, this will result in a worst case blocking time (for
other higher priority runnables) equal to the duration of the
longest runnable. However, this mechanism alone cannot
guarantee flow preservation as it has no awareness on the
writer instance the reader is reading from (which is the key
for flow preservation).
M3: Wait-free communication buffers. For a shared re-
source εi, suppose the number of lower priority reader tasks
is nLR

i . We denote the number of additional buffers needed
for the wait-free communication implementation as ni. As
in [9] [10], the higher priority readers use one buffer, and
all the others require, in the worst case, a total of nLR

i + 1
buffers. Thus, if there is any higher priority reader, then
ni = nLR

i +2; otherwise ni = nLR
i +1. This mechanism can

be applied for both data consistency and flow preservation.
The implementation of the wait-free method also results in

time overhead. At activation time, the writer needs to find a
free buffer to store the data it will produce at runtime. In [10]
a constant time implementation is presented. We denote this
overhead as H1. Since the buffer selection code is executed
by the kernel at activation time, it provides interference
to all tasks in the system. At execution time, the writer
simply writes the data in the free buffer it has been assigned
at activation time with no time overhead. Each reader is
similarly assigned at activation time the buffer position from
which it reads. The timing overhead is denoted as H2. The
time overhead at execution time is assumed to be negligible.
M4: (Immediate) Priority Ceiling semaphores. The
other possibility is the use of immediate priority ceiling
semaphores. In this case, the timing overhead is a constant
H3, and the memory overhead is zero. The use of priority
ceiling semaphores also introduces blocking time in the
measure of the largest critical section executed by a lower
priority task on a resource also used by the task itself or a
higher priority one. This mechanism does not apply to the
purpose of flow preservation.

III. DEFINITION OF THE FEASIBILITY REGION

The design space must be constrained to contain only
the feasible solutions (for which runnables complete before

their deadlines). This requires an efficient formulation of the
feasibility region as well as other time constraints that apply
to runnable completion times in the MILP framework.

The original response time analysis for task sets scheduled
with preemption threshold was proposed in [4] and later
corrected in [8]. It considers all q∗ instances in the busy
period of level πi. This fact, together with the fact that the
number q∗ of such instances is not known a-priori, results
in excessive complexity for our purposes. Thus, we look
for lower and upper bounds to the region, corresponding,
respectively, to sufficient-only (pessimistic) and necessary-
only (optimistic) conditions for feasibility. We make use
of a method for the efficient encoding of schedulability
conditions in an MILP framework [11] [12].

A sufficient condition for the schedulability of τi is that
τi is schedulable assuming it is fully preemptive, i.e., its
preemption threshold is the same as its priority.∧

τi∈Γ

∨
t∈Ii

Bi +
∑

j:πj≤πi

rbfj(t) ≤ t (1)

where rbfj(t) denotes the request bound function of τj
within the interval of length t. The set of points Ii can
be computed using the methods described in [11]. The
blocking time Bi needs to account for the use of preemption
thresholds and priority ceiling protocols.

A necessary condition for task τi to be schedulable is that
the first instance in the busy period is schedulable. In this
case, feasibility can be evaluated by computing the worst-
case start and finish times of the first instance, respectively.
Its linearization and simplification in MILP framework can
be found in [12].

IV. PROBLEM FORMULATION IN MILP

In this formulation, we consider that the runnable to
task mapping and task priority assignment are given. The
designers still has the freedom to decide the execution order
of runnables inside a task. We only focus on the problem
of guaranteeing data consistency (thus all four mechanisms
can be used) and leave the problem of flow preservation to
future work. We make use of an integer- or binary-linear
programming (MILP) formulation.

A. Constraints

We define a set of optimization variables associated to
runnables and tasks.
Execution order relation among runnables The priority
order of runnables is inherited from the priority order of the
tasks they are mapped into, the priority πi of runnable ρi
is inherited from the priority of the task τh it is mapped
to, i.e. πi = Πh. If two runnables are mapped to the same
task, the mapping order index must match the partial order
in the execution of the runnables. For each pair of runnables
ρi and ρj mapped to the same task, we define an execution

order relation pi,j between them. pi,j is 1 if ρi has a smaller
execution index than ρj ; otherwise, it is 0.

∀ρi ̸= ρj ,m(ρi, τk, l) = m(ρj , τk, n) = 1,

pi,j =

{
1 if l < n
0 otherwise

(2)

The execution order is subject to the antisymmetric and
transitive properties of the execution order relation

pi,j + pj,i = 1
pi,j + pj,k − 1 ≤ pi,k

(3)

Preemption between runnables Once it starts execution,
the preemption threshold of a runnable is used to check
whether other runnables can preempt it. For each pair ρi, ρj ,
ρi cannot preempt ρj iff πi ≥ γj . A set of binary variables
is used to encode this condition

qi,j =

{
1 if πi ≥ γj
0 otherwise (4)

Also, if a runnable ρi has priority higher than or equal to
ρj , then ρj can not preempt ρi.

∀j : πj ≥ πi, qj,i = 1 (5)

Obviously if ρi and ρj are mapped to the same task (thus
πi = πj), they can not preempt each other.

If ρi cannot preempt ρj , then any runnable ρk with priority
≥ πi cannot preempt ρj , too; conversely, if ρi can preempt
ρj , any runnable with priority ≤ πi can preempt ρj .

∀k : πk ≥ πi, qk,j ≥ qi,j
∀k : πk ≤ πi, qk,j ≤ qi,j

(6)

Absence of preemption by timing analysis For any pair of
runnables ρi and ρj mapped to different tasks (with different
priority πi > πj), we use a binary variable to denote whether
the minimum offset oi,j from the activation of ρi to the
following activation of ρj allows to demonstrate that ρj
cannot preempt ρi.

∀ρi, ρj with πi > πj

zi,j =

{
1 if ri ≤ oi,j
0 otherwise

(7)

If oi,j ≥ Di, then the feasibility of ρi implies the absence
of preemption. In this case, we can set zi,j to be 1 and just
enforce the schedulability of ρi with respect to its deadline.

∀ρi, ρj with πi > πj and oi,j ≥ Di, zi,j = 1 (8)

No preemption between runnables Preemption cannot hap-
pen when:

• two runnables are mapped into the same task;
• preemption thresholds are assigned in such a way that

they cannot preempt each other;
• time analysis shows there can be no preemption.

The first condition is a special case of the second. Both are
captured by the binary variable qi,j .

For each pair of runnables ρi and ρj with priority πi >
πj , we use an additional set of binary variables to indicate
that ρj does not preempt ρi because of: 1) timing analysis
(zi,j = 1); 2) disabling preemption by preemption thresholds
(qj,i = 1).

∀ρi, ρj with πi > πj

hi,j =

{
1 if ri ≤ oi,j or qj,i = 1
0 otherwise

(9)

hi,j should satisfy a set of constraints by definition
hi,j ≤ zi,j + qj,i
hi,j ≥ zi,j , hi,j ≥ qj,i

(10)

Semaphore locks The set of shared resources can be pro-
tected by immediate priority ceiling semaphores. For each
resource εk, we define a binary variable lk to indicate
whether or not it is guarded by a semaphore lock.

lk =

{
1 if εk is protected by semaphore lock
0 otherwise (11)

Wait free methods For each link εk, we define a binary
variable to indicate the use of wait-free communication

wk =

{
1 if εk is protected by wait free method
0 otherwise (12)

For each link between the writer ρi ∈ EW
k and the low

priority reader ρj ∈ ELR
k , the wait free buffer can be avoided

if there is no preemption between ρi and ρj (hj,i = 1). We
define the set of binary variables

∀ρi ∈ EW
k , ρj ∈ ELR

k

fk,i,j =

{
1 if (ρi, ρj) is protected by wait free method
0 otherwise

(13)

wk and fk,i,j should be consistent with their definitions
fk,i,j ≤ 1− hj,i, fk,i,j ≤ wk (14)

Providing data consistency and time determinism As dis-
cussed, there are four mechanisms to guarantee the data
consistency and time determinism in the runnable to task
implementation.

Thus for any shared resource εk ∈ E , we have the
following constraint

∀ρi ∈ ρW(εk), ρj ∈ ρLR(εk), fk,i,j + lk ≥ 1− hj,i

∀ρi ∈ ρW(εk), ρj ∈ ρHR(εk), wk + lk ≥ 1− hi,j

(15)

For efficiency issues considering timing and overhead, we
only need to choose one mechanism between wait-free and
semaphore locks

wk + lk ≤ 1 (16)

If there is no preemption between the writer and any of
the readers, then wait-free buffers or semaphore locks are
not needed

wk+ lk ≤
∑

ρi∈ρW(εk),ρj∈ρLR(εk)

(1−hj,i)+
∑

ρi∈ρW(εk),ρj∈ρHR(εk)

(1−hi,j) (17)

Nonpreemption group The set of runnables can be parti-
tioned into nonpreemption groups by assigning a preemption
threshold or by proving that there is no preemption between
them. For each pair of runnables ρi and ρj mapped into
different tasks, we define a variable gi,j equal to 1 if ρi and
ρj ar in the same non-preemption group, and 0 otherwise.

gi,j =

{
1 if ρi and ρj are in the same group
0 otherwise (18)

ρi and ρj can only be in the same nonpreemption group
if it is proven that there is no preemption between them or
the preemption threshold is assigned in such a way that they
cannot preempt each other.

∀i, j with πi > πj , gi,j ≤ hi,j (19)

The nonpreemption group variable is subject to the sym-
metric and transitive properties

gi,j = gj,i
gi,j + gj,k − 1 ≤ gi,k

(20)

Execution time of runnables The worst case execution time
of the runnable ρi is also dependent on the mechanism to
protect the shared resources. Different mechanisms require
different time overhead. For each runnable ρi, we define
c′i(εk) as the execution time considering the time overhead
on each link εk ∈ Ei. It is

c′i(εk) = Ci(εk) +H3 · lk (21)

The total execution time of ρi is now
ci = Ci,0 +

∑
εk∈Ei

c′i(εk)

= Ci,0 +
∑
εk∈Ei

Ci(εk) +H3

∑
εk∈Ei

lk
(22)

Blocking time Each runnable ρi can only block once, with
a worst-case blocking time equal to the maximum execution
time of a lower priority runnable ρj with a preemption
threshold γj ≤ πi, and the largest critical section on a shared
resource protected using priority ceiling and shared by a
lower- and a higher-than-or-equal-priority tasks.

Bi = max
j:πi<πj

(qi,j · cj , max
εk∈Ei

lk · c′j(εk)) (23)

Note that lk · lk = lk, the second item lk · c′j(εk) in (23)
can be linearized as lk ·Cj(εk) + lk ·H3. However, the first
item qi,j · cj needs to be linearized by adding an additional
set of binary variables

∀ρi, ρj with πi < πj , εk ∈ Ej
qli,j,k =

{
1 if qi,j = 1 and lk = 1
0 otherwise

(24)

The variables qli,j,k, qi,j and lk should satisfy
qi,j + lk − 1 ≤ qli,j,k
qli,j,k ≤ qi,j , qli,j,k ≤ lk

(25)

Thus (23) can be written in a set of MILP constraints as
∀j : πi < πj , Bi ≥ qi,j · Cj,0 + qi,j

∑
εk∈Ej

cj(εk) +H3

∑
εk∈Ej

qli,j,k

∀εk ∈ Ej , Bi ≥ lk · cj(εk) + lk ·H3

(26)

Kernel level timing overhead Wait free methods require
the execution of several procedure at task activation time,
with the highest priority in the system. These procedures
are executed at the activation time of the runnables, with
their period.

The request bound function during the time interval t of
these kernel level overhead for shared resource εk can be
formulated as

rbf0(εk, t) =
∑

ρi∈ρW(εk)

(wk ·
⌈
t

ti

⌉
H1

+
∑

ρj∈ρLR(εk)

fk,i,j ·
⌈
t

tj

⌉
H2 +

∑
ρj∈ρHR(εk)

wk

⌈
t

tj

⌉
·H2)

(27)

The total request bound function for all the shared re-
sources is rbf0(t) =

∑
εk∈E

rbf0(εk, t) (28)

Real-time Schedulability To verify the schedulability of ρj ,
we check whether there exists a point t ∈ Ij such that
the sum of the possible execution requests within the time
interval t is no larger than the available CPU time. The
possible execution requests include:

1) Bj : worst case blocking time;
2) rbf0(t): kernel-level timing overhead;
3) rbfj(t): the computation time cj of ρj (as t ≤ Tj);
4) rbfi(t),∀i with πi < πj : the sum of the interferences

from blocks ρi with higher priority, which is∑
i:πi<πj

⌈ t
ti
⌉ · ci (29)

5) rbfi(t),∀i with πi = πj : the sum of the interferences
from blocks ρi mapped to the same task, which is∑

i:πi=πj

pi,j⌈
t

ti
⌉ · ci (30)

However, in (30) it contains the product of two variables
pi,j and ci. By (22), ci is a linear function of yk and lk for
each input and output link εk of ρi. We define the following
two variables to make the constraint (30) linear:

∀ρj ̸= ρi, εk ∈ E in
i

∪
Eout
i

vi,j,k =

{
1 if pi,j = 1 and yk = 1
0 otherwise

(31)

vi,j,k should satisfy the following constraints:
pi,j + yk − 1 ≤ vi,j,k
vi,j,k ≤ pi,j , vi,j,k ≤ yk

(32)

Similarly,
∀ρi ̸= ρj , εk ∈ E in

i

∪
Eout
i

wi,j,k =

{
1 if pi,j = 1 and lk = 1
0 otherwise

(33)

wi,j,k should satisfy the following constraints:
pi,j + lk − 1 ≤ wi,j,k

wi,j,k ≤ pi,j , wi,j,k ≤ lk
(34)

Stack usage The stack usage of the system includes:
• the fixed stack usage Si of each task τi;
• the maximum possible stack usage of runnables be-

cause of preemption.
We order the runnables according to their decreasing

usage of stack:
o : ρi → N+ (35)

such that o(ρi) < o(ρj) ⇒ Si ≥ Sj .
We define the following binary variable

ui =

 1 if ρi has the largest stack size
in the nonpreemption group

0 otherwise
(36)

ui is dependent on gi,j and should satisfy
1−

∑
j:o(ρj)≤o(ρi)

gi,j ≤ ui

ui ≤ 1− gi,j , ∀j : o(ρj) ≤ o(ρi)
(37)

The maximum stack usage is
s =

∑
τi∈T Si +

∑
ρi∈ρ Si · ui (38)

Memory constraints The memory cost of the additional wait
free buffers for resource εk is

nk =

∑

ρi∈ρW
k ,ρj∈ρLR

k

fk,i,j + 2wk if ρHR
k ̸= ∅∑

ρi∈ρW
k ,ρj∈ρLR

k

fk,i,j + wk if ρHR
k = ∅

(39)

When adding the base memory requirements of the appli-
cation MA, the overall required memory, including the stack
used by runnables and tasks is

m = MA +
∑
εk∈E

Mk · nk + s (40)

B. Objective Function

In addition to satisfying the constraints, we can also
minimize the memory usage considering stack and overhead
introduced by mechanisms to ensure data consistency and
timing determinism.

minimize m (41)

V. EXPERIMENTAL RESULTS

We implemented our MILP approach in AMPL (A Math-
ematical Programming Language) and used CPLEX as the
solver. The experiments are performed on an industrial case
study consisting of a fuel injection embedded controller. The
case study is a simplified version of the full control system
(for confidentiality reasons) with 90 runnables (out of 200
in the real system).

The runnables are mapped into 16 tasks, as shown in Table
I. The execution times of some functions are provided as
part of the case study. The others are assigned to achieve
a system utilization of 94.1%, which is close to the values
found in real systems of this type.

Task Period(ms) Priority Ci(µs) NW NLPR NHPR Stack (bytes)
τ0 1000 6 1500 4 0 0 512
τ1 1000 7 5000 4 3 0 704
τ2 8 3 148 4 0 0 128
τ3 4 0 208 4 0 1 256
τ4 8 4 100 3 0 2 608
τ5 1000 15 131100 3 2 0 640
τ6 1000 11 150000 3 2 1 768
τ7 8 1 340 4 1 12 608
τ8 5 5 5 6 1 1 448
τ9 1000 12 110000 3 14 2 768
τ10 1000 14 110000 3 13 2 640
τ11 4 2 39 2 4 18 288
τ12 12 9 820 2 10 6 1024
τ13 50 8 1000 0 0 0 160
τ14 100 10 9846 1 11 6 544
τ15 1000 13 110000 0 29 4 736

Table I
LIST OF TASKS IN THE AUTOMOTIVE FUEL INJECTION APPLICATION

The first three columns of Table I are task indices, periods
and priorities. Periods and priorities are taken from the
automotive application. The runnables are executing at 7
different periods (in ms) in the example: 4, 5, 8, 12, 50,
100 and 1000. Columns 5, 6, and 7 represent the numbers
of writers (output ports), lower-priority readers (input ports
connected with higher-priority writers), and higher-priority
readers (input ports connected with lower-priority writers)
respectively that the task implements. In the information
available from the real application, the communication
topology was only defined as communication flows among
the components. Based on these, we made assumptions
about the estimated communication among runnables and
finally among tasks, thereby completing the definition of the
communication topology. The communication link delays
are assumed to be one from low-priority writers to high-
priority readers and zero otherwise. There are 46 writers and
145 readers (90 lower-priority readers and 55 higher-priority
readers) in the derived example.

Using the formulation corresponding to the reduced set
presented in this paper, the optimal solution can be found
by the MILP solver in 14677 seconds, or about 4 hours.
Our optimization framework requires 69% less memory to

guarantee data consistency compared to commercial tools
such as [2]. The reason is that we selectively disable
the preemption among runnables while still guarantee the
system’s real-time schedulability, which enables the sharing
of stack space.

VI. CONCLUSION

We presented an algorithm for optimizing the implemen-
tation of AUTOSAR runnables in a concurrent program
executing as a set of tasks. We showed that there is an oppor-
tunity for optimizing the memory requirements (including
stack usage and communication buffers) when implementing
a model. The solution is based on an MILP optimization
framework that explores the design/implementation space
while trying to share the stack and avoid additional com-
munication buffers whenever possible. We plan to propose
fast heuristics and demonstrate that they yield a solution with
close to minimal memory usage while satisfying real-time
schedulability constraints.

REFERENCES
[1] The AUTOSAR Standard, specification version 4.0, the AU-

TOSAR consortium, web page: http://www.autosar.org.
[2] SystemDesk, dSPACE Inc., web page: http://dspaceinc.com.
[3] A. Ferrari, M. D. Natale, G. Gentile, G. Reggiani, and P. Gai,

“Time and memory tradeoffs in the implementation of autosar
components,” in Proceedings of the DATE conference, 2009.

[4] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks
with preemption threshold,” in Proceedings of the Sixth
International Conference on Real-Time Computing Systems
and Applications, 1999.

[5] M. Saksena and Y. Wang, “Scalable real-time system design
using preemption thresholds,” in Proceedings of the 21rd
IEEE Real-Time Systems Symposium, 2000, pp. 25–34.

[6] R. Ghattas and A. G. Dean, “Preemption threshold schedul-
ing: Stack optimality, enhancements and analysis,” in Pro-
ceedings of the 13th IEEE Real Time and Embedded Tech-
nology and Applications Symposium, 2007, pp. 147–157.

[7] J. Chen, A. Harji, and P. Buhr, “Solution space for fixed-
priority with preemption threshold,” in Proceedings of the
11th IEEE Real Time on Embedded Technology and Applica-
tions Symposium, 2005, pp. 385–394.

[8] J. Regehr, “Scheduling tasks with mixed preemption relations
for robustness to timing faults,” in Proceedings of the 23rd
IEEE Real-Time Systems Symposium, 2002, pp. 315–326.

[9] C. Sofronis, S. Tripakis, and P. Caspi, “A memory-optimal
buffering protocol for preservation of synchronous semantics
under preemptive scheduling,” in Proceedings of the 6th
International conference on Embedded software, 2006.

[10] M. Di Natale, G. Wang, and A. Sangiovanni-Vincentelli,
“Improving the size of communication buffers in synchronous
models with time constraints,” IEEE Transactions on Indus-
trial Informatics, vol. 5, no. 3, August 2009.

[11] H. Zeng and M. D. Natale, “Improving real-time feasibility
analysis for use in linear optimization methods,” in Proceed-
ings of the 22nd Euromicro Conference on Real-Time Systems.

[12] H. Zeng and M. Di Natale, “An Efficient Formulation of
the Real-time Feasibility Region for Design Optimization,”
in submission to IEEE Transactions on Computers.

