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The complexity and physical distribution of modern active safety, chassis, and powertrain automotive ap-
plications requires the use of distributed architectures. Complex functions designed as networks of function
blocks exchanging signal information are deployed onto the physical HW and implemented in a SW architec-
ture consisting of a set of tasks and messages. The typical configuration features priority-based scheduling
of tasks and messages and imposes end-to-end deadlines. In this work, we present and compare formula-
tions and procedures for the optimization of the task allocation, the signal to message mapping, and the
assignment of priorities to tasks and messages in order to meet end-to-end deadline constraints and mini-
mize latencies. Our formulations leverage worst-case response time analysis within a mixed integer linear
optimization framework and are compared for performance against a simulated annealing implementation.
The methods are applied for evaluation to an automotive case study of complexity comparable to industrial
design problems.
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1. INTRODUCTION

Function development in Electronics, Controls, and Software (ECS) vehicle architec-
tures has traditionally been component or subsystem focused. In recent years, there
has been a shift from the single Electronic Control Unit (ECU) approach towards
an increased networking of control modules with an increased number of distributed
time-critical functions and multiple tasks on each ECU.
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The starting point for the definition of a car electronic/software system is the speci-
fication of the set of functions that the system needs to provide. Functional models are
created from the decomposition of the system-level functions in a hierarchical network
of component blocks. The physical architecture model captures the topology of the car
network, including the communication buses (e.g., Controller Area Network (CAN)),
the ECUs, and the policies that control the shared resources.

The system designer must find a mapping of the functional architecture onto the
physical architecture that satisfies the timing requirements (typically sensor-actuator
deadlines). The mapping is performed at the time the SW implementation is defined,
when the functions are implemented by a set of concurrent tasks and the communica-
tion signals are transferred in the payload content of messages.

To provide design-time guarantees on timing constraints, different design and
scheduling methodologies can be used. Because of resource efficiency, most automotive
controls are designed based on runtime priority-based scheduling of tasks and mes-
sages as opposed to time-triggered scheduling [Padmanabhan et al. 1999; Brook 2000;
Aström and Wittenmark 1990; Henriksson et al. 2002]. Examples of standards sup-
porting this scheduling model are the OSEK operating system standard [OSEK 2006],
AUTOSAR [AUTOSAR 2010a], and the CAN bus [Bosch 1991] arbitration model. Other
scheduling policies, including those with a dynamic assignment of priorities such as
the Earliest Deadline First (EDF) [Liu and Layland 1973], while quite popular in the
research community, are not supported by standards recommendations like OSEK and
later AUTOSAR. They have practically no available commercial implementation and
offer very limited advantage in terms of schedulability when the tasks to be scheduled
have harmonic periods (or at most belong to two or three harmonic sets) as is in almost
all automotive control applications.

In the typical model that is used for the implementation of distributed computations,
periodic tasks and messages communicate according to a semantics in which the com-
munication channel holds the last value that is written into it and is implemented as
a shared variable protected against concurrent access [AUTOSAR 2010b]. This model,
called a periodic activation model, has some advantages, including the separation of
concerns when evaluating the schedulability of the individual resources. It also allows
for a very simple specification at the interface of each subsystem or component, thereby
simplifying the interaction with the suppliers. The drawback is a nondeterministic time
behavior and a possibly large worst-case end-to-end delay in the computations.

The execution model considered in this article is the following. Input data (generated
by a sensor, e.g.) are available at one of the system’s ECUs. A periodic activation event
from a local clock triggers an application task on this ECU. The task reads the input
data signal, computes intermediate results as output signals, and writes them to the
output buffer from where they can be read by another task or used for assembling the
data content of a message. Messages, also periodically activated, transfer the data from
the output buffer on the current ECU over the bus to an input buffer on another ECU.
Eventually, task outputs are sent to a system output (an actuator, e.g.). The application
typically imposes end-to-end latency requirements between a subset of the source-sink
task pairs in the system.

1.1. Design Flow

The optimization of the allocation of tasks, the definition of the mapping of signals into
messages, and the priority assignment to tasks and messages are the design stages
addressed in this work as part of the larger design flow shown in Figure 1. The design
flow is based on the Y-chart approach [Kienhuis et al. 2002] where the application
description and the architectural description are initially separated and joined together
later in a mapping step. In the application model, nodes represent function blocks and
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Fig. 1. Design flow stages and the steps (in bold) for which decision variables are optimized according to
the timing constraints and the metric objectives.

edges represent data dependencies, which consist of signal information. The application
description is further characterized by end-to-end latency constraints along selected
paths from sources to sinks. The architectural description is a topology consisting
of ECUs connected with buses. In this work, we assume heterogeneous ECUs, that
is, units with processors of possibly different type and speed, which run a priority-
based preemptive OSEK-compliant operating system. Furthermore, we target the case
of architectures with possibly multiple CAN buses, featuring nonpreemptive priority-
based message scheduling. Currently the CAN communication standard represents the
large majority of the communication links, with LIN connections used for a relatively
small number of local low-speed data communications [Davis et al. 2007].

Mapping deploys functional blocks to tasks (this problem is not handled in this work)
and tasks to ECUs. Correspondingly, signals can be mapped into local communication
or messages that are exchanged over the buses. Within the mapping step are the
operations of task allocation, signal to message assignment, and priority assignment. We
propose an integrated approach in which task allocation, signal packing, and priority
assignments are performed in an integrated way. We see an integrated approach as the
natural solution for these types of problems given the cross-dependencies among the
different aspects of the problem. Messages arise from the definition of task allocation,
which is defined (among others) according to the time constraints. The satisfaction of
deadline constraints depends on the task allocation and the priority assignment, while
assigning priorities requires knowledge of the task allocation and the definition of the
message set.

1.2. Prior Work

Both static and dynamic priority, distributed as well as centralized, scheduling meth-
ods have been proposed in the past for distributed systems. Static and centralized
scheduling is typical of time-triggered design methodologies, like the Time-Triggered
Architecture (TTA) [Kopetz et al. 1989] and its network protocol TTP, and of implemen-
tations of synchronous reactive models, including Esterel and Lustre [Benveniste et al.
2003]. Also, the recent FlexRay automotive communication standard [Flexray 2006]
provides two transmission windows, one dedicated to time-driven periodic streams and
the other for asynchronous event-driven communication.

Priority-based scheduling is also very popular in control applications. It is supported
by the CAN network arbitration protocol [Bosch 1991]. The response times of real-
time CAN messages (with timing constraints) have been analyzed and computed for
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the worst case [Davis et al. 2007]. Also, the OSEK operating system standard for au-
tomotive applications [OSEK 2006] and the newer AUTOSAR standard [AUTOSAR
2010a] support not only priority scheduling, but also an implementation of the imme-
diate priority ceiling protocol [Sha et al. 1990] for sharing resources with predictable
worst-case blocking time. Priority-based scheduling of single processor systems has
been thoroughly analyzed with respect to worst-case response time and feasibility
conditions [Harbour et al. 1994; Liu 2000].

End-to-end deadlines have been discussed in research work in the context of single-
processor as well as distributed architectures. The synthesis of the task parameters
(activation rates and offsets) and (partly) of the task configuration itself in order to
guarantee end-to-end deadlines in single processor applications is discussed in Gerber
et al. [1995]. Later, the work was tentatively extended to distributed systems [Saksena
and Hong 1996]. The periodic activation model with asynchronous communication can
be analyzed quite easily in the worst case, because it allows the decomposition of
the end-to-end schedulability problem in local instances of the problem, one for each
resource (ECU or network). In other transaction-based activation models (such as the
holistic model in Tindell [1993], the transaction model with offsets in Gutiérrez et al.
[1997] and Palencia and Harbour [1998], and the jitter propagation model in Hamann
et al. [2004]), messages are queued by sender tasks whenever information is ready
and the arrival of messages at the destination node triggers the activation of the
receiver task. In such models, task and message schedulers on CPUs and networks
have cross dependencies because of the propagation of the activation signals. When
systems are constructed according to these models, distributed hard real-time analysis
can be performed using the holistic model [Tindell 1993; Pop et al. 2002] based on the
propagation of the release jitter along the computation path. When activation offsets
can be enforced for tasks and messages to synchronize activations and enforce timing
constraints, the analysis is as described by Palencia and Harbour [1999]. However, in
most automotive systems with CAN buses, ECUs are not synchronized. This prevents
the synchronization of remote tasks and messages activations and the enforcement of
a precedence order by the assignment of suitable activation offsets. As opposed to the
previously cited transaction models, our activation model is both jitter- and offset-free.

Other methods have been defined for scheduling periodic tasks and messages
in a distributed time-triggered architectures. One early proposal can be found in
Ramamritham et al. [1993]

While these works provide analysis procedures with reduced pessimism, increasing
speed and precision, the synthesis problem is largely open, except for Racu et al. [2005],
where the authors discuss the use of genetic algorithms for optimizing priority and pe-
riod assignments with respect to a number of constraints, including end-to-end dead-
lines and jitter and an extensibility metric. In Bini et al. [2006], the authors describe a
procedure for period assignment on priority-scheduled single-processor systems. In Pop
et al. [2003], a design optimization heuristics-based algorithm for mixed time-triggered
and event-triggered systems is proposed. The algorithm, however, assumes that nodes
are synchronized and the bus transmission time is allocated according to the Universal
Communication Model. More recently, an integrated optimization framework is pro-
posed in He et al. [2009] for systems with periodic tasks on a network of processor
nodes connected by a bus based on the time-triggered protocol. The framework uses
Simulated Annealing (SA) combined with geometric programming to hierarchically
explore task allocation, task priority assignment, task period assignment, and bus ac-
cess configuration. In Davis and Burns [2009] the problem of priority assignment in
multiprocessor real-time systems using global fixed-priority preemptive scheduling is
addressed. In Lakshmanan et al. [2009] the authors characterize various scheduling
penalties arising from multiprocessor task synchronization and propose to colocate
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tasks that access common shared resources, thus transforming global resource sharing
into local sharing. In Bate and Emberson [2006], task allocation and priority assign-
ment were defined with the purpose of optimizing the extensibility with respect to
changes in task computation times. The proposed solution, based on simulated anneal-
ing and the maximum amount of change that can be tolerated in the task execution
times without missing end-to-end deadlines, was computed by scaling all task times
by a constant factor. Also, a model of event-based activation for task and messages
was assumed. In [Hamann et al. 2006, 2007], a generalized definition of extensibil-
ity on multiple dimensions (including changes in the execution times of tasks, as in
our article, but also period speed-ups and possibly other metrics) was presented. Also,
a randomized optimization procedure based on a genetic algorithm was proposed to
solve the optimization problem. These papers focus on the multi-parameter Pareto op-
timization and how to discriminate the set of optimal solutions. The main limitation
of this approach is complexity and expected running time of the genetic optimization
algorithm. In addition, randomized optimization algorithms are difficult to control and
give no guarantee on the quality of the obtained solution.

Indeed, in the cited papers, the use of genetic optimization is only demonstrated for
small sample cases. In Hamann et al. [2007], the experiments show the optimization
of a sample system with 9 tasks and 6 messages. The search space consists of the
priority assignments on all processors and on the interconnecting bus. Hence, task
allocation (possibly the most complex step) and signal to message packing are not
subject to optimization. Yet, a complete robustness optimization takes approximately
900 and 3000 seconds

In Metzner and Herde [2006], a SAT-based approach for task and message place-
ment was proposed. Like our approach, the method provides optimal solutions to the
placement and priority assignment. However, it did not consider signal packing. The
problem of optimal packing of periodic signals into CAN frames when the transmission
of signals is subject to deadline constraints and the optimization metric is the minimiza-
tion of the bus utilization has been proven to be NP-hard in Sandstrom et al. [2000].
Commercial (the middleware tool by Volcano [Casparsson et al. 1999]) and research so-
lutions [Saket and Navet 2006; Sandstrom et al. 2000] to this problem exist. However,
they are all based on the assumption that the designer already allocated the tasks to
the ECUs and partitioned the end-to-end deadlines into task and message deadlines.

A direct comparison of our results with those presented in these works is not possible.
First, contrary to all of them, we do not start from a task and message model, but from
a communication model in which tasks exchange signals. The optimal generation of the
message set by signal packing is one of our objectives. Second, the task and message
activation model we use is different from the one assumed in some of these works.
Others only apply to time-triggered systems. In approaches that include stochastic
optimization procedures, such as Racu et al. [2005], Hamann et al. [2006, 2007] and He
et al. [2009], details on the mutation operator and the genetic encoding of the system
configuration [Racu et al. 2005; Hamann et al. 2006, 2007] and on the transition
operator and metric function in [He et al. 2009] are missing so that those procedures
cannot be exactly replicated. In this work, we programmed a simulated annealing
optimizer as a term of comparison. Our SA algorithm, while not strictly the same as
the one in He et al. [2009], probably exhibits similar performance. Also, it belongs
to the same class (stochastic optimization) of algorithms as the genetic algorithms in
the other three papers and is expected to share similar performances and possible
disadvantages as discussed in the following paragraphs.

Our mixed integer linear programming (MILP) formulation for this problem, as op-
posed to heuristic search methods or stochastic optimization methods has the following
advantages.
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—It provides a measure of the solution quality with respect to the optimum cost. The
distance of the current solution from the optimum can be bounded at any time
(computed as the gap between the solutions of the primal and dual problem) and
allows us to evaluate the quality of the intermediate solutions generated by the
solver. The method also provides a possible guarantee of optimality in case the solver
terminates and finds the optimum solution. This guarantee is practically impossible
to achieve when using stochastic optimization methods.

—An MILP formulation clearly separates the optimization function from the feasibility
constraints. This makes retargeting to a different optimization metric easier. Also,
most solvers can handle the more general class of convex functions so the application
is not strictly limited to linear metrics (but dealing with non-convex functions can be
an issue).

—It can also easily accommodate additional constraints or legacy components that
make some design variables constants in the formulation.

—For computing the solution, it is possible to leverage the availability of solvers that
have been designed and programmed for good runtime and space performance.

—The solution is more easily formulated for reuse by other designers who want to
adopt it.

Finally, this article is an extended and revised version of our previous work [Zheng
et al. 2007]. With respect to it, we extended the formulation to include the possibility
of gateways and therefore extended the range of applicability to multi-bus systems. We
also extended the applicability of the method to more complex systems (including those
with multiple buses) by developing several techniques in a multistaged approach in
which the results of the first optimization stage are used in the second stage to bound
the search space. Consequently, the case study has been extended to include a dual bus
system derived from an automotive system with active safety functionality. Also, to
compare the results with alternative (stochastic optimization) approaches, we derived
a simulated annealing optimization engine for the same problem, and we compared
the results and running times of our method with the simulated annealing algorithm.
Finally, the proposed formulation shows some similarity with the one we proposed
in Zhu et al. [2009]. However, in Zhu et al. [2009] the optimization metric was related
to extensibility, and the problem complexity (mostly because of the metric function,
which could not be encoded in a linear expression) made it impossible to use MILP
except for an early optimization stage, limited to the task placement only. In Zhu et al.
[2009], the optimization process heavily relies on heuristics used in a second stage.

2. MODEL AND ASSUMPTIONS

Our system (an example in Figure 2) consists of a physical architecture, in which
p heterogeneous ECUs E = {e1, e2, . . . , ep} are connected through q controller area
network buses B = {b1, b2, . . . , bq}, and a logical architecture in which n tasks belonging
to the set T = {τ1, τ2, . . . , τn} perform the distributed computations required by the
functions. Signals S = {s1, s2, . . . , sm} are exchanged among pairs of tasks. Each signal
si carries a variable amount of information (encoded in a variable number of bits).
βsi is the length of the signal si in bits. The signal exchanged between two tasks
is represented as a directed link in the figure, so that the computation flow can be
expressed as a directed graph. Multicast signals are represented in our formulation
as multiple signals, connecting the source with every possible destination (we set up
constraints to avoid having more than one such signal in a bus message. More details
will be explained in Section 3.3).

In systems with multiple CAN buses, the source and destination task may not reside
on ECUs that connect to the same bus. In this case, a signal exchanged among them goes
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Fig. 2. Mapping of tasks to ECUs and signals to messages.

through a gateway ECU and is forwarded by a gateway task. Gateways are included
in our model with some restrictive (but realistic) assumptions.

—Any communication between two ECUs is never going to need more than one gate-
way hop (every bus is connected to all the others through one gateway ECU). This
assumption, realistic for small systems, could probably be removed at the price of
additional complexity.

—A single gateway ECU connects any two buses.
—A single task is responsible for signal forwarding on each gateway ECU. This task

is fully determined. Note that there might be other regular tasks running on the
gateway ECU.

A path p is an ordered interleaving sequence of tasks and signals, defined as
p = [τr1 , sr1 , τr2 , sr2 , . . . , srk−1 , τrk]. src(p) = τr1 is the path’s source and snk(p) = τrk is
its sink. Sources are activated by external events, while sinks activate actuators. Mul-
tiple paths may exist between each source-sink pair. We assume all tasks in a path
perform computations that contribute to a distributed function, from the collection of
sensor data, to remote actuation(s). All computations in a path are also referred to as
end-to-end computations. The worst-case end-to-end latency incurred when traveling a
path p is denoted as lp. In a computation model in which information is propagated by
periodic writing and sampling of values, with tasks in a path possibly having different
periods (with possible oversampling and undersampling), the definition of end-to-end
latency is subject to ambiguity and deserves better explanation. In our case, we assume
a definition related to the practical implications of the end-to-end latency: the largest
possible time interval that is required for the change of the input (or sensed) value at
one end of the chain to be propagated and cause a value change (or an actuation re-
sponse) as the output of the last task at the other end of the chain. The path deadline for
p, denoted by dp, is an application requirement that may be imposed on selected paths.
We use P to denote the set of all time-sensitive paths with such deadline requirement.

Tasks are executed on the ECUs and activated periodically. The allocation of a task
is indicated as a relation Aτi ,e j meaning that task τi is executed on e j . The period of τi is
indicated as Ti. At the end of their execution, tasks produce their output signal, which
inherits the period of the sender task. We allow the system ECUs to be heterogeneous,
but we assume that the worst-case computation time of each task τi on each ECU e j is
known or can be estimated at Ci, j .

After the mapping of the tasks to the ECUs, the signals are mapped into messages
exchanged between ECU pairs. M = {mr

p,q|ep, eq ∈ E, r = 1 . . . umax
p,q } is the message set.
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umax
p,q is defined as the maximum number of messages between the two ECUs p and q.

Given that the allocation of tasks is not known a priori, messages are meant to be as
possible containers of signals. When defining optimization variables, their maximum
number needs to be estimated or upper bound (the number of signals in the system
provides a trivial such bound). All messages are periodic, with period Tmr

p,q
, and are

scheduled according to their priority pr
p,q on the CAN bus (as defined by the standard).

The mapping rules require that each signal mapped to a message must have the same
source and destination ECUs (its transmitter and receiver tasks must be allocated on
the source and destination ECU of the message) and the same period of the message.

In CAN, the message size is limited to a maximum of 64 bits. A signal larger than
64 bits should be fragmented and transmitted in multiple messages. In our approach,
we don’t consider signal fragmentation, but we assume that the length of each signal
always allows it to be transmitted in a single message. The designer may perform an a
priori fragmentation of larger signals to fit this model.

2.1. Resource Scheduling

The worst-case response time for a periodic task τi scheduled with fixed priority in
a generic preemptive system can be computed by considering the busy period of its
priority level starting from the critical instant [Liu and Layland 1973] for τi. A busy
period of a given priority level πi is a time interval in which the processor is continuously
executing tasks of priority level πi or higher. Also, the critical instant is the release
time resulting in the worst-case response time for a given task, which occurs when the
task is released at the same time with all other higher priority (periodic) tasks. In this
case, the worst-case response time can be computed as the sum of the computation
time of the task itself, plus the time interference from higher priority tasks (time spent
executing them). If Ij,i(ri) is the interference of higher priority task τ j on τi in a time
interval of length ri, then

ri = Ci +
∑

j∈hp(i)

Ij,i(ri),

where j ∈ hp(i) spans over all the tasks with higher priority executed on the same ECU
as τi. Given that

Ij,i =
⌈

ri

Tj

⌉
C j,

the formula for computing the worst-case response time of the first instance of a generic
task τi becomes [Joseph and Pandya 1986]

ri = Ci +
∑

j∈hp(i)

⌈
ri

Tj

⌉
C j, (1)

when ri ≤ Ti or when the deadline of a task is less than or equal to its period, the
previous fixed point formula (1) allows us to compute the worst-case response time of τi
or, in any case, to check its feasibility against the deadline. Given that the right-hand
side of (1) is monotonically increasing, the least value solution ri (if it exists) can be
computed iteratively by starting with r(0)

i = Ci, substituting on the right-hand side and
computing r(1)

i on the left-hand side, and so on, until a fixed point solution is found or
the current value of ri exceeds the deadline.

When the response time can be larger than the task period, there is no guarantee
that the first instance of τi activated at the critical instant has the worst-case response
time, but all instances of τi in the busy period need to be checked. The formula therefore
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becomes [Lehoczky 1990]

ri(q) = (q + 1)Ci +
∑

j∈hp(i)

⌈
ri(q)
Tj

⌉
C j,

ri = max
q

{ri(q) − qTi},
for all q = 0 . . . q∗ until ri(q∗) ≤ Ti.

(2)

The index q refers to all the instances of τi inside the busy period. The last instance q∗
coincides with the end of the busy period, when ri(q∗) ≤ Ti. The maximum among the
response times of all of them (q = 0, . . . q∗) is the worst-case response time. Message
objects are transmitted over a CAN bus. The evaluation of the worst-case latency for
the messages follows the same rules for the worst-case response time of the tasks with
the exception that an additional blocking term Bi must be included in the formula in
order to account for the nonpreemptability of CAN frames. Of course, in the case of
messages, the term Ci indicates the time that is needed for the actual transmission of
all the bits of the message frame on the network. If a generic message mi has a data
packet of βmi bits (obtained by adding up the bit lengths of the signals mapped into it)
and a frame overhead of Ohi (for CAN messages 46 bits), and the bus speed or bit-rate
is Bspeed, then the transmission time Ci is computed as

Ci = βmi + Ohi

Bspeed
.

An upper bound of the response time is obtained [Davis et al. 2007] when the blocking
term Bi for a generic message mi is approximated with the largest possible frame
transmission time (wi > 0 is the queuing delay part of ri, without the transmission
time). In the general case (response times possibly larger than periods), the formula is

wi(q) = Bi + qCi +
∑

j∈hp(i)

⌈
wi(q)

Tj

⌉
C j,

ri = max
q

{Ci + wi(q) − qTi},
for all q = 0 . . . q∗ until ri(q∗) ≤ Ti.

(3)

A lower bound on wi and ri can be computed by only considering the first instance
(q = 0), as shown in the following text. Once again, the exact response time is obtained
using (4) if ri ≤ Ti.

ri = Bi + Ci +
∑

j∈hp(i)

⌈
ri − Ci

Tj

⌉
C j . (4)

2.2. Periodic Activation Model

The worst case end-to-end latency can be computed for each path by adding the worst-
case response times of all the tasks and global signals on the path, as well as the
periods of all the global signals and their destination tasks on the path.

lp =
∑
τi∈p

rτi +
∑

si∈p∧si∈GS

(
rsi + Tsi + Tdstsi

)
, (5)

where GS is the set of all global signals. Of course, in the case where gateways are used
across buses, the signals to and from possible gateway tasks, as well as the response
time of the gateway task itself and the associated sampling delays must be included in
the analysis.
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Fig. 3. The periodic activation model and the end-to-end latency on a path.

We need to include periods of global signals and their destination tasks because of
the asynchronous sampling of communication data. Figure 3 shows a sequence of task
and message activations and response times that results in the longest end-to-end
latency. The upper part of the figure represents a computation and communication path
of three tasks (τ1, τ2, τ3) on three ECUs (e1, e2, and e3, respectively) and two signals, s1
from τ1 to τ2 and s2 from τ2 to τ3. In the worst case, as shown in Figure 3, we assume an
event occurs on the environment, and it is sensed by τ1. The event occurs immediately
after the completion of an instance of τ1 with almost nil response time. Hence, it will
be read by the next instance of the task, and the result will be produced after its
worst-case response time, that is, after Tτ1 + rτ1 time units. τ1 produces information de-
rived from the event processing that is encoded in the signal s1. However, the message
transmitting s1 is sent by a message that we assume is enqueued right before the signal
is produced. Hence, one message period must be added to the latency, together with
its response time. The same reasoning applies to the execution of all tasks that are the
destinations of global signals and applies to global signals themselves. However, for
local signals, the destination task can be activated with a phase equal to the worst-case
response time of the source task under the condition that their periods are harmonic,
which is almost always true in practical designs. In this case, we only need to add the
response time of the destination task. Similarly, it is sometimes possible to synchronize
the queuing of a message for transmission with the execution of the source tasks of the
signals present in that message. This would reduce the worst-case sampling period for
the message transmission and decrease the latency in Equation (5). In this work, we
do not consider these possible optimizations and leave them to future extensions.

3. OBJECTIVE AND FORMULATION

The objective of our design problem is to find the best possible

—allocation of tasks onto the ECUs,
—packing of signals to messages on multiple buses,
—assignment of priorities to tasks and messages,

given

—constraints on (some) end-to-end latencies,
—constraints on the message size,

with respect to the

—minimization of a set of end-to-end latencies.
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We formulate our problem in the general framework of mathematical programming
(MP), where the system is represented with parameters, decision variables, and con-
straints over the parameters and decision variables. An objective function, defined
over the same set of variables, characterizes the optimal solution. Our problem al-
lows a MILP formulation that is amenable to automatic processing. According to the
definition [Boyd et al. 2006], an MILP program in standard form is:

minimize cT x (6)

subject to Ax = b (7)

x ≥ 0, (8)

where x = (x1, . . . , xn) is a vector of positive real or integer-valued decision variables.
A is an m× n full-rank constant matrix, with m < n, b and c are constant vectors with
dimension n × 1. Constraints of the type Ax ≤ b can be handled by adding a suitable
set of variables, and then transforming such inequalities in the standard form. Once
the optimization variables are selected, they define a multidimensional design space.
Inside this space, there are values of these variables for which the system is feasible
or schedulable against the timing constraints. The region defined by the union of
these values is called feasibility region (as in Bini and Buttazzo [2002]). MILPs can be
solved very efficiently by a variety of solvers. In this work, we make use of the CPLEX
solver. CPLEX (now from IBM, formerly from ILOG) is a leading market solution with
high performance, several plugins, and optimization options. Further, it is currently
available for free for academic and noncommercial use.

The main difficulty of an MILP approach lies in the possible large number of variables
and constraints and the resulting large solution time. Further, the feasibility region
of tasks and messages with respect to deadlines is not convex and requires a careful
representation or approximation. The form of the constraints and objective function
must be chosen carefully such that the formulation captures the behavior of the system
and yet remains amenable to efficient solving.

3.1. Preface to the Optimization Problem Definition

Task allocation, signal packing, and priority optimization are managed at the same
time by the MILP framework. However, while the tasks are mapped into the ECUs
and the number and type of ECUs are known at problem definition time, the number,
period, and priority of the messages exchanged by the ECUs are unknown in advance.
They result from the number and type of the signals that need to be exchanged among
ECUs, which depend, in turn, on the task allocation. Our problem formulation requires
that we represent messages by a suitable set of variables in order to define the signal
to message mapping constraints and the latency of each message (and signal).

Therefore, we bound the number of messages that can be possibly exchanged between
any ECU pair and we define a corresponding number of message placeholders acting
as possible signal containers. umax

p,q is the upper bound for the number of messages mr
p,q

between ECU pair ep and eq (r = 1..umax
p,q ). Of course, this means that we need a prepro-

cessing procedure to determine such upper bound for the number of messages between
every ECU pair. Furthermore, one set of such messages is needed for each possible
period.

Because of the large number of sets, variables, and constraints and, ultimately, for
the sake of clarity, in the following sections we explain the optimization constraints,
each section referring to a specific aspect of the problem.
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Fig. 4. Signal forwarding by the gateways. A system architecture with a possible task allocation on the left
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3.2. Task to ECU Mapping

3.2.1. Sets and Variables. Based on the problem characterization, the following binary
variables are defined

Aτi ,e j =
{ 1, if τi is mapped to ECU e j

0, otherwise ,

aτi ,τ j =
{ 1, if τi and τ j are mapped to the same ECU

0, otherwise .

3.2.2. Feasibility Constraints. Each task can be mapped to at most one ECU (N con-
straints).

∀τi,
∑
e j∈E

Aτi ,e j = 1. (9)

Furthermore, there are dependencies among the Aτi ,e j and the aτi ,τ j variables. If tasks
τi and τ j are mapped to the same ECU ek, (10) enforces the variable aτi ,τ j = 1. However,
if task τi and τ j are mapped to different ECUs, (11) will set aτi ,τ j = 0.

∀ek ∈ E, Aτi ,ek + Aτ j ,ek − 1 ≤ aτi ,τ j (10)
∀ep �= eq ∈ E, 2 − Aτi ,ep − Aτ j ,eq ≥ aτi ,τ j (11)

3.3. Signal to Message Mapping

As a result of the task allocation, signals are allocated to one of the message placehold-
ers that are available between any two ECUs.

Gatewaying of signals requires additional definitions and a modification of the signal
set to accommodate replicated signals that are sent by the gateway tasks. Gateway
tasks are preallocated with known period and priority subject to optimization.

As in Figure 4, for each signal si in the task communication model, we use si, j,0 to
represent the signal originating from the source task (labeled as τsi for simplicity) and
directed to the destination τ j or (if needed) to the gateway task with final destination τ j .
In addition, for each possible gateway τk, there is an additional possible signal, labeled
si, j,k, representing the signal from the gateway task τk to the destination τ j (allocated
on a ECU that can be reached with gateway τk).

In case the source task τsi and the destination task τ j are on the same ECU, the signal
si, j,0 and all the si, j,k can be disregarded since they do not contribute to the latency, and
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they will not need a message on the bus. In case the source and destination task are
connected by a single bus, si, j,0 represents the signal between them, and all the si, j,k
should be disregarded (accomplished by treating them as local signals).

There might be multiple destination tasks for the same source task in the case
of multicast. For each si, there is one set si, j,0 with as many signals as the number of
receivers and one set si, j,k with cardinality equal to the product of the number of possible
gateways by the number of receivers. All gateway signals have the same period and
data length of the signals from which they originate.

3.3.1. Sets and Variables. We define following variables:

αsi, j,0,mr
p,q

=
{

1, if si, j,0 is mapped to mr
p,q

0, otherwise
;

αsi, j,k,mr
p,q

=
{

1, if si, j,k is mapped to mr
p,q

0, otherwise
;

γsi, j,0,mr
p,q

=
{

1, if si, j,0 adds to the length of mr
p,q

0, otherwise
;

γsi, j,k,mr
p,q

=
{

1, if si, j,k adds to the length of mr
p,q

0, otherwise
.

γsi, j,0,mr
p,q

and γsi, j,k,mr
p,q

provide additional information with respect to αsi, j,0,mr
p,q

and αsi, j,k,mr
p,q

in the case of multicast signals (e.g., in Figure 4, source task τsi has three receivers
τ j , τm, and τn). In this case, even though our model defines one signal (or two signals
when using gateway) for each pair sender-receiver, there is no need to copy the signal
multiple times into a message, since CAN messages are broadcast and all remote tasks
can read the signal value from the message. γsi, j,0,mr

p,q
and γsi, j,k,mr

p,q
are used to nullify

multiple copies of such multicast signals.
Finally, since the messages are actually placeholders, and some of them may be

empty after the signal mapping stage, we need an additional set of variables

Ymr
p,q

=
{

1, if message mr
p,q is nonempty

0, otherwise

to avoid considering those messages in the scheduling and response time computation
stage.

3.3.2. Mapping Constraints. Signals must be mapped to messages when communication
data must be sent over a bus (sender and receiver tasks are remote).

The boolean variable asi, j,k,br is 1 if signal si, j,k is mapped onto bus br and 0 otherwise,
similarly for the definition of asi, j,0,br . To define these set of variables, we need to consider
all ECU pairs for each signal from its source to all its destinations τ j .

∀br ∈ B(em), em �= ep, Aτsi ,em + Aτ j ,ep − 1 ≤ asi, j,0,br (12)

∀B(em) ∩ B(ep) = ∅, br ∈ B(ep), Aτsi ,em + Aτ j ,ep − 1 ≤ asi, j,k,br (13)

∀br, gsi, j,0 ≥ asi, j,0,br (14)

gsi, j,0 ≤
∑

br

asi, j,0,br (15)

∀br, gsi, j,k ≥ asi, j,k,br (16)
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gsi, j,k ≤
∑

br

asi, j,k,br (17)

∀si, j,k, gsi, j,k ≤ gsi, j,0 , (18)

where B(e) is the set of buses connected to ECU e. The set of constraints defined by
(12) for all possible sets (source τsi , destination τ j , source ECU em that is on bus br,
destination ECU ep that communicates with em through br) force asi, j,0,br to 1 for the bus
br from em to ep, or from em to the gateway task τk between em and ep. The following set
(13) sets asi, j,k,br to 1 (if necessary) for the bus br from the gateway to the destination
ECU ep when gatewaying is needed (in this set of constraints, ep is on br, while em is
not). The variables asi, j,k,br have a positive contribution to the cost function, hence they
will be set to 0 by the optimization engine, unless forced to 1 by the constraints.

To give an example of these constraints, in Figure 4 the condition for the outgoing
signal si, j,0 from τsi to τ j to be on bus b1, expressed as

aτsi ,em + aτ j ,ep − 1 ≤ asi, j,0,b1 ,

needs to be defined for each pair of ECUs (m, p) as follows: m ∈ {1, 2, 3} and p �= m;
m ∈ {9} and p ∈ {1, 2, 3, 10}; m ∈ {10} and p ∈ {1, 2, 3, 9}. Similar sets of conditions will
then need to be defined for b2 and b3.

As an example of gatewaying, the condition for the mapping on b2 of the (possible)
signal forwarded by gateway task τk on e9 as part of the communication from τsi to τ j
in the figure is expressed by the set.

aτsi ,em + aτ j ,ep − 1 ≤ asi, j,k,b2 ,

defined for all ECU pairs (m, p) where m = {1, 2, 3, 10} and p = {4, 5}.
The value of the boolean variable gsi, j,0 is 1 if si, j,0 is a global signal (i.e., transferred

on bus), and 0 otherwise. Similarly, gsi, j,k is 1 if the signal si, j,k (si forwarded by gateway
τk) is global. The definition of gsi, j,0 and gsi, j,k is provided by constraints (14)–(15) and
(16)–(17), respectively. Finally, gsi, j,0 must be 1 if at least one gsi, j,k is 1, as in constraint
(18).

Having defined the preceding variables to represent the globality of signals, we
have the following constraints to enforce that each signal is mapped to at most one
message (or not mapped to any, when communication is local), as in (19) and (20). For
all messages mr

p,q (the range of r is constrained by the pair of ECU indexes p, q) and
all signals si, j,0, ∑

r≤umax
p,q ,p,q∈E

αsi, j,0,mr
p,q

≤ gsi, j,0 (19)

∑
r≤umax

p,q ,p,q∈E

αsi, j,k,mr
p,q

≤ gsi, j,k. (20)

Signal si, j,0 is exchanged between task τsi and τ j . If tasks τsi and τ j are mapped, respec-
tively, to ECUs ep and eq (p �= q) on the same bus, the signal must be mapped to one of
the messages between ep and eq, as in (21).

∀ep �= eq, Aτsi ,ep + Aτ j ,eq − 1 ≤
∑

r≤umax
p,q

αsi, j,0,mr
p,q

. (21)

If task τsi and τ j are mapped to ECUs ep and eq that are on different buses and connected
through gateway ECU eg, we have the following constraints (22) and (23) for si, j,0 and
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si, j,k.

∀B(em) ∩ B(ep) = ∅, eg gateway, Aτsi ,ep + Aτ j ,eq − 1 ≤
∑

r≤umax
p,g

αsi, j,0,mr
p,g

(22)

∀B(em) ∩ B(ep) = ∅, eg gateway, Aτsi ,ep + Aτ j ,eq − 1 ≤
∑

r≤umax
g,q

αsi, j,k,mr
g,q

(23)

For multicast signals, different receivers can share the same signal because of the
broadcast nature of CAN bus. This is reflected in constraints (24) to (26). The message
length in bit βmr

p,q
is computed by adding up the bits of all the signals mapped into

it, as shown in (27), where the data content of each message is constrained to be less
than 64 bits, the maximum allowed size (by the protocol) for a CAN message. Note that
βsi, j,0 = βsi, j,k = βsi . ∑

j

γsi, j,0,mr
p,q

+
∑
j,k

γsi, j,k,mr
p,q

≤ 1 (24)

∀ j
∑

j

γsi, j,0,mr
p,q

≥ αsi, j,0,mr
p,q

(25)

∀ j
∑
j,k

γsi, j,k,mr
p,q

≥ αsi, j,k,mr
p,q

(26)

∑
si, j,0∈S

γsi, j,0,mr
p,q

βsi, j,0 +
∑

si, j,k∈S

γsi, j,k,mr
p,q

βsi, j,k = βmr
p,q

≤ 64 (27)

Finally, we need to constrain the Ymr
p,q

variables that define whether a message has at
least one signal or is empty.

∀si, j,0, Ymr
p,q

≥ αsi, j,0,mr
p,q

(28)

∀si, j,k, Ymr
p,q

≥ αsi, j,k,mr
p,q

(29)

Ymr
p,q

≤
∑

si, j,0∈S

αsi, j,0,mr
p,q

+
∑

si, j,k∈S

αsi, j,k,mr
p,q

(30)

3.4. Worst-Case Response Time of Tasks

For each pair of tasks (τi, τ j), we define

pi, j =
{ 1, if task τi has higher priority than τ j

0, otherwise .

For the antisymmetric and transitive properties of the priority order relation, it must
be (we assume no two task have the same priority level.)

∀i �= j, pi, j + pj,i = 1 (31)
∀i �= j �= k, pi, j + pj,k − 1 ≤ pi,k (32)

The formula that allows us to compute the worst-case response time of a task τi is

ri = Ci +
∑

j∈hp(i)

Ij,iC j,

where hp(i) spans over the set of all the higher priority tasks that are allocated on the
same ECU as τi, and Ij,i is the number of interferences of τ j on τi during its response
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time.

Ij,i =
⌈

ri

Tj

⌉

To compute ri in our MILP framework, we start by adding the following variable

yi,k =
{

n ∈ N
+, number of possible interferences of τk on τi

0, otherwise.

The definition of the possible number of interferences as function of the response times
and periods is captured by

0 ≤ yi,k − ri

Tk
< 1. (33)

In addition, we define

xi,k =
{

n ∈ N
+, number of possible interferences of τk on τi if pk,i = 1

0, otherwise.

The encoding of this set (as well as others) of conditional constraints in an MILP
formulation is performed using the well-known “big-M” formulation. Formally, a set of
disjunctive constraints ∨

v∈V
g(x, v) ≤ 0

is equivalent to a set of (conjunctive) constraints

g(x, v) ≤ Mv(1 − βv) with v ∈ V,
∑
v∈V

βv = 1,

where βv is a binary variable and Mv is a vector of upper bounds on the values of the
g(x, v) functions. xi,k can be defined in terms of yi,k and pk,i as follows.

yi,k − (1 − pk,i) × M ≤ xi,k ≤ yi,k (34)
0 ≤ xi,k ≤ pk,i × M (35)

Furthermore, to take into account the allocation condition, we need to define also

wi,k =
⎧⎨
⎩

n ∈ N
+, number of possible interferences of τk on τi if pk,i = 1

when they are on the same ECU(aτi ,τk = 1)
0, otherwise

and

zi, j,k =
⎧⎨
⎩

n ∈ N
+, number of possible interferences of τk on τi if pk,i = 1

when they are on ECU e j

0, otherwise
.

Please note that wi,k �= 0 is the only case in which τk can actually preempt (i.e., interfere
with) τi. An additional variable zi, j,k is used to put this information in the context of a
given ECU (e j). These variables can be computed from the previous ones as

xi,k − (1 − aτi ,τk) × M ≤ wi,k ≤ xi,k (36)
0 ≤ wi,k ≤ aτi ,τk × M (37)
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for wi,k, and

wi,k − (1 − Aτk,e j ) × M ≤ zi, j,k ≤ wi,k (38)
0 ≤ zi, j,k ≤ Aτk,e j × M (39)

for zi, j,k.
Finally, the response time of task τi (an additional variable ri ∈ R

+) can be computed
as

ri =
∑

j

Aτi ,e j Ci, j +
∑

k

∑
j

zi, j,kCk, j . (40)

The formulation of the response time using integer variables has been proposed in
several research works, including Zheng et al. [2007] and Metzner and Herde [2006]
where the feasibility problem is part of a design optimization based on a SAT-solver.
The corresponding feasibility test is exact, but requires a possibly large number of
integer variables (in the order of n2, where n is the number of tasks). Solving the MILP
problem in feasible time may be very difficult for medium-sized and sometimes small-
sized systems. A simple linear upper bound r↑

i can be obtained by upper bounding the
ceiling function and using a real value for I↑

j,i.

I↑
j,i = ri

Tj
+ 1.

A tighter upper bound can be obtained by using the definition of the load executed
at higher priority provided in Bini et al. [2009]. Because of space limitations, we only
present the response-time upper bound without providing further details.

r↑
i −

∑
j∈hp(i)

(
U jr

↑
i + C j(1 − U j)

) = Ci (41)

3.5. Worst-Case Response Time of Messages

For each pair of messages (mr
p,q, mf

s,t), we define

pmr
p,q,mf

s,t
=

{
1, if mr

p,q has higher priority than mf
s,t

0, otherwise
.

For the antisymmetric and transitive properties of the priority order relation, it must
be (we assume no two messages have the same priority level.)

pmr
p,q,mf

s,t
+ pmf

s,t,mr
p,q

= 1 (42)

pmr
p,q,mf

s,t
+ pmf

s,t,m
z
x,y

− 1 ≤ pmr
p,q,mz

x,y . (43)

As a result of the optimization, a priority level is assigned to all messages, including
empty placeholders, and it is possible that a high priority level is assigned to one of
the empty messages. An additional constraint ensures that this never happens. In (44)
message mr

p,q, when nonempty (Ymr
p,q

= 1), has higher priority than the empty message
mf

s,t (Ymf
s,t

= 0). This ensures that empty messages don’t contribute to the interference
of nonempty messages.

Ymr
p,q

− Ymf
s,t

× M ≤ pmf
p,q,mr

s,t
(44)

The formula that allows us to upper bound the worst-case response time of a message
mr

p,q is

rmr
p,q

= Cmr
p,q

+ qmr
p,q
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qmr
p,q

= Bi +
∑

j∈hp(i)

Imf
s,t,mr

p,q
C j,

where hp(i) spans over the indexes of all the messages with priority higher than rmr
p,q

,
and Imf

s,t,mr
p,q

is the number of interferences of mf
s,t on mr

p,q during its queuing time. It is

Imf
s,t,mr

p,q
=

⌈
qmr

p,q

T r
p,q

⌉
.

Note that we only consider messages mf
s,t that are on the same bus with mr

p,q (this
information can be deduced from which buses ECU p, q, s, and t are connected to).

Furthermore, the transmission times of messages depend upon their lengths accord-
ing to

Cmr
p,q

= βmr
p,q

+ 46

Bspeed
= βmr

p,q

Bspeed
+ 46

Bspeed
,

where βmr
p,q

is the size of the message (total number of bits mapped into it), and 46 is
the number of protocol bits in a CAN frame.

Similar to the computation of the response times of the tasks, the additional variables
zmr

p,q,mf
s,t,si, j,0

, zmr
p,q,mf

s,t,si, j,k
, wmr

p,q,mf
s,t

, xmr
p,q,mf

s,t
, and ymr

p,q,mf
s,t

are defined.
The possible number of interferences ymr

p,q,mf
s,t

is obtained from

0 ≤ ymr
p,q,mf

s,t
−

(
rmr

p,q
− βmr

p,q
+ 46

Bspeed

) /
Tmf

s,t
< 1. (45)

xmr
p,q,mf

s,t
, the possible number of interferences of a higher priority message mr

s,t on mf
p,q

can be computed from ymr
p,q,mf

s,t
.

ymr
p,q,mf

s,t
− (

1 − pmr
s,t,m

f
p,q

) × M ≤ xmr
p,q,mf

s,t
(46)

xmr
p,q,mf

s,t
≤ ymr

p,q,mf
s,t

(47)

0 ≤ xmr
p,q,mf

s,t
≤ pmr

s,t,m
f
p,q

× M (48)

wmr
p,q,mf

s,t
is computed from xmr

p,q,mf
s,t

and represents the number of interferences from a
higher priority nonempty message mr

s,t (the only ones of practical relevance).

xmr
p,q,mf

s,t
− (

1 − Ymf
s,t

) × M ≤ wmr
p,q,mf

s,t
(49)

wmr
p,q,mf

s,t
≤ xmr

p,q,mf
s,t

(50)

0 ≤ wmr
p,q,mf

s,t
≤ Ymf

s,t
× M (51)

and zmr
p,q,mf

s,t,si, j,0
, zmr

p,q,mf
s,t,si, j,k

from wmr
p,q,mf

s,t
, γsi, j,0,mr

s,t and γsi, j,k,mr
s,t

wmr
p,q,mf

s,t
− (

1 − γsi, j,0,mf
s,t

) × M ≤ zmr
p,q,mf

s,t,si, j,0
(52)

zmr
p,q,mf

s,t,si, j,0
≤ wmr

p,q,mf
s,t

(53)

0 ≤ zmr
p,q,mf

s,t,si, j,0
≤ γsi, j,0,mr

s,t × M (54)

wmr
p,q,mf

s,t
− (

1 − γsi, j,k,mr
s,t

) × M ≤ zmr
p,q,mf

s,t,si, j,k
(55)

zmr
p,q,mf

s,t,si, j,k
≤ wmr

p,q,mf
s,t

(56)
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0 ≤ zmr
p,q,mf

s,t,si, j,k
≤ γsi, j,k,mr

s,t × M (57)

Finally, (58) computes the bound for the worst-case response time rmr
p,q

∈ R
+ of message

mr
p,q based on the number of interference from other messages

rmr
p,q

≤ βmr
p,q

+ 46

Bspeed
+ Bmr

p,q
+ 1

Bspeed

∑
mf

s,t

∑
si, j,0

zmr
p,q,mf

s,t,si, j,0
βsi, j,0

+ 1
Bspeed

∑
mf

s,t

∑
si, j,k

zmr
p,q,mf

s,t,si, j,k
βsi, j,k + 46

Bspeed

∑
mf

s,t

wmr
p,q,mf

s,t
, (58)

where each ms,t is on the same bus with mp,q. And we ensure that rmr
p,q

> 0 only when
Ymr

p,q
�= 0.

βmr
p,q

+ 46

Bspeed
+ Bmr

p,q
+ 1

Bspeed

∑
mf

s,t

∑
si, j,0

zmr
p,q,mf

s,t,si, j,0
βsi, j,0

+ 1
Bspeed

∑
mf

s,t

∑
si, j,k

zmr
p,q,mf

s,t,si, j,k
βsi, j,k

+ 46
Bspeed

∑
mf

s,t

wmr
p,q,mf

s,t
+ (

Ymr
p,q

− 1
) × M ≤ rmr

p,q
(59)

rmr
p,q

≤ Ymr
p,q

× M (60)

Paths are defined on the tasks and the communication signals between them. the
following constraints bound the latency of a message to the latency of all the signals
that are mapped into it. The response time of signal si, j,0 and si, j,k are denoted as rsi, j,0

and rsi, j,0 , respectively.

rmr
p,q

− (
1 − αsi, j,0,mr

p,q

) × M ≤ rsi, j,0 (61)

rsi, j,0 ≤ rmr
p,q

+ (1 − αsi, j,0,mr
p,q

) × M (62)

rsi, j,0 ≤ gsi, j,0 × M (63)

rmr
p,q

− (
1 − αsi, j,k,mr

p,q

) × M ≤ rsi, j,k (64)

rsi, j,k ≤ rmr
p,q

+ (
1 − αsi, j,k,mr

p,q

) × M (65)

rsi, j,k ≤ gsi, j,k × M (66)
(67)

If τsi and τ j are mapped to different ECUs, (61) and (62) bounds the signal latency rsi, j,0

to the latency of message rmr
p,q

. However, inequality (63) forces rsi, j,0 to 0 when the signal
is local, that is, when τsi and τ j are mapped to the same ECU. Similar constraints are
defined for rsi, j,k.

3.6. Worst-Case End-to-End Latency

We are now ready to compute the end-to-end latency. For path p ∈ P, its latency lp is
defined as

∀p ∈ P, lp =
∑
τi∈p

rτi +
∑
si∈p

(rsi, j,0 + gsi, j,0 Tsi + gsi, j,0 Tτ j
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+
∑

k

(rsi, j,k + gsi, j,kTsi + gsi, j,kTτk + gsi, j,kCτk)) (68)

∀p ∈ P, lp ≤ dp, (69)

where τi is the generic task and si is the generic signal on the path p, and we assume
the response time for gateway task τk is Cτk (i.e., a gateway task has the highest priority
on its ECU). Latencies on the paths should be no greater than the deadline dp (69).

3.7. Objective Function

The design problem we described in this article was originally formulated as a feasibil-
ity problem. However, in the definition of the software architecture of the system there
are clearly performance objectives that can be optimized. The target platforms that
motivated this work are automotive architectures supporting active safety functions.
These functions make use of (physically distributed) sensors of different types to un-
derstand and evaluate the environment surrounding the car, detect possible sources of
danger, and inform the driver or actuate the car systems (brakes, steer, throttle). The
actuations are performed as an overlay to the driver’s actions with the objective of pre-
venting collisions or other types of accidents. In these systems, computation paths refer
to the set of computations occurring from the sensor detection of environment events
and objects to the actuation action (such as braking or sounding a chime that alerts
the driver). Clearly, the performance of these functions improves when the reaction
(or response) times are shorter. Given the set of the latencies over all time-sensitive
paths, one possible definition of the objective function is to minimize the sum of these
end-to-end latencies as an attempt at generically shortening the response times over
all the time-sensitive paths.

min
∑
p∈P

lp (70)

This metric function is of course quite coarse. It does not target individual paths and it
possibly allows some responses to be quite large (but still within the deadlines imposed
as constraints), while others can be very small.

An alternative objective function can be defined with the purpose of maximizing the
distance between the response times and the deadlines on a set of given paths. This
metric not only tends to shorten response times on those paths, but also more directly
relates to the objectives of improving robustness and extensibility. By increasing the
slack time between response times and deadlines, we achieve better protection against
errors in the estimates of the Ci and allow for better extensibility when more tasks
need to be added to the system or some of the (control) functions become more complex
and require some additional computation time. Formally, the objective in this case is
minimizing the maximum lateness (defined as the path latency minus its deadline)
among the set of time-sensitive paths.

min max
p∈P

{lp − dp} (71)

In the following experimental section, we are going to discuss the results that we
obtained by applying this function (together with the previous one) on a case study
of industrial complexity and its extension to larger cases to estimate the scalability of
the approach.

3.8. Notation Types

We summarize the types of the notations used in the formulation in Table I.
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Table I. Notation Types in MILP Formulation

Type Notations
Boolean variables Aτi ,e j , aτi ,τ j , αsi, j,0,mr

p,q , αsi, j,k,mr
p,q , γsi, j,0,mr

p,q , γsi, j,k,mr
p,q ,Ymr

p,q , asi, j,0,br , asi, j,k,br ,
gsi, j,0 , gsi, j,k , pi, j , pmr

p,q,mf
s,t

,

Integer variables βmr
p,q , yi,k, xi,k, wi,k, zi, j,k, zmr

p,q,mf
s,t,si, j,0

, zmr
p,q ,mf

s,t,si, j,k
, wmr

p,q,mf
s,t

, xmr
p,q,mf

s,t
,

y
mr

p,q,mf
s,t

,

Real variables ri , lp, Cmr
p,q , rsi, j,0 , rsi, j,k , rmr

p,q

Integer Constants umax
p,q , βsi, j,0 , βsi, j,k , βsi ,

Real Constants Ci, j , Ti , dp, M, Bspeed, Tmf
s,t

, Bmr
p,q

Architecture topology, bus speed
Objective:
Sum of latencies on given paths

Constraints:
End−to−end latency on given paths
Utilization bound on ECUs and buses

Synthesize Task Allocation

Step 1: 

Task and Signal Priority

Heuristic:

Design input:

Task worst case execution time
Signal length
Task and signal periods

Synthesize Signal Packing,
Task and Message Priority

Step 2: 

Fig. 5. Two-step synthesis approach.

4. SYNTHESIS STEPS

Section 3 describes an integrated formulation for task allocation, signal packing, as
well as task and message priority optimization. This problem formulation provides
an optimal solution when solvable. However, the complexity is typically too high for
the sizes of industrial applications because of the large number of integer (for task
and message feasibility) and binary (for priority assignment and allocation of task and
messages) variables.

Several strategies can be used to cope with this complexity, giving up the guarantee
of finding the optimal solution for acceptable running times and possibly good quality
solutions. As a general framework, we propose a faster approximated two-step synthe-
sis method, as shown in Figure 5. The problem is divided into two subproblems. At each
step, the subproblem is formulated as an MILP based on the variables and constraints
defined in Section 3, then solved by mathematical programming tools.

In Step 1, we assume that one message is reserved for each signal, and the prior-
ities of tasks and one-signal messages are assigned according to their periods by a
preprocessing heuristic based on the Rate Monotonic policy. In the first subproblem,
we synthesize the task allocation to optimize the sum of the latencies of given paths,
while also satisfying the deadline constraints on those paths.

In Step 2, we use the task allocation result from Step 1 and synthesize signal packing,
message priority, and task priority. The objective is still to optimize the sum of the
latencies of given paths, while satisfying the deadline constraints on paths and the
constraints on message size.
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However, when the system has more than one CAN bus and a sufficiently large
number of ECUs and tasks (like one of our case studies shown in next section), the
complexity is excessive even for Step 1 and a two-stage optimization is used for this step.

Also in one of our case studies, we attempted optimizing both task allocation and
priority in Step 1 and reoptimizing the task priority with signal packing and message
priority in Step 2, with results shown in next section.

5. CASE STUDY: AN EXPERIMENTAL VEHICLE SUBSYSTEM

We demonstrated the applicability and the possible benefits of our approach with a
case study derived from a subsystem of an experimental vehicle that incorporates
advanced active safety functions. The vehicle supports distributed functions with end-
to-end computations collecting data from 360◦ sensors to the actuators, consisting of
the throttle, brake, and steering subsystems and of advanced HMI (Human-Machine
Interface) devices. Examples of active safety functions, are Adaptive Cruise Control
(ACC), Lane Departure Warning or Lane Keeping Systems. In an active cruise control
system, a set of radars (or other sensors) scans the road in front of the car to ensure
that there are no other cars or objects moving at a lower speed or even stopped in the
middle of the lane. If such an object is detected, the system lowers the target speed of
the cruise control until it matches the speed of the detected obstacle.

These functions are deployed together in a car electronics system, sharing the sensing
and actuation layers and possibly also intermediate processing stages, such as the
sensor fusion and object detection functions or the actuator arbitration layers. The
result is a complex graph of functions (programmed as tasks) with a high degree of
communication dependency and deadlines on selected pairs of endpoints.

In our case study, the system is a subset of those functions, with their tasks and com-
munication signals. Also, we focused our analysis on a subset of the architecture ECUs
(those considered for the functions of interest). For our study, we removed allocation
constraints that actually apply to the real system (e.g., sensor processing stages are
bound onto the same ECU to which the sensor is connected) that make the problem
easier in reality.

We applied our method to two different platform options. In both cases, the subsystem
that is the subject of our study consists of a total of 41 tasks and 83 CAN signals
exchanged among them. Worst-case execution time estimates have been obtained for
all tasks, and the bit length of the signals is between 1 (for binary information) and 64
(full CAN message).

End-to-end deadlines are imposed over 10 pairs of source-sink tasks in the system
with 171 possible computation paths having them as endpoints. The deadline is set at
300ms for 8 source-sink pairs and 100ms for the other two. For challenging the applica-
bility of the method to our case study, we included in the formulation of the optimization
problem all tasks and signals, not only those involved in end-to-end computations with
deadlines. In reality, the problem could have been made easier by assigning the lowest
priority levels to tasks not involved in time-sensitive functions, and complexity could
have been reduced by only optimizing the tasks and signals that are part of paths with
deadlines. The remaining tasks and signals can be assigned lower priorities and allo-
cated to ECUs and messages based on other considerations (possibly load balancing)
in such a way that they do not interfere with the latencies of the critical paths. Even
in large systems, the actual amount of processing and communication that is subject
to hard deadlines or for which performance depends on time can be only a small
fraction.

The architecture platform of our target system consists of 9 ECUs. For the purpose
of our experiments, we assumed all ECUs have the same computation power, which is
not actually true in the real system. This simplification does not affect the complexity
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Table II. Result of the Single-Bus Configuration

Step #Var #Int #Binary #Con Time(s) Result(ms) Gap
Step 1 34075 0 450 80817 18539.9 12295.3 Opt
Step 2 3247 1122 1841 18946 0.45 4927.5 Opt

or the running time of the optimization algorithm in any way and is only motivated by
the lack of WCET (worst-case execution time) data for the tasks on all possible ECUs.
Finally, for extensibility reasons, the utilization upper bound of each ECU and bus has
been set to 70%.

For both platform options, the experiments are performed on a 3.2GHz processor
with 2GB RAM, using CPLEX 11.0 as the MILP solver.

In the following Sections 5.1 and 5.2, the objective function for optimization is the
sum of end-to-end latencies as defined in (70). In Section 5.3, the alternative objective
of maximum lateness is explored as defined in (71).

5.1. First Option: Single Bus Configuration

In the first configuration option, the ECUs are connected with a single CAN bus at
500kb/s.

In Step 1, to reduce the complexity, we optimized the task allocation using the upper
bound formulation (41) from Bini et al. [2009] to approximate the response times of
tasks and messages. This significantly reduces the number of integer variables, while
ensuring the results we get are correct system configurations. We also relaxed some
integer variables such as aτi ,τ j to real variables, since their values will be enforced to
either 0 or 1 by Aτi ,e j , according to constrains (10) and (11) (Aτi ,e j is defined as binary
variables in the formulation).

As shown in Table II, the total number of variables in the MILP formulation, after
the presolve stage in CPLEX, is 34,075, of which 450 are binary variables. The number
of constraints is 80,817. A feasible solution satisfying all path deadline constraints
was found in 14.5 seconds. The corresponding objective value, that is, the sum of the
latencies of given paths, was 33,119.5ms for this feasible solution. The objective value
improved with time and after 18,539.9 seconds, the optimal solution for this formulation
was obtained by the solver at a value of 12,295.3ms.

In Step 2, we set the solution of Step 1 as the initial configuration and further
reduced the objective function by packing the signals and optimizing the priorities
assigned to tasks and messages. We used the exact formulation for computing the task
and message response times as defined in (1) and (4). There are 3,247 variables in the
formulation, of which 1,841 are binary variables and an additional 1,122 are general
integer variables. The number of constraints is 18,946. In just 0.45 seconds, the optimal
solution with 4,927.5ms total latency was found. The largest latency among all the
paths with deadline at 300ms is 111.5ms and the largest latency for 100ms deadline
paths is 2.3ms. Since the exact response time calculation was used in the formulation,
the latency numbers in our final solution were exact.

5.2. Second Option: Dual Bus Configuration

In the second configuration, the ECUs are connected by two CAN buses, with one ECU
functioning as the gateway between the two buses. The transmission speed of both
CAN buses is 500kb/s.

Experiment 1: same flow as in the single-bus case. In Step 1, we again used the upper
bound formulation (41) for approximating task and message response times. We also
relaxed some integer variables to real, while guaranteeing the correctness of their
values. The number of variables and constraints are shown in Table III. The optimal
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Table III. Result of the Dual-Bus Configuration

Step #Var #Int #Binary #Con Time(s) Result(ms) Gap
Step 1 32818 0 369 116846 8945.0 15871.5 Opt
Step 2 3598 1375 1934 19231 54.0 4927.8 Opt

Table IV. Result of the Dual-Bus Configuration with Priority Optimization in Step 1

Step #Var #Int #Binary #Con Time(s) Result(ms) Gap
Step 1 36919 0 2009 189033 50000 4987.5 41.4%
Step 2 3672 1490 1869 16271 38.2 4927.8 Opt

solution for the formulation was found in 8,945.0 seconds with an objective value of
15,871.5ms.

In Step 2, the signal packing, task and message priority assignment are optimized
using the exact response time formulation and using the allocation from the previous
step. At the end of the optimization, the solver found the optimal solution for this step in
54.0 seconds, with a total latency down to 4,927.8ms. In this final solution, the largest
latency is 111.7ms among 300ms deadline paths and 2.3ms among 100ms deadline
paths. This is very close to the single bus case since, for those tasks and messages that
affect the latencies of selected paths most, their optimal configurations (allocations,
priorities, signal packings) are found to be similar in both architecture platforms.

Experiment 2: using exact response time. We conducted an experiment to study the
impact of approximating response times in Step 1. In this experiment, after using the
upper bounds of response times for task allocation as in Experiment 1, we did not im-
mediately feed the result to Step 2. Instead, we leveraged the 15,871.5ms total latency
as a bound for the objective function and repeated the task allocation optimization
with the exact response time formulation. The solver found the optimal solution for
this exact formulation after 13,576.9 seconds at a total latency of 13,137.4ms. This new
result of task allocation is then fed into Step 2. In 42.0 seconds, Step 2 found its optimal
solution at 4,927.3ms, which is very close to the 4,927.8ms we got from Experiment 1.
This shows that using the upper bound formulation of the response times is a good way
to reduce complexity, while maintaining the quality of the results.

We also tried directly running the exact formulation without the bound obtained from
the approximated formulation. It took 37,824.4 seconds to find a solution with a cost
value of 21,807.9ms. The solution is far from the optimal solution of 13,137.4ms, and
also requires a longer runtime (the total time when using the cost bound is 8,945.0 +
13,576.9 = 22,521.9 seconds).

Experiment 3: optimizing both task allocation and task priority. We conducted an-
other experiment to study the impact of optimizing more design variables in Step 1.
We again leveraged the 15,871.5ms upper bound on the total latency obtained from
the task allocation optimization, and then synthesized both the task allocation and
the priority assignment using the upper bound formulation of the response times. As
shown in Table IV, the solver found a solution with an objective value of 4,987.46ms
after a time limit of 50,000 seconds. The gap between this solution and the theoretical
lower bound estimated by the solver is 41.4%.

Step 2 took the allocation from Step 1 and found the same final solution (with a cost
of 4,927.8 ms) as in Experiment 1.

Experiment 4: simulated annealing approach. To evaluate the runtime required by
our MILP approach and the quality of the results, we compared our solution with
a simulated annealing algorithm (SA) obtained with limited modifications from the
one described in Zhu et al. [2009]. We outlined the possible disadvantages of stochastic
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Fig. 6. Optimal value with time for the MILP based approach and Simulated Annealing algorithm.

optimization approaches in Section 1. In addition, in our case study, the SA parameters
were very difficult to tune and the algorithm ended up quite often in local optima. The
problem is a quite general one and it is worth discussing. In SA, there is no direct
way of handling constraints and infeasible intermediate solutions. If it is possible to
demonstrate that the solution space is connected (at least for the selected transition
operator), a possible approach could be to reject any infeasible intermediate solution. In
our case, there is no such guarantee. Therefore, to avoid being stuck in local optima, we
conditionally allow infeasible solutions. This presents the problem of how to evaluate
such solutions by a suitable modification of the metric function. Clearly, they should
be penalized to avoid having an infeasible solution (with a good overall metric value)
as the final result. However, a penalty that is too steep could easily result in the
impossibility of getting out of an “island" of feasible solutions to reach another region
of the solution space containing the global optimum, but not connected by a path of
feasible solutions. Of course, this is further complicated by the fact that, if SA is the
only available tool, the designer has no indication about the quality of the final result,
if it is a local optimum, and how far it is from the global optimum. In our case, we
luckily had the results of the MILP approach as a reference and this allowed us to tune
the SA metric.

At the end (after several tries), when executed with an initial temperature of 20,000,
a cooling rate of 0.99, a final temperature of 0.005, and with a maximum number of
iterations at each step equal to 7,000, Simulated Annealing, after almost 23 hours of
computation, computed a best value of 4,945.75ms total latency. Figure 6 shows the
values of the cost function reached with time when using the different approaches.
Two short dashes on the left represent the results for the first experiment (same flow
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Table V. Comparison of Different Objective Functions

Min Sum Latencies Min Max Lateness
Experiment Result(ms) Time(s) Gap Result(ms) Time(s) Gap

Single Step 1 11178.3 24900.7 Opt −93.89 25301.0 Opt
bus Step 2 4927.5 0.45 Opt −97.75 0.32 Opt
dual bus Step 1 15871.5 8945.0 Opt −94.68 50000 2.61%
exp. 1 Step 2 4927.8 54.0 Opt −97.75 87.7 Opt
dual bus Step 1 13137.4 13576.9 Opt −95.03 25891.0 Opt
exp. 2 Step 2 4927.3 42.0 Opt −97.75 7.61 Opt
dual bus Step 1 4987.5 50000 41.4% −97.60 50000 1.26%
exp. 3 Step 2 4927.8 38.2 Opt −97.75 238.23 Opt

as in the single-bus case). The upper plot, in blue color (after 8,945.0 seconds with an
objective value of 15,871.5ms) shows the result of the first step. The lower one in red,
at almost the same x-coordinate (54 more seconds), with a cost of 4,927.8, is the final
outcome for the first experiment. Similarly, two more pairs represent the results and
the running times for the first step (in blue) and final step (in red) of Experiments
2 and 3. The two continuous lines represent the result with time of the simulated
annealing algorithm. The light line represents the cost of the current solution (which
can possibly increase with time, as SA conditionally allows transitions to higher cost
solutions), and the black line the best cost found up to some given time. As shown in
the figure, the quality of the solutions found in the first step in not very good, but the
metric is drastically improved in the second optimization step, which requires a quite
short time. For SA, at least 12 hours are needed to achieve a good quality solution,
and the final outcome is in any case worse than the results obtained using any of the
previous three methods.

5.3. Alternative Objection Function: Minimizing Maximum Lateness

As discussed in Section 3.7, the minimization of the maximum lateness on a set of time-
critical paths is a valuable option for a performance function as opposed to our initial
choice of the sum of latencies. To show how our formulation easily allows retargetting
to a different metric function and what the performance is for this alternative objective,
we replaced (70) with (71) in the formulation and applied the same optimization proce-
dures as before. The runtimes and results are summarized in Table V. As a comparison,
the results for the original objective are also shown in the table. In general, the results
show that the performance of the solver is comparable for both metrics, with the opti-
mal solution reached in many cases (in others with a small gap or short distance from
optimality). For some cases, the application of the new metric results in shorter pro-
cessing times, for others in longer times, but always within acceptable values, showing
the generality of the proposed optimization procedure with respect to different objec-
tive functions. The difference in the runtimes for the two functions is very difficult to
explain in detail for the individual cases. However, we can explain what the trade-offs
are that are the likely cause of this behavior. In the sum-of-latencies metric, there is a
single metric function and all path latencies need to be considered in the optimization
stage. In the min-of-max lateness case, the encoding of the function requires a larger
number of constraints. Also, low-latency paths clearly do not contribute in this case
and are easily pruned, but the solver can spend significant time in optimizing the few
critical paths having to resolve conflicting configurations (that would decrease the la-
tency of one path but increase it on another). In contrast, the sum-of latencies function
tends to be a characterization of a system average behavior, and configurations that
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Table VI. Scalability Analysis of the Dual-Bus configuration

#tasks Step #Var #Int #Binary #Con Time(s) Result(ms) Gap
41 Step 1 32654 0 369 116685 68534 −97.43 Opt

Step 2 7435 2990 4283 71355 24.5 −98.88 Opt
46 Step 1 39035 0 414 137279 20231.8 −97.43 Opt

Step 2 11403 4452 6701 88431 129.55 −98.88 Opt
51 Step 1 51775 0 459 183982 21430.1 −97.43 Opt

Step 2 13876 6112 7520 125121 12458.42 −98.88 Opt
56 Step 1 62984 0 504 223333 15573.7 −97.43 Opt

Step 2 16796 7293 9192 144658 1108.6 −98.88 Opt
61 Step 1 75294 0 549 266483 50000 −96.14 1.35%

Step 2 28357 12038 15970 400885 75000 N.A. N.A.

expose conflicts among paths tend to be smoothed out (the reduction on one path may
compensate the increase on another).

In this case, retargetting the simulated annealing algorithm to the new metric proved
to be quite easy (the new metric accommodates additional penalties for infeasible
solutions in a much easier way). The simulated annealing procedure found the same
best solution as the MILP approach at −97.75 (for the dual-bus configuration), with
similar runtimes as in the previous case.

5.4. Applicability and Scalability

Our case study does not answer a very interesting question, that is: “what is the maxi-
mum problem size that the method can handle?”. There are so many dimensions to our
problem that the definition of the region of applicability is practically impossible. The
number of ECUs and buses, the system topology, the computation speeds of ECUs and
the transmission speed of buses, the number of tasks and their periods and computa-
tion times, the number of signals and the topology of the functional communication,
and finally the size of signals can all come into play. Exploring all of these dimensions
exhaustively or even a significant subset is impractical, especially considering that, for
problems of industrial size, optimization times of several hours are expected.

Nevertheless, to give some hints about the increase of running time with increasing
problem size (without any pretense at obtaining a boundary for applicability), we tried
optimizing a series of configurations in which the functional architectures (tasks and
signals) of our case study is gradually increased and mapped into the same architecture
of 9 ECUs and 2 buses. We started from our original architecture and artificially
extended it by duplicating a subset of its tasks and signals. We increased the task
set size by 5 tasks at a time, including the signals exchanged among them. In order
to avoid running the risk of generating infeasible configurations, we also halved the
computation times of all tasks. The metric function considered for this study is the
minimization of the maximum lateness. The sizes of the problems and their respective
optimization times and results are summarized in Table VI.

Optimal solutions can be found for all but the last application configuration
(of 61 tasks), for which we could not find a solution to Step 2 in almost 21 hours of
runtime. Please note how the runtime is not a monotonic function of the number of
tasks. In fact, a longer optimization time may be needed for a smaller set (with lower
utilization). This can be the result of a lower utilization which allows a larger number
of solutions to be feasible and causes the solver to spend more time to explore all of
them. For example, in the case of 41 tasks, a solution with a gap of 1.15% was found in
a short time of only 136 seconds. This solution is indeed the optimal solution. However,
the solver needed more than 68,000 seconds (approx 20 hours) to prove its optimality,
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because of the large number of feasible solutions. However, when we add more tasks
and signals, the utilization becomes higher and the time may again rise as in the case
of 61 tasks. This is because of the sheer complexity (larger number of tasks and signals)
and also the fact that the solver spends lots of time looking for feasible solutions.

We truly believe that for this class of problems scalability simply cannot be defined
by (brute force) experiments. While more cases would definitely be useful, considering
that the analysis of a single case takes approximately one day of computation time,
the coverage of the possible system configurations would still be extremely small. In
conclusion, for systems of several tens of tasks, the designer would still need to try
his/her own system configuration. For example, our case study, as many of today’s
automotive systems, is characterized by high connectivity among tasks (more than
170 paths for 10 endpoints). Other systems may exhibit a different communication
pattern. We can add that, based on our experience, there is often a discontinuity
in running times and gap size. At some point, the runtime of the solver suddenly
increases. Also, the gap remains very small for some problems sizes but then suddenly
increases to very large values (consider e.g., Step 2 for 61 tasks, which could not be
solved, even for a suboptimal feasible solution, within the timeout).

6. CONCLUSIONS

This article presented an integrated formulation for optimizing task allocation, signal
packing, as well as task and message priorities to meet end-to-end deadline constraints
and minimize latencies in distributed automotive systems. To make it practical for
industrial-size applications, a two-step synthesis method approximating the integrated
formulation was proposed to reduce the complexity. We applied this method to an
automotive case study, and showed it can effectively reduce the end-to-end latencies.
Although the method targets only a part of the architecture definition stages, it is
flexible enough to accommodate many constraints of interest, and can effectively help
the designer in solving the problems of practical size. The proposed technique should
be merged with optimization results already devised for the assignment of the periods
and the task and messages activation modes as detailed in previous reports.
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