
Optimizing Stack Memory Requirements for Real-time Embedded Applications

Haibo Zeng
McGill University, Canada

Marco Di Natale
Scuola Superiore Sant’Anna, Italy

Qi Zhu
University of California at Riverside, USA

Abstract

In the development of some real-time embedded ap-
plications, especially systems-on-chip, an efficient use of
RAM memory is as important as the effective schedul-
ing of the computation resources. The design problem is
to find a schedulable solution that fits within the mem-
ory budget. In a real-time concurrent system, preemption
plays an important role in the exploration of these trade-
offs. Several schemes, including preemption thresholds and
non-preemption groups, have been developed to improve
schedulability and saving stack memory space by selectively
disabling preemption. However, the design synthesis prob-
lem for such systems and protocols is still an open problem.
We target the efficient assignment of the scheduling param-
eters for systems scheduled according to these policies in
several cases of practical interest, including those that are
compliant with automotive standards.

1 Introduction

In systems-on-chip and also, in general, many embed-
ded systems, availability of RAM is a major constraint be-
cause of issues related to the hardware fabrication technol-
ogy. Also, in many systems, and especially in the auto-
motive domain where the interchange of components and
integration across the supply chain are major requirements,
compliance with standards is mandatory.

In this paper, we target task scheduling and stack man-
agement policies, as implemented by the operating system.
We discuss the case of fixed-priority scheduling and several
protocols for limiting preemption, including preemption
thresholds and non-preemption groups. These choices are
driven by practical concerns. In the automotive domain, the
standard that applies to operating system mechanisms and
API is AUTOSAR [1] [17]. In its current specification, AU-
TOSAR has conformance classes for fixed-priority schedul-
ing and time-triggered scheduling but not for dynamic-
priority scheduling (such as Earliest Deadline First). Also,
AUTOSAR supports the concept of Internal Resources,
which allow the definition of non-preemption groups and,
to some degree, the preemption threshold mechanism. Di-
rect support for preemption thresholds is made available
by the ThreadX kernel [8]. In practice, an (approximate)
application-level implementation only requires an API call

for changing the task priority at runtime. In this paper, we
only consider single-CPU systems.

The behavior of SW components is represented by a set
of RunnableEntities (or simply runnables): functions ex-
ecuted in response to events, such as periodic timer acti-
vations, data writes or explicit call requests. Runnables
are atomic schedulable units, communicating with each
other over ports. A mapping relation is defined between
runnables and tasks, meaning that the runnable code is exe-
cuted in the context of the task. Given the runnables, the
designer’s problem is to define the task model and map
runnables into tasks. Then, priorities must be assigned to
tasks to ensure the schedulability of the system. Preemp-
tion can be selectively disabled using the mechanisms al-
lowed by the operating system to reuse as much as possible
the stack space and possibly improve schedulability.

2 System Model
The system model consists of the functional model and

the task model. In the functional model (also denoted as
F), the functions (runnables) of component Γk are denoted
as ρki , or simply by a single index as ρi (the reference to
the owner component is not needed for the analysis). The
worst-case execution time of ρi is γi. In this work, we re-
strict to runnables that are activated in response to periodic
timer events. Therefore, we associate to each runnable ρi
a period θi. Each runnable is characterized by a worst-case
stack requirement σi (in bytes) needed for its execution, and
a deadline δi. Also, each runnable might be associated with
a preemption threshold ψi and possibly a non-preemption
group ηi (their meaning is explained later).

The implementation of runnables into tasks generates the
task model T . T = {τ1, . . . , τl} is the set of tasks in the
system. Each task τj has a priority pj (the higher the num-
ber, the higher the priority) and an activation period tj . Each
task is also characterized by a worst-case execution time cj ,
a deadline dj , a quantity of memory that is required for the
stack space sj , and either a preemption threshold yj or a
non-preemption group gj .

A mapping relationm(ρi, τj , k) may be defined between
a runnable ρi and a task τj , This mapping relation also de-
fines a static scheduling (execution order) of the runnables
inside the task, meaning that the code implementing the
runnable ρi is executed in the context of τj in the k-th order
(k− 1 other runnables have an execution order smaller than

1

ρi in τj). The runnable with an execution order of k in task
τj is also labeled as ρj,k. A mapping relation is only possi-
ble if the execution rate of ρi and τj are such that l×tj = θi
for some integer l. The set of runnables mapped into τj is
also denoted as Mj . Runnables must be mapped in such a
way that ordering relations (resulting from functional con-
straints) are preserved. Please note that runnables do not
have a priority level, but only a preemption threshold level
(possibly inherited from their non-preemption group).

Name WCET Period Dline Stack Prio. Thresh. NP
reqmt group

Runnables
ρi γi θi δi σi ηi ψi

Tasks
τj cj tj dj sj pj yj gj
Mapping of ρi into τj and constraints
m(ρi, τj , k) cj = cj,0 +

∑
i γi, θi = l × tj , sj = sj,0 +maxi σi

Table 1. Notations for runnables and tasks
If the task set is derived from a functional model, then

some of the task parameters may be computed from the
parameters of the runnables. For example, cj = cj,0 +∑

k γj,k, where cj,0 is the computation time required for
the task main function calling the runnables (setting up the
calls to the runnable functions, forwarding data and event to
the runnables in the task and/or other tasks). Of course, this
is only an approximation of the relationship linking cj to the
γj,k, whose exact form is very complex due to factors such
as cache dependencies. With a much better approximation,
for the stack size we have sj = sj,0 +maxk σj,k.

State of the art
The two main mechanisms for limiting preemption in a

controlled way are the preemption thresholds and the non-
preemption groups. The definition of preemption thresh-
olds is provided first in [12] to improve schedulability of
real-time tasks. This mechanism provides a flexible way
of limiting preemption and spans from fully-preemptive to
non-preemptive scheduling, subsuming these two extremes.
In preemption threshold, a task has two priority levels: a
nominal priority, and a threshold priority that is assumed
as soon as the task starts its execution and retained until it
terminates. At runtime, a task is allowed to preempt an-
other only if its priority is higher than the threshold of the
task in execution. When the definition applies to runnable
thresholds, the task executes at its priority level, but as soon
as it starts executing a runnable, its preemption threshold
level matches the one of the runnable, and is restored to the
task nominal priority when the runnable ends. The worst-
case response time of tasks with preemption threshold can
be computed using the formula in [10]. In [12], two algo-
rithms are proposed to assign priority levels and preemp-
tion threshold levels to improve system schedulability. One
of them is a branch and bound algorithm, which can ex-
plore exhaustively (with pruning) all the possible feasible
priority assignments and, for each of them, the highest pre-
emption threshold value that can be assigned to each task.
This algorithm is optimal in the sense that, if there is a feasi-

ble assignment of priority and preemption thresholds, it will
find it. Although the optimization of the memory used for
the stack space was not one of the algorithm objectives, the
authors proposed a branch and bound algorithm to explore
all possible priority assignments and the optimal threshold
assignment for each of them.

The preemption threshold mechanism was extended
in [11] by targeting a specific problem instance, in which
the jobs to be scheduled with their preemption thresholds
are mapped for execution into threads. Two jobs mapped
into the same thread cannot preempt each other and, there-
fore, this mechanism effectively partitions jobs into non-
preemption groups. This model is equivalent to a functional
model in which the jobs/runnables need to be mapped into
tasks. The stack required is then typically obtained as the
sum of the maximum of the stack requirements for each
group. The authors also proposed an algorithm for map-
ping jobs into threads so that the scheduling behavior does
not change and the number of threads is minimized.

The non-preemptive groups model makes use of a similar
but not equivalent concept (as shown in [5]). In this model,
tasks are partitioned into non-preemptive groups. Tasks be-
longing to the same group cannot preempt each other. This
can be simply implemented by having all tasks belonging to
the same group share a virtual resource that is locked with
the first instruction of each task and released with the last
line of code. This mechanism practically requires that each
group is associated with a runtime priority level (ceiling or
preemption threshold) equal to the highest priority among
the tasks in the group. Each task in the group assumes the
group threshold priority when it starts its execution. This
ceiling priority also prevents mutual interleaved executions
of tasks belonging to different groups (in an ABAB pattern,
as opposed to fully nested). Such an implementation model
is supported by the OSEK OS standard [2].

Both scheduling models have been considered in [5] in
the context of multiprocessor systems, where the authors
pointed out an analogy between the definition of a preemp-
tion threshold level and the ceiling priority of a task execut-
ing a critical section protected by the Priority Ceiling proto-
col. This allows an extension of the mechanism to dynamic
priority assignment schemes (such as EDF). In the same pa-
per, the authors presented a task grouping algorithm (of ex-
ponential complexity) that finds the feasible group configu-
ration with minimum requirements of stack memory, given
a priority assignment and a preemption threshold assign-
ment computed according to [12].

Task clusters and task barriers, are introduced in [10] for
better robustness. In [6] a unified framework for static and
dynamic priority systems with the definition of preemption
thresholds is presented. The authors demonstrate that the
algorithm in [11] for the assignment of the highest possible
preemption thresholds after priorities are assigned to tasks
is also optimal with respect to stack usage (again, with the
assumption of a given priority assignment). When schedul-
ing offsets are known, they can be exploited to further im-
prove the analysis and the definition of the threshold levels,

2

as discussed in [7] [3]. Also, [15] provides an analysis of the
use of non-preemptive regions for the purpose of improving
schedulability (considering scheduling overheads).

In [13] a functional model is considered in which
runnables are already mapped into tasks and the priority
of the tasks is given, and preemption thresholds can be as-
signed to runnables. The maximum amount of blocking
that can be tolerated by each runnable is computed and the
stack requirement is minimized by iteratively increasing the
preemption threshold of the runnables as much as possible,
starting from those belonging to the second-highest prior-
ity task, as long as the task set remains schedulable, with
an algorithm very similar to the one in [11]. However, the
feasibility of the runnables and the tasks is computed with
the pessimistic assumption that the task is preemptive. In
this paper, we show how a better estimate of the worst case
blocking time can be obtained using the approach in [16].
τ1

2τ

4τ
3τ

fully preemptive

4

3

2

p1
p
p
p

preemption thresholds

(a) (b) (c)
(with ceiling)non−preemptive groups

Figure 1. Example of preemption thresholds
and nonpreemptive groups.

Figure 1 shows an example consisting of four tasks in
priority order (case (a)), with a possible definition of pre-
emption thresholds, in (b) where the endpoints of the ar-
row indicate the threshold priority at runtime, a definition
of non-preemptive groups in (c), with the corresponding
threshold or ceiling priorities for the tasks. The assignment
of a ceiling priority to a group is required if the benefits on
the use of the stack space are to be retained. Otherwise, in
the case of figure (c), τ2 may still execute while the context
of τ4 is active, by having τ3 preempt τ4 and then τ2 preempt
τ3. Please note that no definition of groups is equivalent to
the scheduling constraints imposed by the thresholds in (b).
The stack required for the execution of the tasks is

(a) S = s1 + s2 + s3 + s4

(b) S = max{s4 + s1, s3, s2}
(c) S = max{s1 + s4, s3, s2 + s1}

Please note that many problems are open to solutions that
improve on a possibly exhaustive branch and bound algo-
rithm [12], to compute the priorities and preemption thresh-
olds to be assigned to tasks/runnables so that they are feasi-
ble and the stack requirements are minimized. We identify
three main problems.
• Problem 1: hand-written code with no clear iden-

tification of runnables/functions, in such a way that
only tasks are available. The operating system pro-
vides support for the definition of task-level preemp-
tion thresholds or non-preemption groups.

• Problem 2: hand-written or model-developed code
with mapping of functions into tasks. The operating

system only provides support for the definition of task-
level preemption thresholds.

• Problem 3: hand-written or model-developed code
with mapping of functions into tasks. The operating
system provides support for preemption thresholds as-
sociated with runnables.

Our contributions
The approach to the problem that we investigate in this

paper consists of the following:
• Explore the feasibility and the quality of a simulated

annealing (SA) solution to the problems 1 and 3, com-
paring the results with the heuristics in [11] and the
algorithm in [13]. This result is presented in Section 4.

• Provide rules and algorithms for determining the opti-
mality of the threshold assignment to runnables and
the ordering of runnables inside a task (a subset of
the problem 3) where the priority assignment and the
runnable-to-task mapping are given. This contribution
is described in Section 5. With respect to this problem
we also provide an improved analysis compared to the
one in [13].

• Show how the memory requirements can be further re-
duced by changing the mapping of the runnables into
tasks using a simulated annaling algorithm to synthe-
size the task set.

3 Systems Schedulability
We first quickly recall the formulas that are used to check

feasibility in the case of our three problems.

3.1 Problem 1: Task model

The worst case response time of a task τi needs to be
computed as the largest response time in a busy period of
level pi [12] [10]. Inside this busy period, several instances
of τi may be activated, identified by an index q (with q =
0 . . . q∗). The worst-case response time of the task is the
maximum among the response times of these instances.

ri = max
q

{r(q)i } ≤ di q = 0 . . . q∗

The response time of each instance is obtained by first
computing its worst-case start time s(q)i and then its worst-
case finish time f (q)i . In both cases of interest (preemp-
tion thresholds assigned to tasks or inherited from a non-
preemptive group ceiling), j ∈ hp(i) means the set of tasks
with priority higher than the priority of τi and j ∈ ht(i)
means the set of tasks with priority higher than the (group
ceiling) threshold of τi.

s
(q)
i = Bi + qci +

∑
j∈hp(i)

(1 +

⌊
s
(q)
i

tj

⌋
)cj ≤ di

f
(q)
i = s

(q)
i + ci +

∑
j∈ht(i)

(

⌈
f
(q)
i

tj

⌉
− 1−

⌊
s
(q)
i

tj

⌋
)cj

3

The response time of the q-th instance is r(q)i = f
(q)
i −

qti. The length of the busy period (and the maximum index
q∗) is computed with the formula in [10]. The blocking
term Bi is the worst-case execution time of any task with
priority lower than pi that cannot be preempted by τi. This
is because the task has a (group) threshold higher than pi.

Bi = max
k

{ck} with pk < pi ≤ yk

Overall, the impact is a possible increase of the response
time because of the Bi term, and a possible reduction at the
end, because of the limited preemption once the task starts.

3.2 Problem 2: Runnables executed by tasks,
threshold defined on tasks

When runnables are mapped into tasks, the only modifi-
cation with respect to the previous formulas is to compute
the worst-case execution time of a task as the sum of the
worst-case execution times of the runnables mapped into it.

ci = ci,0 +
∑
j

γj where ρj ∈ Mi (1)

3.3 Problem 3: Runnables executed by tasks,
threshold defined on runnables

In this last case, preemption thresholds and non-
preemption groups apply to runnables rather than tasks. The
worst-case computation time of tasks are computed using
Equation (1). The response time can be computed itera-
tively, for all the runnables mapped into the task.

Even when preemption thresholds are associated with
runnables and a task dynamically inherits the runnable
threshold, the task (and the runnables in it) can only
be blocked once, before they start executing (after they
start, they can only be preempted by a high priority
task/runnable). The blocking timeBi is therefore computed
on the first runnable of the task as the maximum execu-
tion time among those of lower priority runnables with a
higher (group) preemption threshold, and mapped into a dif-
ferent task. This blocking time is inherited by all the other
runnables mapped into the same task (for which Bi is com-
puted). The start time of the k-th runnable of task τi is

s
(q)
i,k = Bi + qci + ci,k−1 +

∑
j∈hp(i)

(1 +

⌊
s
(q)
i,k

tj

⌋
)cj (2)

where ci,k−1 is the sum of the worst-case execution times
of all runnables mapped into τi from position 1 to k−1 plus
ci,0. The finish time is

f
(q)
i,k = s

(q)
i,k +γi,k+

∑
j∈ht(i,k)

(

⌈
f
(q)
i,k

tj

⌉
−1−

⌊
s
(q)
i,k

tj

⌋
)cj (3)

where ht(i, k) is the set of tasks that can preempt the k-th
runnable of task τi.

4 Priority Assignment for the Task Model
In case task priorities are given, the algorithm proposed

in [11] defines the maximum preemption threshold assign-
ment for all tasks and (as demonstrated in [6]) the assign-
ment with minimum preemption among tasks and stack us-
age. The remaining problem is to find an algorithm to as-
sign task priorities such that all tasks are schedulable and
the stack usage is minimized. The concept of task block-
ing time limit is proposed in [11] (and later defined in
[13]) to assign priorities to tasks under preemption thresh-
old scheduling. The blocking time limit of a task τi, denoted
as hi, is defined as the maximum blocking time a task can
tolerate while still meeting its deadline. Starting from the
lowest priority level, the algorithm assigns the current pri-
ority to the task with the largest blocking time limit among
the remaining tasks, or the one with the smallest reduction
in interference from higher priority tasks if the blocking
time limit for all tasks are negative. The blocking time limit
is calculated assuming that the preemption threshold is the
same as the priority.
Algorithm 1 Heuristic for Priority Assignment to Tasks

Unassigned = T , Assigned = ∅.
for p = 1 to |T | do

for each task τi in Unassigned do
assume pi = p and pj > p ∀τj ̸= τi in Unassigned
if ri ≤ di then
ai = hi

else
ai = di − ri

end if
end for
select τi from Unassigned with the largest ai
pi = p
Unassigned - = {τi}, Assigned + = {τi}

end for

The calculation of the task blocking time limit can be
performed by trying possible values in a binary search until
a given precision is achieved (as proposed in [11]). A more
elegant way is to use the method in [13] based on the con-
cept of request bound function. The request bound function
of a task τi in t ≥ 0, rbfi(t), is defined as the maximum
cumulative execution time required by τi in any time in-
terval of length t. For a periodic task, the request bound
function is rbfi(t) = ⌈ t

ti
⌉ci. A preemptive task τi (i.e. its

preemption threshold is the same as its priority) with dead-
line di ≤ ti is feasible ([9]) if and only if there exists at
least one time instant t ≤ di when the available CPU time
in [0, t] is larger than or equal to the time required for exe-
cution by τi and higher or equal priority tasks (denoted as
he(i) = hp(i)

∪
{i}), i.e.

∑
j∈he(i) rbfj(t) ≤ t. Thus, the

blocking time limit hi is the maximum slack between the
available CPU time t and the total request from he(i)

hi = max
t∈Ii

(t−
∑

j∈he(i)

⌈
t

tj

⌉
cj) (4)

The time instants t to be checked belong to a finite set
Ii, a subset of the integer multiples of the task periods (for

4

the definition of Ii please refer to [14]).
Equation (4) provides a conservative estimate of the

blocking time limit, as it assumes the task is preemptive.
However, the maximum preemption threshold of a lower
priority task depends on the priority and preemption thresh-
old of higher priority tasks. Since the algorithm in [11] as-
signs task priorities from the lowest level, the task blocking
time limit calculation has to be based on an estimation (in-
stead of an exact assignment) of its preemption threshold.

Other heuristic algorithm includes a deadline monotonic
priority assignment (sub-optimal even for schedulability
alone). In the experiments, we compare them with simu-
lated annealing. Although these algorithms are developed
for schedulability alone, they perform very well.

4.1 A Simulated Annealing Solution and Experi
mental Results

A simulated annealing algorithm is a general type of so-
lution for the synthesis of system configurations when the
problem is of exponential complexity. At each iteration, the
algorithm computes a new system configuration using a ran-
dom mutation or transition operator. The new solution is
evaluated using a metric function. If it is better than the pre-
vious one, it is retained and becomes the new current solu-
tion. If the solution is worse than the previous one, it can be
still conditionally accepted with a probability that decreases
(exponentially) with the cost difference and a temperature
parameter (the lower the temperature, the more difficult to
accept higher cost transitions). The temperature must be
high enough at the beginning of the algorithm to allow tran-
sitions to almost any possible solution (whether higher or
lower cost). Then, it is iteratively lowered, until in the final
iteration the algorithm performs in essence a local search.

The algorithm requires the definition of a transition func-
tion for computing new solutions and an evaluation func-
tion to estimate the cost/performance of the solutions. The
transition functions for the task case is the following. A
pair of tasks with priority pi and pi+1 is randomly selected
and their priorities are swapped. After the swap, the max-
imum preemption thresholds are assigned according to the
(optimal) algorithm in [11]. Any swap of pi and pi+1 will
not change the preemption threshold of tasks with priority
higher than pi+1.

For the assignment of priorities to tasks, we implemented
the heuristic based on the blocking time limit proposed in
[11], a deadline monotonic assignment, and a simulated an-
nealing algorithm. For all algorithms, once the priorities
are assigned, we use the maximum preemption threshold
assignment [11] to define the task thresholds.

We apply these algorithms to 2500 randomly generated
cases having a number of tasks between 5 and 17. On aver-
age, the stack usage using the deadline monotonic approach
is only 0.3% larger than the result from the simulated an-
nealing algorithm (although in the worst case it can be 87%
more). The stack usage of the blocking time-based algo-
rithm is 1.1% more than the simulated annealing (worst case
93% more). Of course, both the deadline monotonic and the

blocking time heuristics are much faster than the simulated
annealing. For instance, when the number of tasks is 15,
both heuristics take less than one second, while the simu-
lated annealing algorithm takes 12 minutes on average. We
further test the two heuristics with 5200 random cases that
consist of up to 30 tasks. Both algorithms still finish within
one second, and the average difference of the stack usage is
within 0.8%. We also tried two other heuristics based on the
stack usage of each task and the combination of stack usage
and task deadlines. The results do not show improvements
over the deadline monotonic approach.

Finally, for 1000 test cases with 5 to 9 tasks, we com-
pare the solution obtained with the simulated annealing al-
gorithm with the optimal solution (in terms of stack usage,
obtained by enumerating all the possible priority assign-
ments). In all cases, the simulated annealing algorithm finds
the optimal solution. Although this does not provide guar-
antees for the cases with more than 9 tasks, it shows the
(expected) good performance of the simulated annealing al-
gorithm – and consequently of the two heuristics – when the
number of tasks is relatively small.

Overall, the results show that for Problem 1 (task model),
the two heuristics that are designed for schedulability also
perform very well in terms of stack usage. Intuitively, when
the utilization is small, and feasibility is not a problem, the
threshold assignment algorithm finds a configuration with
very little preemptability, so that the result is very often op-
timal. When the utilization grows, an initial configuration
that eases schedulability also allows for higher thresholds,
less preemptability, and hence less stack usage.

5 Stack Optimality for Functional Models
In this case, the operating system provides support for

the definition of preemption thresholds or non-preemption
groups associated with runnables. We first consider the case
in which the function to task mapping and the task priority
assignment are given, as in [13], where the task blocking
time limit is used to find the maximum preemption thresh-
old that can be assigned to a runnable.

The maximum preemption threshold ηmax
i of ρi mapped

into τr, is the highest priority level pj such that all the tasks
with priority between pr and pj have a blocking time limit
no smaller than γi (its worst case execution time).

ηmax
i = max{pj : ∀pk ∈ (pr, pj], γi ≤ hk} (5)

where pmax is the highest priority level in the system.
In [13], the blocking time limit is computed using Equa-

tion (4), which operates at the task level with the conser-
vative assumption that the task is fully preemptive. In this
case, the order of the runnables inside a task is irrelevant.

Additional information on runnables and their preemp-
tion threshold can be used to improve the computation of
the blocking time limit. We denote the blocking time limit
of runnable ρi as βi. βi can be computed by binary search
(using (2) and (3)). An upper bound βub

i of the blocking
time limit of a runnable is the difference between its dead-
line and its response time assuming its blocking time is zero.

5

The blocking time limit can also be calculated based on
the formulation of feasibility regions in [14]. ρi,k, the k-
th runnable in task τi is schedulable if, for each instance
q = 0 · · · q∗ in the busy period, there exists a pair of points
s, f ∈ [qti,k, qti,k + δi,k] such that

s ≥ Bi + qci + ci,k−1 +
∑

j∈hp(i)

(1 +

⌊
s

tj

⌋
)cj

f ≥ Bi + qci + ci,k−1 + γi,k +
∑

j∈ht(i,k)

⌈
f

tj

⌉
cj

+
∑

j∈hnt(i,k)

(1 +

⌊
s

tj

⌋
)cj

(6)

where hnt(i, k) = {j : pi < pj ≤ ηi,k} = hp(i)\ht(i, k)
is the complement of ht(i, k) with respect to hp(i).

The set of candidate point pairs, start and finish times for
the q-th instance of ρi,k in the busy period can be found as
I(q)
i , S(q)

i and F (q)
i ,

I(q)
i,k = {(s, f) : s ∈ S(q)

i,k , f ∈ F (q)
i,k , s ≤ f + γi,k}

S(q)
i,k = {mtj : j ∈ hp(i),mtj ∈ [qθi,k, qθi,k + δi,k]}∪

{qti,k + δi,k}(m ∈ N+)

F (q)
i,k = {mtj : j ∈ ht(i, k),mtj ∈ [qθi,k, qθi,k + δi,k]}∪

{qti,k + δi,k}(m ∈ N+).

We define the interferences from the runnables with
higher or equal priority on the right-hand sides of the in-
equalities in (7) by

Σ
(q)
i (s) =qci + ci,k−1 +

∑
j∈hp(i)

⌈
s

tj

⌉
cj

Φ
(q)
i (s, f) =qci+ ci,k−1+ γi,k+

∑
j∈ht(i,k)

⌈
f

tj

⌉
cj+

∑
j∈hnt(i,k)

⌈
s

tj

⌉
cj

The schedulability condition of ρi,k can be rewritten as

∀q = 0 · · · q∗, ∃(s, f) ∈ I(q)
i,k such that

s > Bi +Σ
(q)
i (s) and f ≥ Bi +Φ

(q)
i (s, f)

(7)

The blocking time limit βi,k for ρi,k can be computed as

βi,k = min
q=0···q∗ub

max
s,f∈I(q)

i,k

min(s−Σ
(q)
i (s)−ϵ, f−Φ

(q)
i (s, f))

(8)
where ϵ is a small number. The number of instances q∗ub in
the busy period in (8) is conservatively computed using the
upper bound βub

i,k. The blocking time limit of task τi is the
minimum among those of the runnables mapped into it

hi = min
k
βi,k (9)

A set of properties applies to the blocking time limit and
maximum preemption threshold in relation to task mapping,
priority assignment, and runnable execution order.

• Property 1 (Monotonicity of βi,k with respect to
the execution order of a runnable in a task): as
both Σ

(q)
i (s) and Φ

(q)
i (s, f) are monotonically increas-

ing with ci,k−1, βi,k is monotonically decreasing with
ci,k−1. Its blocking time limit decreases with an in-
creasing index k, and vice versa.

• Property 2 (Monotonicity of βi,k with respect to the
preemption threshold ηi,k): Φ

(q)
i (s, f) is monotoni-

cally increasing with ht(i, k), the set of tasks that can
preempt ρi,k. The higher ηi,k, the smallest is ht(i, k)
and Φ

(q)
i (s, f). βi,k is non-increasing for increasing

Φ
(q)
i (s, f), hence the proof.

• Property 3 (Independency of the maximum ηi,k
from runnables with the same or lower priority):
by Equation (5), the maximum preemption threshold
for a runnable is independent from the execution order
and the preemption threshold of runnables mapped to
the same task or with lower priority. In particular, the
maximum preemption threshold of a runnable is inde-
pendent from its execution order within the task.

We now prove the existence of a feasible preemption
threshold assignment for all runnables that is larger than
(dominates) any other feasible assignment. The lemma is
an extension of the theorem presented in [4] (where it is
applied to the task model), but demonstrated in a different
way, using the concept of blocking time limit.

Lemma 1. Given the runnable to task mapping, the
runnable execution order, and the task priority assignment,
there exists a valid preemption threshold assignment ηmax

that is component-wise greater than any other valid pre-
emption threshold assignment η: ∀ρi, ηi ≤ ηmax

i .

Proof. By induction. The theorem is trivially demonstrated
for a system with only two tasks.

Suppose that it is possible to find such a maximum pre-
emption assignment for a system with n tasks. Consider a
system with (n+1) tasks, where τn+1 is the lowest priority
task. Because of Property 3, the preemption thresholds of
the runnables belonging to the n higher priority tasks are
independent from the thresholds assigned to the runnables
of τn+1. According to our induction hypothesis, such max-
imum threshold assignment for the n highest priority tasks
exists and it is also, by Property 2, the one that maximizes
the blocking time limit for the runnables mapped into the
n highest priority tasks. According to Equation (5), the
thresholds that can be assigned to the runnables in τn+1

are therefore also maximized, thereby achieving the maxi-
mum preemption threshold assignment for the task set with
(n+ 1) tasks.

ηmax can be computed starting from the highest priority
task down to the lowest priority one, as proposed in [13].
The existence of ηmax also demonstrates the optimality of
such preemption threshold assignment, as it minimizes the
possible preemptions among runnables.

6

Theorem 2. Among all the legal preemption threshold,
ηmax has the smallest total stack requirement.

The theorem can be proved in exactly the way as it is
done in [6] for the task model. We omit the proof here.

Next, we release one of the assumptions in [13] and in-
clude the selection of the runnables execution order inside
the tasks among the design variables. We propose an algo-
rithm for the assignment of the execution order based on the
blocking time limit. The assignment starts from the highest
priority task down to the lowest priority one. Within each
task τi, the set Assigned (Unassigned) contains the set of
runnables Fi mapped to τi that has (has not) been assigned
with an execution order. Starting from the highest execu-
tion order |Fi| (the last runnable in the task), the algorithm
assign the current execution order to the runnable with the
largest blocking time limit among those in Unassigned. If
the blocking time limit of one of the runnables is negative,
then the task set is unschedulable. Otherwise, the algorithm
returns a valid execution order.
Algorithm 2 Optimal Algorithm for Runnable Execution
Order and Preemption Threshold Assignment

for each τi from highest priority to lowest priority do
Unassigned = Fi, Assigned = ∅.
for k = |Fi| to 1 do

for each runnable ρj ∈ Unassigned do
ηj = maximum preemption threshold as in (5)
βj = blocking time limit if m(ρj , τi, k) = 1

end for
select ρj from Unassigned with the largest βj
m(ρj , τi, k) = 1
if βj < 0 then

return unschedulable
end if
Unassigned - = {ρj}, Assigned + = {ρj}

end for
hj = blocking time limit of τj as in (9)

end for

Next, we demonstrate that the runnable order generated
by Algorithm 2 is optimal with respect to system schedula-
bility and stack space usage. We first provide a lemma.

Lemma 3. Algorithm 2 maximizes the task blocking time
limit hi among all the possible runnable execution orders.

Proof. We assume that in the execution order assignment
O returned from Algorithm 2, the task blocking time hi =
βj . We prove that any other execution order O′ has a task
blocking time h′i ≤ hi. We denote the set of runnables with
a smaller execution order than ρj in O as Rj (the set of
runnables executed before ρj in O′ is R′

j).
Case 1: Rj ⊆ R′

j . In this case, by Property 1, β′
j ≤ βj ,

and h′i ≤ β′
j ≤ βj = hi.

Case 2: Rj * R′
j . In this case, there exists at least

one runnable in Rj that does not belong to R′
j . Let ρk

be the runnable in Rj with the largest execution order
in O′. Thus, Rj − {ρk} ⊆ R′

k. In addition, ρj has a
smaller execution order in O′ than ρk, therefore ρj ∈ R′

k,
and Rj − {ρk} + {ρj} ⊆ R′

k. Let l be the execution or-
der of ρj in O. The order of ρk in O′ must be larger than

l. Also, R′
k includes all runnables in Rj and all runnables

with higher order than ρk in O′ are also higher order than
ρj in O. Hence, from Property 1, it is β′

k ≤ βj (other-
wise ρk should have higher order than ρj in O). Thus,
h′i ≤ β′

k ≤ βj = hi.

Theorem 4. Algorithm 2 is optimal for system schedula-
bility. In addition, it returns the execution order with the
smallest total stack requirement.

Proof. The optimality of schedulability follows directly
from Lemma 3: if there exists any solution that hi ≥ 0
(thus the system is schedulable), Algorithm 2 will find it.

From Lemma 3, Algorithm 2 maximize the task blocking
time limits. The optimality of stack space requirement fol-
lows a similar reasoning to Lemma 1 and Theorem 2.

5.1 Simulated Annealing solution and Experi
ments

For our third problem, the set of the design variable also
includes the mapping of runnables to tasks and the task pri-
ority assignment. We develop a simulated annealing algo-
rithm to solve this problem. Two transition operators are
randomly selected (with equal probability): changing the
allocation of a runnable, or changing the priority of a task.
The task priority change is done by swapping the priority
of two randomly selected tasks (and the runnables mapped
inside them). When we change the allocation of a runnable,
the operator randomly selects a runnable and then randomly
selects one of the existing tasks or the creation of a new task
as the new execution context for the runnable. If an exist-
ing task is selected, its period must be an integer divisor of
the period of the runnable. In case a new task is created,
it is assigned the lowest priority level and a period equal to
the period of the runnable. After each transition, the exe-
cution order and the preemption threshold of the runnables
are calculated using the optimal Algorithm 2.

We first evaluate the benefit of using a more accurate
evaluation of the blocking time limit on the stack space
that is estimated as required. We randomly generate sys-
tems consisting of n = 10 to 150 runnables. For each
n, 1000 schedulable task sets are generated. The peri-
ods of the runnables are randomly drawn from the set
{5, 10, 20, 40, 50, 100, 200, 400, 500, 1000}. For each pe-
riod, one task is generated to implement all the runnables
with the same period, and its deadline is assumed to be
equal to its period. Priorities are assigned to tasks according
to the rate-monotonic policy. The runnable execution time
is generated such that its utilization is uniformly distributed
between 0 and 100%. The runnable stack usage is uni-
formly distributed between 80 bytes and 512 byes. Among
these 141000 random task sets, 19391 are incorrectly re-
ported as unschedulable when using the pessimistic block-
ing time estimate from [13]. For 26972 of the remaining
sets, the use of Algorithm 2 brings an additional stack space
improvement with respect to [13]. On average, by exploring

7

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 20 40 60 80 100 120 140 160

R
el

at
iv

e
S

ta
ck

 S
pa

ce
 S

av
in

g
(%

)

Runnables

Figure 2. Reducing Stack Usage by Assigning
an Optimal Runnable Execution Order.

the runnable execution order and an accurate schedulabil-
ity analysis, Algorithm 2 can find solutions with 3.0% less
stack space, compared to [13] on the total 141000 cases.
Figure 2 shows the average relative stack space reduction
from Algorithm 2 with respect to the number of runnables
n in the set. However, if we consider only the sets on which
there is an improvement, the average saving is 15.3%, with
a maximum of 62.8%.

If the problem space also includes finding the optimal
runnable-to-task mapping and task priority assignment, ad-
ditional improvements are possible. We use a subset of the
random task sets as input to the simulated annealing algo-
rithm, consisting of 1000 applications with n = 10 to 20
runnables. The additional degrees of freedom in the de-
sign of the task set can be leveraged to further improve on
the stack space requirements with respect to [13] for 846 of
the 1000 sets. The maximum stack space improvement is
37.6%, and the average is 9.1%. This is significantly larger
than the case of task model only. Considering the optimal-
ity of the algorithms that define the runnable execution or-
der and the threshold assignment, and the limited gain in
the stack space that can be obtained when using heuristics
for the priority assignment in the task model (see Section
4.1), it seems that the runnable to task mapping may have a
significant impact on the stack space requirements.

6 Conclusions

We discuss the design synthesis to minimize stack usage
for systems with preemption threshold and non-preemption
groups. We target the optimal assignment of these schedul-
ing parameters in several cases of practical interest, includ-
ing automotive modeling and coding standards. In partic-
ular, we evaluate the heuristics of priority assignment for
systems with task information only. For systems that the
list of runnables are available and the definition of preemp-
tion thresholds or non-preemption groups are supported at
the runnable level, we provide rules for determining the op-
timality of the threshold assignment to runnables and the
ordering of runnables inside a task where the priority as-
signment and the runnable-to-task mapping are given.

References
[1] The AUTOSAR Standard, specification version 4.0, the AU-

TOSAR consortium, web page: http://www.autosar.org.
[2] OSEK. OSEK/VDX Operating Systems specification, ver-

sion 2.2.3. available at http://www.osek-vdx.org, 2006.
[3] M. Bohlin, K. Hanninen, J. Maki-Turja, J. Carlson and M.

Nolin. “Bounding shared stack usage in systems with off-
sets and precedences.” in Proc. the Euromicro Conference
on Real-Time Systems, 2008.

[4] J. Chen, A. Harji, and P. Buhr, “Solution space for fixed-
priority with preemption threshold.” in Proc. 11th IEEE
Real-Time and Embedded Technology and Application Sym-
posium, 2005.

[5] P. Gai, G. Lipari, and M. Di Natale, “Minimizing mem-
ory utilization of real-time task sets in single and multi-
processor systems-on-a-chip,” in Proc. the 22nd IEEE Real-
Time Systems Symposium, 2001.

[6] R. Ghattas and A. G. Dean, “Preemption threshold schedul-
ing: Stack optimality, enhancements and analysis.” in Proc.
13th IEEE Real-Time and Embedded Technology and Appli-
cation Symposium, 2007.

[7] K. Hanninen, J. Maki-Turja, M. Bohlin, J. Carlson, and M.
Nolin;, “Determining Maximum Stack Usage in Preemptive
Shared Stack Systems,” in Proc. the 27th IEEE Real-Time
Systems Symposium, 2006.

[8] W. Lamie. “Preemption-threshold.” White Paper, Express
Logic Inc. Available at http://rtos.com/articles/18833.

[9] J.P. Lehoczky, L. Sha, and Y. Ding. “The rate monotonic
scheduling algorithm: Exact characterization and average
case behavior.” in Proc. the 10th IEEE Real-Time Systems
Symposium, 1989.

[10] J. Regehr, “Scheduling tasks with mixed-preemption rela-
tions for robustness to timing faults,” in Proc. the 23rd IEEE
Real-Time Systems Symposium, 2002.

[11] M. Saksena and Y. Wang, “Scalable real-time system design
using preemption thresholds,” in Proc. the 21st IEEE Real-
Time Systems Symposium, 2000.

[12] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks
with preemption threshold,” in Proc. the 6th International
Conference on Real-Time Computing Systems and Applica-
tions, 1999.

[13] G. Yao and G. Buttazzo. “Reducing Stack with Intra-Task
Threshold Priorities in Real-Time Systems.” in Proc. the
10th International Conference on Embedded software, 2010.

[14] H. Zeng and M. Di Natale. “An Efficient Formulation of
the Real-time Feasibility Region for Design Optimization.”
IEEE Transactions on Computers, 2012.

[15] R. Bril, J. Lukkien, and W. Verhaegh, "Worst-case response
time analysis of real-time tasks under fixed-priority schedul-
ing with deferred preemption", RTSJ, 42:63-119, 2009.

[16] M. Bertogna, G. Buttazzo, G. Yao, "Improving feasibility
of fixed priority tasks using non-preemptive regions", RTSS,
pp. 251-260, 2011.

[17] M. Di Natale, A. Sangiovanni-Vincentelli, "Moving from
federated to integrated architectures in automotive: The role
of standards, methods and tools", Proceedings of the IEEE
98 (4), 603-620, 2010

8

