
Task Implementation of Synchronous Finite State
Machines

Marco Di Natale
Scuola Superiore S. Anna, email: marco@sssup.it

Haibo Zeng
McGill University, Email: haibo.zeng@mcgill.ca

Abstract—Model-based design of embedded control systems
using Synchronous Reactive (SR) models is among the best prac-
tices for software development in the automotive and aeronautics
industry. SR models allow to formally verify the correctness of the
design and to automatically generate the implementation code.
This improves productivity and, more importantly, can ensure a
correct software implementation (preserving the model seman-
tics). Previous research focuses on the concurrent implementation
of the dataflow part of SR models, including the optimization
of the block-to-task mapping and communication buffer sizing.
When the system also consists of blocks implementing finite
state machines, as in modern modeling tools like Simulink and
SCADE, the task implementation can be further optimized with
respect to time and memory. In this paper we analyze problems
and opportunities in the implementation of finite state machine
subsystems. We define the constraints and efficient policies for
the task implementation of such systems.

I. INTRODUCTION

The development of complex embedded systems is subject
to tight cost and performance constraints. Automatic code
generation tools producing a software implementation of an
application model, defined according to a high-level (possibly
visual) language are being adopted to increase productivity
and avoid errors in the development of embedded software.

In the development of embedded controllers, the use of
the Simulink visual language and modeling tool is becoming
widespread, together with the associated code generators such
as Real-Time Workshop (RTW), Embedded Coder (EC) from
MathWorks [9] and TargetLink of dSPACE [7]. The market
relevance of Simulink is such that rules and automatic trans-
lation tools have been developed for converting a Simulink
diagram into an equivalent Lustre [11] or Esterel [2] descrip-
tion for the purpose of formal verification of properties and/or
provably correct code generation. Commercial products for the
verification of properties of Simulink models and automatic
test generation with guaranteed coverage are also available [8].

A Simulink model is a network of blocks. Each block
processes a set of input signals and produces a set of output
signals. All Simulink blocks, when executed, compute two
functions: the state update function (possibly omitted in purely
functional blocks), which updates the next block state based
on the current state and the values of the input signals, and
the output update function, computing the set of values for
the current time for the output signals as a function of the
current state and the inputs. Whenever the block outputs
depend on the block input values, the block must execute after

the predecessor blocks. This introduces a partial order in the
execution of the block functions.

Although Stateflow (and Simulink) allow for continuous-
time signals and events occurring at arbitrary times, in this
paper we are interested in the subset of the Simulink/Stateflow
language to which automatic code generators currently
apply. In this case, continuous signals must be realized using
a discrete time solver, and all signals and events in the
system are discrete-time functions defined at multiples of a
base period defined for the system model (the solver period).
Likewise, we don’t consider blocks activated by function calls.

Simulink blocks are of two types. One type, somewhat
improperly called Dataflow, is executed at a given period
(integer multiple of the base period). For these blocks, the
complexity of the output update and state update functions
does not depend significantly on the block state (which typi-
cally appears only as a parameter for those functions). For the
other type of blocks, an explicit modeling of the states and the
dependency of the update functions on the state is required.
These blocks can be activated by signals coming at multiple
rates. They are explicitly defined as (Mealy type) Extended
Finite State Machines, or extended FSMs. In Simulink, they
are called Stateflow blocks. In Stateflow blocks, each trigger
event may also result in the execution of a set of actions.

A Stateflow block receives as input a set of signals and a
set of events obtained from signals. As a result of its reaction,
the block updates a set of output signals. The events that
trigger the reaction of the block (if no trigger event is specified,
the block reacts at thel base rate) are obtained from periodic
signals and are therefore assumed to be periodic.

While implementing a Simulink model into code, the prob-
lem is to provide a feasible implementation (for example,
with respect to time and memory constraints) that preserves
the logical-time execution semantics (the rate and order of
execution of blocks) and the communication flows.

Current commercial code generators provide correct imple-
mentations of Simulink models for single-processor CPUs at
the price of possible pessimism with respect to schedulability.
In a single-task implementation, all blocks are executed by
one task running at the system base period according to a
global order that is compliant with their partial order execution
constraints. Feasibility requires that the longest reaction in the
system completes before the task is executed again (the task
deadline is equal to the base period).

Multitask implementations are desirable because they im-
prove schedulability. All the blocks with the same rate are

executed by the same task and tasks are scheduled by priority
with a Rate Monotonic policy. A multitask implementation
brings issues because of the need to guarantee the data con-
sistency of the signal flows that occur between blocks executed
by different tasks. The Simulink code generators provide Rate
Transition (RT) blocks to guarantee the consistency of shared
data, and the preservation of communication flows (time
determinism) whenever there is a communication between two
blocks (tasks) with different rates. The RT block behaves like
a Zero-Order Hold block for transitions from a high-rate to
a low-rate block. The block output values are updated by an
output update function executed in the context of the writer
task, after the completion of the writer block, but with the rate
of the reader block (Figure 1). In the case of low-to-high rate
transitions, the RT block behaves like a Unit Delay block plus
a Hold block. In this case, the reader executes before the writer
(because of the Rate Monotonic policy), hence a functional
delay. The RT block state update part executes in the context
of the writer task, right after the writer block, while the output
update part executes in the context of the reader task, before
the reader block, with the period of the writer.

(sample)

1 τ2

τ1

τ2 1read

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��

sample hold

write write

2 readread read 1 2

τ1 τ2

T=2

Low priority
∆

Rate
transition

(sample and hold)

High priority

T=1

τ1

τ2

��
��
��
��

��
��
��
��

����������������������
����������������������
����������������������
����������������������

read read

write

hold

T=1

High priority Low priority

T=2∆

Rate
transition

(hold)

τ

Fig. 1. Rate Transition blocks are added between blocks executing at different
rates to guarantee the preservation of the communication flows.

RT blocks for high-to-low rate transitions require an ad-
ditional set of output variables for communication between
the sender and the receiver as well as (limited) additional
code for the output update function of the block. The memory
overhead is equal to the size of the variables implementing the
communication link. RT blocks for low-to-high rate transitions
require additional sets of state and output variables as well
as the corresponding additional code for the state update and
the output update functions. The memory overhead is double
the size of the communication link. In addition, this type of
RT block results in an additional functional delay equal to the
period of the slower block. The introduction of zero-order hold
blocks and time delays improves schedulability at the price of
additional memory, and possibly a performance degradation of
the feedback control system because of the additional delay.

In the multi-task implementation of Simulink models, the
Embedded Coder/Real-Time Workshop [9] tools assumes a
single periodic task implementation for each Stateflow block
code. Each time the task is activated, it checks for any active
trigger and, if there is any, it processes them. Each Stateflow
block therefore executes at the greatest common divider (gcd)
of its trigger signals. Such a model has several limitations:

• It forces the execution of all transitions in a single task,
with the same priority level, short period (and typically

high priority), and short deadlines. Therefore it imposes
a high interference on the other tasks with lower priority.

• The execution of the task at the gcd of the period of the
trigger events (a possibly very short period) makes very
likely the addition of RT blocks at its input/output links.

A multi-task implementation of a Stateflow block can
provide more flexibility and efficiency in terms of real-time
schedulability. Moreover, it can potentially avoid the addition
of RT blocks in the data transfer between tasks with different
rates, thus saving on the associated memory overhead. In this
work, we propose semantics-preserving efficient implementa-
tions of Stateflow blocks activated by triggers with different
rates using multiple concurrent tasks scheduled by priority. We
define several options for time- and memory-efficient multi-
task implementations of a synchronous FSM and we analyze
their benefits in terms of schedulability and memory usage.

The code implementation of synchronous state machines
has been discussed at length by Berry and Gonthier [3], and
Benveniste et al [1]. The scheduling problem needs to account
for the partial order in the execution of blocks required by
the Mealy semantics of the state machines and also for the
need to complete the system reaction by the time a new
event arrives in the system. However, most of the discussed
implementations consist of static scheduling of code in a single
task implementation. For multitask implementations previous
works focused mostly on the implementation of the intertask
communication [4], rather than the real-time analysis or the
synthesis of an efficient task structure. The possible avoidance
of RT blocks by the selection of a different block-to-task
mapping and priority assignment model has been proposed
in [6] for the case of Dataflow blocks only. In this work, we
assume the use of RT blocks at every rate transition. However,
the two methods could be combined to produce an even more
efficient implementation. We plan to explore this opportunity
in future work.

The paper is organized as follows. Section II summarizes
the model of synchronous Finite State Machines. Section III
proposes the possible multitask implementations, with exam-
ples in Section IV. Section V gives the experimental results on
potential memory savings using random task graphs. Finally,
Section VI concludes the paper and discusses future work.

II. SYNCHRONOUS FSM ABSTRACT MODEL

A synchronous model consists of a graph of communicating
Mealy Finite State Machines (FSMs). Each FSM is defined by
a tuple (S, S0, I,O,E,T), where S = {S0, S1, S2, . . . Sq} is
a set of states, S0 ∈ S is the initial state, I = {i1, i2, . . . in}
and O = {o1, o2, . . . op} are the input and output values,
where each ij (oj) is a signal, also denoted as sj . Each signal
is a function defined on a discrete time domain and with
values in a given range. The discrete time domain of each
signal sj matches the system base period t. Signal values
only change at multiples of its period, defined as tj = kj · t,
and are persistent between updates. E is the set of trigger
(or activation) events. Each event ej is generated by a (rising
or falling) value transition of a signal and is therefore bound
to occur only at time instants belonging to a time base with

/ {action (); o }

1

S2

e

e

e

e

e

2

 / {action (); o }4

13

5

1

2

/ {action ();o }2

/ {action (); o }1

2
/ {action (); o }2 2

S

S3

1

2

1

1

0.05

1

2

20.1
0.3

0.2

0.25

Fig. 2. An example of FSM behavior description

period tej which is an integer multiple of t. At each time
tej = kej ·t the event may or may not be present (alternatively,
the machine may stutter). The periods of all signals and events
are therefore multiple of the base period. T is the set of
transition rules. Each transition θj ∈ T consists of a tuple
θj = {Ssj , Sdj , ej , gj , aj , pj}, where Ssj is the source state,
Sdj

is the destination state, ej ∈ E is the trigger event, gj is the
guard condition: an expression of the input/output signals (the
model may be extended to allow also the definition of internal
variables), aj is the action, and pj is the transition priority (the
lower the number, the higher the priority). Figure 2 shows an
example of the graphical notation that is used to describe the
states and transitions, along with the event, guard and action
associated with each transition. The execution time (in bold,
below the action) and priority (near the starting point) of each
transition are also denoted in Figure 2.

In this paper we do not consider the case of transitions
activated by a logical expression evaluated on multiple events.
Our FSM model and task models could be easily extended to
deal with this case (using a set of dummy events resulting from
the evaluation of the expressions), but this would unnecessarily
complicate the discussion. Also, compared with Stateflow, we
do not allow events to be generated by transitions.

Following the original Statecharts specification, from which
it is derived, the actual Stateflow semantics also allow con-
current states, superstates, entry actions, exit actions, while
actions, join transitions and other constructs. For a discussion
of these constructs and the conditions upon which some of
them may be semantically equivalent, and translated to the
definitions in standard (flat) extended FSM please refer to [12].

In synchronous FSMs, all events occur with periods that
are multiple of the base period and with the same phase.
Therefore, sets of events arrive at exactly the same time (hence
the name synchronous FSMs). Also, every reaction occurs
in logical zero time, that is, it must satisfy the synchronous
assumption, where the reaction of a network of (possibly FSM)
blocks completes before the next event is processed. Priorities
associated with transitions are used to discriminate which
transition should be performed when two or more events arrive
synchronously and two or more corresponding transitions can
be taken out of the same source state.

When an FSM is translated into code, the implementation
must define for each possible state and input signal the output
update function with the corresponding actions and the state
update function (the two are sometimes merged).

III. TASK IMPLEMENTATION OF THE FSM
When a synchronous FSM is translated into code, the

model properties should be preserved to retain the results
of the simulation and validation performed on the model.

In the case of synchronous FSMs, we want to preserve the
correspondence between input and output stream value, also
called flow preservation. A task implementation is therefore
correct as long as it preserves the set of output values that
are produced in correspondence to a given set of inputs. This
requires that the state and the outputs are updated in a timely
fashion. The state needs to be updated before the next set
of input values is processed (by the task activated by the
next event). Similarly, outputs need to be produced without
overwrites and in time for the following blocks to use them.
This last requirement is handled by an appropriate definition
of the priority levels of the tasks implementing the FSM block
and its successors, plus the possible use of RT blocks.

The set of tasks in our model is denoted as T =
{τ1, τ2, . . . τm}. If a transition θj (and the corresponding
action aj) is mapped into τi, we write µ(θj) = τi. The task
implementing θj is also indicated as τ(θj). The period of τj
is indicated as ψj and its priority as πj .

The Real-Time Workshop/Embedded Coder code generator
adopts a single task implementation for the reactions of a
Stateflow block. The code implementing the FSM output
update and state update functions executes in a task with
period equal to the gcd of the periods of the trigger events.
We call this implementation as the baseline implementation,
since it is simple and applies to all synchronous FSMs.
Baseline model
Formally, in a baseline implementation, a single task τ1
implements all transitions. (∀j, µ(θj) = τ1, ψ1 = gcdk{tek}).
Every time it is activated, the task code checks the current
state and then, in the order of their priority, it checks if for
any of its outgoing transitions, there is an active event. If it
finds one, it executes the corresponding action, updates the
outputs and state and completes before it is activated again.

As shown in the following subsections, several possible
multitask implementations exist. A multi-task implementation
gives at least as much design freedom as a single-task im-
plementation on the block-to-task mapping and task priority
assignment. In addition, a multi-task implementation can pos-
sibly impose a looser deadline on some of the task instances,
which further improves schedulability. The advantages on
memory requirements come from the possibility of avoiding
the use of RT blocks.

Before discussing the possible multitask implementations,
we first identify a subset of all synchronous FSMs where the
priorities of the transitions are determined by their trigger
events. In this class of FSMs, whenever there are multiple
outgoing transitions from a given state, the priority of the
transitions can be uniquely determined by the events/signals
associated with them. That is, if for a given state, the transition
associated with event ei has priority higher than the transition
associated with ej , and ei and ej can occur at the same time,
then for any possible state, the transition associated with ei
must always have priority higher than the transition associated
with ej . The first multitask model (partitioned model) applies
to this subset of FSMs only, the other two apply to any FSM.
Partitioned model
In this model, the FSM is implemented by one periodic task

for each event (period). The tasks implementing the FSM are
activated synchronously (with offset = 0) and share a variable
encoding the FSM state. Each task handles the transitions
associated with the given event and is executed at the period
of the event. Also, the priorities assigned to tasks are in
agreement with the priority order of the corresponding events.
In addition, an inhibition signal is defined for any task pair
τi → τj whenever the event handled by τi has a priority higher
than the one handled by τj . τi sends an inhibition signal to all
lower priority tasks τj if one of the transitions it implements is
actually executed. When this happens, τj skips its execution.

Deadlines can be assigned based on the requirement that
outputs and state are updated before the next event is processed
(with the corresponding next set of inputs). However, we only
need to worry about the following events that are handled by
a task with higher priority. For all the others, since they arrive
later and are implemented by tasks with lower priority (tasks
never block because of the use of RT blocks), the requirement
will be automatically met due to the synchronous activation of
tasks and the priority order. In general, the absolute deadline
of a task instance is defined as the minimum value between the
end of the task period and the earliest activation time of higher
priority tasks implementing transitions of the same FSM.

With this definition of task deadlines, and assuming schedu-
lability analysis can guarantee that tasks always execute within
them, access to the state variable does not require any protec-
tion mechanism to ensure data consistency. Indeed, it is easy
to demonstrate that preemption between tasks is not possible
as long as task deadlines are met.

The partitioned model implementation preserves the FSM
flows. Whatever is the state of the FSM, only one transition
for one event is possibly executed and the transition priority
order is preserved because tasks are activated with the same
offset and higher priority tasks execute first. In addition,
because of the inhibition signal, only the highest priority
transition (belonging to the highest priority task) is executed.
Outputs and state are updated before the next set of inputs
relevant to the FSM is evaluated. This assumption that tasks
complete before their deadlines requires the availability of a
schedulability analysis method. Several methods could be used
for a (possibly pessimistic) analysis of this type of tasks, e.g.,
[10]. Currently, we are investigating a comprehensive analysis
method that improves the currently available algorithms.

The benefits of this implementation are multi-fold. With
multiple tasks, it is no longer necessary to give the same
scheduling priority to all (transition) actions, improving
scheduling flexibility. Also, the deadlines of most task in-
stances are relaxed. Finally, communication links may occur
without rate transitions and therefore avoiding the use of RT
blocks as shown in the examples and the experimental section.
We believe in most cases this model is the most efficient
with respect to ease/flexibility of scheduling and memory
requirements for RT blocks. However, it cannot be always
applied. The next two task models apply to any FSM.
Mixed-partitioned model
The next model is a mixed partitioned model. In this case, the
FSM transitions are partitioned into two sets Tp and Tb. The

first set Tp includes all transitions for which, in every state
of the FSM, their relative priorities are determined by their
trigger events. Also, all the transitions in this first set must
have priority lower than all the transitions belonging to the
set Tb that have the same source state.

Such a partition can always be computed (if we include the
case in which the first set is empty) using Algorithm 1.

Algorithm 1 Calculate the sets Tp and Tb

1: Tp = T
2: Tb = {}
3: for all Si, Sj ∈ S do
4: for all θl, θm ∈ Tp, with Ssl = Ssm = Si ∧ pl > pm do
5: if ∃θv , θw ∈ T such that Ssv = Ssw = Sj ∧etv = etl ∧etw =

etm ∧ pw > pv then
6: Tp = Tp − {θl, θm, θv, θw}, Tb = Tb

∪
θl, θm, θv , θw

7: for all θz ∈ Tp such that Ssz = Si ∧ pz > pm do
8: Tp = Tp − θz , Tb = Tb

∪
θz

9: for all θy ∈ Tp such that Ssy = Sj ∧ py > pv do
10: Tp = Tp − θy , Tb = Tb

∪
θy

Once the transitions of the FSM are partitioned, the behavior
of the set Tp is implemented by a set of tasks generated
according to the partitioned model, while the behavior of the
set of transitions in Tb is implemented by a single task defined
according to the baseline model and executing at the highest
priority level, with deadline equal to its period (the gcd of all
the events triggering the transitions in Tb). The task generated
according to the baseline model has an inhibit signal towards
all the other tasks. Once again, all tasks share the variable
encoding the FSM state. This implementation preserves the
FSM untimed behavior because it preserves the priority of the
transitions, executes only one transition (with highest priority)
for each event and, with the deadline assignment rule specified
above for the two models, guarantees that the state and output
values are updated before the next event is processed to prevent
any preemption while accessing the state variable.
Deferred output update model
The last model is a deferred output update model. In the FSM,
each transition requires to compute the output update with
the associated actions, followed by the state update function.
This multi-task implementation separates the two functions
and maps them into different tasks. The state update part is
implemented using the baseline model, in a periodic task with
highest priority, executed at the gcd of the events periods. The
output update and action part (typically more computationally
intensive) is realized using a partitioned model.

In addition, a function is executed together with the state
update part to select the action and output update that need
to be performed for the transition. The code in this task
provides two more signals to the successor tasks: a signal
cs indicating the current state (before the state update), and
a indicating which action should be executed. The program
code implementing the action and the output update part can
then be implemented in tasks executed at the rates of the
corresponding trigger events.

The state update function executes before the tasks handling
the actions and output functions. This might seem to be
conflict with the FSM semantics, as the output update function
must execute before the state update because it needs to read

the current state variable. However, it is sufficient to store and
communicate the current state value in the signal cs, so that
the execution order between the output generation and the state
update functions can be reversed.

The tasks implementing the output update and action part
will be assigned with deadlines equal to their periods, given
that the need to update the state before the next event arrives
is already satisfied by the gcd of the state update task.

IV. EXAMPLES

Consider a sample FSM with two trigger events, as in Figure
3, with its outputs connected to two follower blocks F2 and
F3. The execution time (in bold, below the action) and priority
(near the origin) of each transition are also denoted in the
figure. o1 is the input to F2 executed with a period of 2ms,
and o2 is the input to F3 executed with a period of 5ms.

ee S2

S1

e2s2

s1 e1

o1

o2

e

eS3

12

5 ms

2 ms

1 ms

1 ms F3

F2 2 ms

5 msF1

1/ {action (); o }

/ {action (); o }

/{action (); o }242

/ {action (); o }13

11

22

0.25

1

2
0.10.3

0.05

Fig. 3. An example of FSM with two trigger events

Figure 4 shows another example in which the FSM has an
additional transition from S1 to S3 compared to Figure 3.

e

o
S2

S1

e2s2

s1 e1

e

e

o

e

e

1

2

5 ms

2 ms

2 2 2

2 4 2

2

1

1

/ {action ();o }5 2

3
/ {action (); o }

 / {action (); o }

/ {action (); o }

11

1

/ {action (); o }

S3

0.3

0.2

0.25
1

1

0.05

20.1

2

Fig. 4. Another example of FSM with two trigger events

Baseline implementation
If the FSM block in either Figure 3 or Figure 4 is implemented
with a single task, its period is 1ms and two RT blocks, one for
each output link, are required to guarantee flow preservation.

To show the possible disadvantage with the real-time feasi-
bility of this implementation, suppose there is another task τ3
with period of 2ms and worst case execution time (WCET)
1.65ms in addition to the FSM of Figure 4. The baseline
implementation is unschedulable. The total execution time
request from action3 triggered by e1 at time 4 and action3

triggered by e2 at 5 is 0.4ms. This makes the instance of τ3
activated at 4 miss its deadline at time 6. However, as we can
see later, its mixed-partitioned implementation is schedulable.
Partitioned implementation
For the example FSM of Figure 3, all transitions associated
with e2 have higher priority than the ones associated with e1.
The corresponding two task implementation according to the
partitioned model is shown in Figure 5. Task τ1, on the top
of the figure, implements the transitions and the associated
actions activated by e1. Its activation period is 2ms. Task τ2,

on the bottom of the figure, executes with higher priority and
implements the transitions and the associated actions activated
by e2. Its period is 5ms. When e1 and e2 are associated with
simultaneously enabled transitions, as in state S2, the higher
priority transition is taken and the other is disabled by the
inhibition signal from τ2 to τ1 (the dashed line in Figure 5).

2

3

e

e

S2

S1

1

1

task1@2ms

2 ms

5 ms

S3

/ {action (); o }
2

2

task2@5ms

/ {action (); o }

/ {action (); o }

/ {action (); o }3 1

11

22

4 2

2S

e

e

S1

1e

o1

F

S

o2

F3

e2 Sx

0.1

1

0.05

0.25

2

0.3

inhibit

Fig. 5. The partitioned implementation of the example in Figure 3

1

2 4 5 6 81 3 7 9
e
e2

0

Fig. 6. The deadline of the multi-task implementation in Figure 5

As shown in Figure 6, the third instance of τ1 in the
hyperperiod has a deadline equal to 1ms because the reaction
must update outputs and state to be used by the second instance
of τ2, activated 1ms later with a higher priority. All other
instances of τ1 have a deadline equal to the period (2ms)
of the activation event e1. The deadline of task τ2 is always
5ms as it has a higher priority than τ1. Compared to the
baseline implementation of the same FSM, this multi-task
implementation imposes a looser deadline than the single-task
implementation (always with deadline of 1ms) on most of the
task instances, thus improving the feasibility.

Finally, as in the figure, both output links are now between
tasks with the same rate, thus requiring no additional buffer.
Mixed-partitioned implementation
In the example of Figure 4, among the transitions from S1,
the one activated by e1 has a higher priority than the one
associated with e2. For the state S2, it is the opposite. Thus the
partitioned implementation is not applicable to this example.

o

e2 o2

S1

inhibit

Task2 @5ms

Task1 @1ms

S3

2

1

1e

2

e

e

2
e

22/ {action (); o }

 / {action (); o }24

/ {action (); o }13

/ {action ();o }25

/ {action (); o }11

o2

S3

o2

e2e ||1

S2

e

S1

1

0.1

0.2

0.25
1

0.3

0.05

1

2

2

Fig. 7. The mixed-partitioned implementation of the example in Figure 4

In the mixed-partitioned implementation (Figure 7), the
transitions out of S1 and S2 are implemented by τ1, and the
remaining transition from S3 is implemented by τ2. τ1 can be
triggered by both e1 and e2 and runs at the gcd (1ms) of their
periods, while τ2 has the same period as e2 at 5ms.

We showed that the baseline model is unschedulable for
the system with another task τ3 (period 2ms, WCET 1.65ms)
in addition to the FSM in Figure 4. In the mixed-partitioned
implementation in Figure 7, we can assign τ3 a priority higher
than τ2 but lower than τ1. τ3 is schedulable, as the maximum
execution request from τ1 within 2ms is no larger than 0.3ms.
The schedulability of τ2 can also be validated by observing
that the maximum execution request from τ1 and τ3 in 5ms
is no larger than 4.3ms. This example highlights the case that
a multi-task implementation gives the advantage in terms of
real-time schedulability.
Deferred output update

e

a

o

o

case 3: action3(); o1; break;
case 1: action1(); o1; break;

switch (a) {

}

1

2

eS1

e

e

e

e

e ||1

task0@1ms

2

S2

S3

1

1

2

/ {cs=1; a=1}

/ {cs=3; a=2}
2 / {cs=2; a=3}

/ {cs=1; a=5}2

/ {cs=2; a=4}

cs

task1@2ms

task2@5ms

case 2: action2(); o2; break;
case 4: action4(); o2; break;
case 5: action5(); o2; break;

switch (a) {

}

2

1

1

2

Fig. 8. The deferred output update implementation of the example in Fig. 4

Finally, Figure 8 illustrates the multi-task implementation
of the example in Figure 4 according to the deferred output
update model, which realizes the state update part of the FSM
in task τ0 on the left hand side, executed at 1ms. Besides
updating the state, τ0 provides two more signals (cs, a) to the
successor tasks τ1 and τ2, indicating the current state (before
the state update) and the action τ1 and τ2 should execute. τ1 is
executed at the rate of e1 (2ms) and updates output o1, while
τ2 is executed at the rates of e2 (5ms) and produces o2.

V. EXPERIMENTS

We generated random system configurations to explore the
opportunities of improving memory efficiency. 1000 random
systems are generated using the TGFF tool [5]. Each system
contains 1 to 70 blocks with equal probability of being a
Dataflow or Stateflow block. If the block is of type Dataflow,
then a period of 10, 20, or 40 is randomly assigned to it. If it
is of type Stateflow, it contains a maximum of 10 states with
random transitions between them. To allow cyclic transitions
in FSM blocks, we randomly reversed the direction of the
edges generated by TGFF (limited to directed acyclic graphs).
The period of the trigger event is also randomly chosen from
10, 20, or 40. Each transition updates 0, 1, or 2 outputs. The
maximum degree of the blocks is 20, and the average is 3.

Among the 48585 links, if a single-task implementation is
chosen, 27114 of them require the addition of RT blocks.
However, if a multi-task implementation is selected (using
one of the three proposed models), 2515 of the RT blocks

can be avoided (please note that the difference among the
methods that produce a multitask implementation are only
on the time feasibility or schedulability, not on the possible
reduction of RT blocks). This highlights the opportunity of
improving memory efficiency by multi-task implementations.

We use the utilization of these to demonstrate the advantage
The improvement of multi-task implementation on schedu-

lability is measured on the estimated processor utilization
for the tasks generated from the randomly generated system
configurations (we consider the worst-case execution time
among the transitions associated to each task). The utilization
of the single-task implementation is Us. For multi-task im-
plementatios, the utilization is denoted as Um. For our 1000
random systems, the value of Um/Us varies between 34.1%
and 100%, with an average of 59.5%.

VI. CONCLUSIONS AND FUTURE WORK

In model-based design of embedded control systems con-
sisting of blocks implementing finite state machines, commer-
cial code generators define task models that are not efficient
with respect to schedulability and memory usage. In this paper
we provide solutions for the multitask implementation of finite
state machine subsystems with improved schedulability. As
a future work, we plan to find an analysis method that can
predict with high accuracy the worst-case response time of a
task implementing an SR FSM or a set of them. Furthermore,
we plan to explore the opportunity to avoid the use of
Rate Transition blocks in Simulink models consisting of both
Dataflow and Stateflow blocks.

REFERENCES

[1] A. Benveniste, B. Caillaud, L. Carloni, P. Caspi, and A. Sangiovanni-
Vincentelli. Causality and scheduling constraints in heterogeneous
reactive systems modeling. In Formal Methods for Components and
Objects, LNCS 3188, Springer, 2004.

[2] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Guernic, and
R. de Simone. The synchronous languages 12 years later. Proceedings
of the IEEE, 91, January 2003.

[3] G. Berry and G. Gonthier. The Esterel synchronous programming
language: design, semantics, implementation. Sci. Comput. Program.,
19(2):87–152, November 1992.

[4] P. Caspi, N. Scaife, C. Sofronis, and S. Tripakis. Semantics-preserving
multitask implementation of synchronous programs. ACM Trans. Embed.
Comput. Syst., 7(2):1–40, January 2008.

[5] R. Dick, D. Rhodes, and W. Wolf. TGFF: task graphs for free. In
Proceedings of the 6th International Workshop on Hardware/Software
Codesign, 1998.

[6] M. Di Natale, G. Liangpeng, H. Zeng, and A. Sangiovanni-Vincentelli.
Synthesis of multi-task implementations of Simulink models with min-
imum delays. IEEE Transactions on Industrial Informatics, 6(4):637–
651, November 2010.

[7] dSPACE. The dSPACE TargetLink Automatic Production Code Gener-
ator. web page: http://www.dspaceinc.com.

[8] Mathworks. The Mathworks Design Verifier User’s Manuals. web page:
http://www.mathworks.com.

[9] Mathworks. The Mathworks Simulink and StateFlow User’s Manuals.
web page: http://www.mathworks.com.

[10] M. Stigge, P. Ekberg, N. Guan, W. Yi. The Digraph Real-Time Task
Model. In Proceedings of IEEE Real-Time and Embedded Technology
and Applications Symposium, 2011.

[11] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic. Translating discrete-
time Simulink to Lustre. ACM Trans. on Embedded Computing Sys.,
4(4):779–818, 2005.

[12] David Harel, Statecharts: A Visual Formalism for Complex Systems
Science of Computer Programming, 1987

