Schedulability Analysis of Periodic Tasks Implementing Synchronous Finite State
Machines

Haibo Zeng
McGill University, email: haibo.zeng@mcgill.ca

Abstract—Model-based design of embedded systems using
Synchronous Reactive (SR) models is among the best practices
for software development in the automotive and aeronautics
industry. The correct implementation of an SR model must
guarantee the synchronous assumption, that is, all the system
reactions complete before the next event. This assumption can
be verified using schedulability analysis, but the analysis can
be quite challenging when the system also consists of blocks
implementing finite state machines, as in modern modeling
tools like Simulink and SCADE. In this paper, we discuss the
schedulability analysis of such systems, including the applica-
bility of traditional task analysis methods and an algorithmic
solution to compute the exact demand and request bound
Jfunctions. In addition, we define conditions for computing these
functions using a periodic recurrent term, even when there is
no cyclic recurrent behavior in the model.

I. INTRODUCTION

The development of complex embedded systems is subject
to tight cost and performance constraints. Automatic code
generation tools, which produce a software implementation
of an application model defined according to a high-level
visual language, are being adopted to increase productivity
and reduce design errors. Among them, the use of the
Simulink language and modeling tool, together with the
associated code generators such as Real-Time Workshop
(RTW), Embedded Coder (EC) from MathWorks [1] and
TargetLink of dSPACE [2], is becoming widespread.

A Simulink model is a network of blocks. Each block
processes a set of input signals and produces a set of output
signals. All Simulink blocks, when executed, compute two
functions: the state update function (possibly omitted in
purely functional blocks), which updates the next block
state based on the current state and the values of the input
signals, and the output update function, computing the set
of values for the output signals as a function of the current
state and the inputs. For the purpose of this work, we are
interested in the subset of Simulink/Stateflow models that
allows the automatic generation of a code implementation,
that is, blocks with discrete time input and output signals in
a model with a fixed-step solver.

Simulink blocks are of two types. Dataflow blocks are
almost invariably executed at their periods (integer multiples
of the system-wide base period). Other blocks are (Mealy
type) Extended Finite State Machines, or FSMs, called

Marco Di Natale
Scuola Superiore S. Anna, email: marco@sssup.it

Stateflow blocks. In Stateflow blocks, each event (whether
it causes a state transition or not) may also trigger the exe-
cution of a set of actions (functions defined by designers).

A Simulink Stateflow block receives as input a set of
signals and a set of events obtained from other signals. As
a result of its reaction, the block updates a set of output
signals. The events that trigger the reaction of the block are
obtained from periodic signals and are therefore assumed
to be periodic. If no trigger event is specified, the Stateflow
block reacts according to the model base rate.

When implementing a Simulink model on a target exe-
cution platform, the problem is to provide a feasible code
implementation (for example, with respect to time and mem-
ory constraints) that preserves the logical-time execution
semantics (the rate and order of execution of the blocks and
the communication flows). In a single-task implementation,
all blocks are executed by a task running at the system
base period according to a global order compliant with the
partial order execution constraints. Feasibility requires that
the longest reaction in the system completes before the end
of the base period. In multi-threaded implementations, all
blocks with the same rate are executed by the same task
and tasks are scheduled by priority.

The code generation of the Embedded Coder/Real-Time
Workshop [1] tools assumes a single periodic task imple-
mentation for each Stateflow block code. The period of the
task is the greatest common divisor of the periods of the
trigger signals. Each time the task is activated, it checks for
any active trigger and, if there is any, it processes them.
This work assumes the existence of a semantics-preserving
implementation of a set of synchronous FSMs as a set of
periodic tasks scheduled by priority [10].

A. Relationship with existing task models

Most of traditional real-time analysis originates from the
study of concurrent programming languages rather than
software models. The analysis units are tasks: units of
sequential code implementing the system actions and ex-
ecuting concurrently (scheduled by an operating system).

A classification of task models can be attempted based on
the concept of task graph. A task in the model is represented
by a graph, where the vertices represent different kinds of
jobs, and the edges are the possible flows of control. Each



vertex (or type of job) is characterized by the worst-case
execution time and relative deadline. Each edge is labeled
with the minimum separation time between the release of
the two vertices it connects.

A single vertex task graph corresponds to the simplest
model of independent tasks activated by periodic or spo-
radic events. The multiframe model [16] and generalized
multiframe (GMF) task model [6] assume that worst case
execution times are not constant for each job instance, but
defined according to a cyclic pattern. The corresponding task
graph is therefore a chain of vertices. The recurring branch-
ing task model [7] allows selection points to determine
which task behavior should occur for a given instance, in
statements such as “if-then-else” and “case”, thus modeling
conditional branches and optional (OR-type) execution. The
corresponding task graph representation is a directed tree.
The recurring real-time task model (RRT) [8] allows the task
graph to be any directed acyclic graph (DAG). All the above
models satisfy the property of cyclic recurrent behavior:

« Recurrent: the graph has a unique source vertex. The
completion of a sink vertex job automatically releases
the source vertex job. This execution pattern may be
implicit, or can be modeled by explicitly adding back
edges from sink vertices to the unique source vertex.

e Cyclic: a parameter defines the minimum time inter-
val (for sporadic executions, or the period, in case
of periodic executions) that must elapse between two
consecutive releases of the source vertex job.

In addition, these models are typically characterized by the
frame separation property: job deadlines are no larger than
the inter-arrival time of any outgoing edge.

The concepts of request bound function (or rbf) and
demand bound function (or dbf) have been introduced in
[8] for the analysis of task graphs. For a task graph, the
maximum cumulative execution times by jobs that have
their activation time within any time interval of length ¢ is
defined as its request bound function rbf(t). The property of
cyclic recurrent behavior is leveraged to find the periodicity
of these functions, such that the asymptotic complexity is
independent from the time interval length ¢.

The non-cyclic generalized multiframe model [18] re-
moves the cyclic parameter in the activation pattern of the
frame jobs. More specifically, it is possible to activate any
job as long as the minimum separation time with respect to
its predecessor is satisfied. The task graph model proposed in
[4] is a generalization of the recurring branching model [7]
since it allows for branches of different length (anisochronic-
ity). With the exception of the (possibly implicit) back edges
from the sink vertices to the source vertex, the task graph is
still restricted to be a directed tree. The non-cyclic recurring
real-time task model [9] is a generalization of both the
recurring real-time [8] and the non-cyclic GMF [18] models,
since it removes the restriction of requiring an execution
period parameter applied to the root job. These three models

[4] [18] [9] relax the constraint of cyclic execution of the
graph, but still assume a model with a single root vertex
(previously defined as recurrent).

The digraph model [19] removes the restriction of having
a single root job by allowing arbitrary directed graphs to
represent the release structure of jobs, which significantly
increases the expressiveness. Arbitrary cycles are allowed
in the digraph model. Another generalization is to relax the
frame separation property to allow arbitrary job deadlines.
The extended digraph model [20] adds global minimum
inter-release constraints between any two vertices, including
those that have no connecting edge (or functional depen-
dency). The schedulability analysis is tractable (pseudo-
polynomial time) for bounded-utilization systems. However,
as in all the previously mentioned models, the edges are
still labeled with a minimum inter-arrival time, which is not
(as shown later) a natural way to capture the periodicity of
trigger events for multi-rate finite state machines.

Timed automata with tasks are a generalization of all the
above models, which allow for complex dependencies be-
tween job release times and task synchronization. However,
schedulability analysis is shown to be very expensive and
even undecidable in certain variants of the model [11].

A discussion of the task models and their generalization
relationship can be found in e.g. [9] [19]. As the (extended)
digraph task model is the most general one whose schedu-
lability analysis is still tractable, we examine the possibility
to express synchronous multi-rate finite state machines using
the digraph model in Section II, despite its limitations.

Our contribution: In this work, we discuss the conditions
and an algorithmic solution for the exact computation of the
demand bound function and request bound function, which
are the inputs to the schedulability analysis of synchronous
finite state machine models. In particular, we define the
conditions for the periodicity of these functions, even when
there is no cyclic recurrent behavior in the model. As
synchronous FSMs are triggered by synchronized periodic
events, unlike the analysis in [19] where tasks are assumed
to have arbitrary offsets, the schedulability analysis must
consider periodic tasks with synchronized offsets.

II. SYNCHRONOUS FSM ABSTRACT MODEL

The synchronous model studied in this paper consists
of a graph of communicating Mealy Finite State Machines
(FSMs). Each FSM block can be characterized by a set of
input signals, a set of trigger events, and a set of output
signals. The internal behavior of a Simulink Stateflow block
follows the semantics and notation of extended (hierarchical
and concurrent) state machines. In this paper, we consider
for simplicity the case of simple (flat) FSMs, without con-
currency and hierarchy, as well as other Stateflow extensions
and notational conveniences.

An FSM is defined by a tuple F =
{S,54,1,0,E,®,V}, where S = {s1,52,...5g|} is a set



of states, s, € S is the initial state, I = {iy,i2,...4y} and
O = {01,02,...0j0|} are the input and output signals and
V is a set of internal variables. Each i; (o;) is also denoted
as a; and is a function defined on a discrete time domain
with values in a given range. The discrete time domain of
each signal «; matches the system base period Tj. Signal
values only change at multiples of its period, defined as
Tw; = ka, - Ty, and are persistent between updates.

E is the set of activation or trigger events. Each event ¢;
occurs at (rising or falling) edges of a signal, and therefore
occurs only at time instants belonging to a time base with
period T, an integer multiple of T3. At each time k - T¢,
the event may be present (if there is an edge on the signal)
or absent (otherwise). T¢; is the period of the event.

To define the behavior at each instant k73, even when no
event is present, the notion of stuttering behavior is con-
ventionally added ([22] is a textbook describing stuttering
as well as some of the composition rules for transforming
hierarchical state machines to flat FSMs). Formally, an
absent event, denoted as L, is added to the set of input
events and assumed as present at all multiples of the base
period when no event e; is set. The reaction of the Stateflow
chart to the absent event is the following: the state does not
change, neither do the output signal values.

© is the set of transitions. Each transition f; € © consists
of a tuple 0; = {src(¢;),snk(6;),e(0;),g;,a;,p;}, where
a; is the action, src(6;) is the source state, snk(f;) is the
sink state, e(f;) € E is the trigger event, g; is the guard
condition (an expression of the input and output signals and
internal variable values), and p; is the transition priority (the
lower the number, the higher the priority), which determines
the order by which the conditions for the transitions to be
active (according to event presence and guard) are evaluated.
Priorities determine which transition should be taken when
two or more transitions can be taken out of a state at the
same time instant. The event triggering a specific action a;
may also be labeled as e(a;) and its period as Te(q,).-

Given that events are conditionally generated based on
signals, guards have no effect on worst case timing analysis.
Because of guards there may be cases in which, despite
an event is set, the transition is not taken, but events are
already assumed as possibly absent on some of their periodic
instances. In our model, guards are included for a better
match to real-world FSM models (Stateflow).

For timing analysis, we assume each action a; is charac-
terized by its worst case execution time (WCET) C,;. The
hyperperiod of an FSM Hr is the least common multiple
of all the periods of its events. The hyperperiod of the FSM
is also the period of the corresponding Stateflow block.
The system hyperperiod H is defined as the least common
multiple of all the (hyper)periods of the blocks (of type
Dataflow or Stateflow).

Figure 1 shows an example of the notation used to
describe the states and transitions, along with the event,

€, /{action; ;0,}
0.25

€, /{action, ;0,}
0.15

Figure 1. An example of FSM behavior description. The guard conditions
are empty thus omitted.

guard and action associated to each transition. The execution
time (in grey) and priority (red/dark, near the source state)
of each transition are also denoted in the figure.

Please note that priorities are associated to transitions to
make FSM behaviors deterministic that would otherwise be
nondeterministic. For example, in the FSM of Figure 1, if
events e; and e have periods 2ms and 5ms, they will occur
simultaneously every 10ms. If the system is in state so, the
priorities associated with the outgoing transitions indicate
that the transition with action a4 (priority 1) will be taken,
not the transition with action ag (priority 2).

Following the original Statecharts specification from
which they are derived, the actual Stateflow semantics
also allow concurrent states, superstates, entry actions, exit
actions, while actions, join transitions, and others. Also, in
Stateflow (as in most extended FSM formalisms), transitions
can be triggered by a logical combination of events. An FSM
with hierarchical superstates with AND/OR composition can
be transformed in many cases into an equivalent flat FSM
with states obtained from the set product of the states of the
composed machines (examples can be found in the seminal
paper [23], and the procedure is defined in [22] for parallel
and series compositions). Of course, the resulting number of
states can be very high and a general type of transformation
may not exist when all the other Stateflow semantic exten-
sions are considered. For simplicity, in this paper we assume
standard (flat) FSMs, in which each transition is associated
with a single event.

In synchronous FSMs all events occur with periods that
are multiples of the base period and with the same phase.
Therefore, sets of events arrive at exactly the same time
(hence the name synchronous FSMs). Also, every reaction
occurs in logical zero time, i.e. it satisfies the synchronous
assumption, where the reaction of a network of (possibly
FSM) blocks completes before the next event is processed.
We use T £ to denote the ordered set of time instants that
are integer multiples of event periods of FSM F

Vt € Tr,Je; € E and k € N such that t = k x T,
where N is the set of non-negative integers. By the semantics
of Stateflow, the release times and absolute deadlines of F
are members of the set T ~.

When an FSM is translated into code, for each possible
state and input signal, the task implementing (a subset



of) the reactions must define the state update and output
update functions with the corresponding actions (the two
are sometimes merged). In this paper, we assume a single-
task implementation for each FSM, and the terms FSM and
task are used interchangeably. Multi-task implementations
are possible ([10]) and, while we believe our analysis can be
easily extended to other models, the formal proof is beyond
the scope of this work and left to future extensions.

III. DIGRAPH TASK MODEL FOR SYNCHRONOUS FSMs

In synchronous FSMs, each action can be characterized
by its WCET. The relative deadlines and the minimum
inter-arrival time separating the actions are not uniquely
determined by the action, but also depend on the pattern
of trigger events in the hyperperiod.

e, | t

e ! i i t
0 1 2 3 4 5 6 7 8 9

Figure 2. The pattern of the trigger events in the first hyperperiod

The FSM in Figure 1 with four transitions will be used
as an example. In the corresponding digraph model, we first
consider each action as a different type of job, i.e. one vertex
for each action. Figure 2 shows the event stream pattern
in the first hyperperiod. The minimum inter-arrival time
between e; and ey is 1ms, the greatest common divisor of
the periods of the two events. Thus, the edges (a1, a4), (as,
a1), and (ag, ag) are labeled with 1ms. a; and ag are both
triggered by ey, thus the edge (a1, as) is labeled with 2ms,
the period of e;. Similarly, (a4, as) is labeled with 5ms, the
period of e;. Because of the synchronous assumption, the
deadline of an action is defined as the minimum distance to
the next trigger event, which equals to the minimum label
among all the outgoing edges (thus satisfying the frame
separation property). For example, vertex ao is labeled with
the <WCET, deadline> pair <0.3, 1>. The result digraph
task model is shown in Figure 3.

<0.3,1 <0.1, 1>

Figure 3. The digraph task model for the FSM in Figure 1

However, the task model in Figure 3 is pessimistic, as the
periodic pattern of event streams is not adequately captured.
For example, the model allows the activation of ao, a1,
and a4 in a time interval of 2ms, which implies that the
event sequence es, ej, e occurs in a 2ms interval. This is
impossible with reference to the event pattern of Figure 2.

A more accurate task model is obtained by identifying
each action occurrence according to the time when its trigger

events happen in the hyperperiod. For each action a;, we
generate an infinite sequence of vertices in the digraph
model, each vertex A;;, , corresponds to a; triggered by
an event at time ¢; 5. As its trigger event e(a;) is periodic,
tig =kx Te(as)s Vk € N. In our example, there will be a set
of vertices Agytzyk_, tar = 0,5,10,... representing the possi-
ble executions of ay at times ¢ ;, = 5 X k. The next action
following a, is a;. Since events may also be inactive (the
machine may stutter), following A,  (action as executed at
time 0), action a; could then be executed at 2, 4, 6, and so
on. Thus, in the task graph there should be an edge from
Az to Ay ; for j = 2,4,6,... Generally, for each A;4, ,,
the action a;4; possibly following a; can be triggered by
the event e(a;41) at time t;41 = (k+ | 5 (tf EY PNy
e(aity)

for all positive integers k (Vk € NT).

The complete digraph model for our example is shown
in Figure 4, where for simplicity only edges from vertices
at time O are shown. The minimum inter-arrival time label
on each edge (A;r — A;;) is omitted, but can be easily
computed as (I — k). Since there is an infinite number
of vertices and edges in the figure, schedulability analysis
requires the reduction of this digraph.

Figure 4. A more accurate digraph task model for the FSM in Figure 1.
To be clear, only edges from vertices at time O are shown

The digraph model can be simplified by removing the
edges that are not critical to the schedulability analysis,
and by folding vertices by exploiting the periodic pattern
of the event arrivals in the hyperperiod. We introduce the
concept of tight and loose edges, and restate the definitions
of action sequence and request (demand) critical actions, as
introduced in [8] (the original definition is event sequence).

Definition 1: Edge (A;s, ., Ajt, ) in the digraph model
is tight if there is no other edge (A, ., Aj¢, ,) in the model
such that ¢; 3, < t;, <1, (thatis, p < ¢). In other words,
15,4 1s the earliest time a; can be triggered following a; at
time t; 5. All other edges are defined as loose.

Definition 2: An action sequence o is defined as a se-
quence of pairs [(a;,t;)] where a; is an action in the FSM,
and t; is the time event e(a;) occurs.



Definition 3: An action sequence o = [(a;,t;)] is legal if

o snk(a;) = src(a;q1);

e a;41 is triggered by e(a;41) at time t;41 > t;, ie.
tH_l:(k—FL b J)XTe ),Vk:N+

TE(ai+1)

A legal action sequence o = [(a;,t;)] is a path in which
a tight edge (A; ¢, Ait1,¢,,,) connects any two consecutive
pairs (ai,ti) and (ai+1,ti+1).

Definition 4: An action sequence o = [(a;,t;)] of length
n is defined as request-critical for a time interval of length
t if and only if

1) it is legal;

2) the last action is triggered within ¢ time units from the

activation of the first action, i.e. ¢,, —t; < t;
3) the total execution time > ., C,, is the maximum
among the sequences that satisfy 1) and 2).

This maximum execution time request is defined as the
request bound function of the FSM F for the length ¢,
denoted as F.rbf(t) (or simply rbf(¢)) [8]. The definition of
demand-critical action sequence and demand bound function
over time ¢ (denoted as dbf(t)) are similar, except that in
condition 2) we require that the deadline of the last action
is within ¢ time units from the activation of the first action
(frame separation property).

We now demonstrate that we can simplify the digraph by
removing all the loose edges without changing the rbf and
dbf functions.

Theorem 1: rbf and dbf do not change when all loose
edges in the digraph task model are removed.

Proof: Suppose there is a request-critical action se-
quence 0 = [(a;,t;)] for an interval of length ¢ with n
actions in which some of them might be loose. We show
that it is possible to construct another action sequence

(ait1

o' = [(a;,t})] entirely consisting of tight actions with the
same rbf by the following iterative replacements.
o th = t1;

o for i = 1,...,m — 1, define the next action instance as
the same action in the original sequence, only triggered
at a time t;; < t;4; such that (Ai,tg7Ai+1,tg+1) is a
tight edge in the digraph model.
It is easy to prove by induction that ¢/, < ¢,, which implies
t, —ty <t,—1t1 <t o isan action sequence with the
same actions as o (thus the same total execution times),
thus it is also a request-critical action sequence for an
interval of length ¢. In addition, all the edges in ¢’ are tight.
A similar reasoning can be applied to the demand-critical
action sequence. ]
The digraph obtained after removing all loose edges
repeats every hyperperiod. Thus, it is sufficient to reason
about the possible transitions and actions triggered by the
events in one hyperperiod. For each event, we generate a
set of vertices in the digraph, each vertex corresponds to the
action triggered by the specific event. For example, for the
two possible arrivals of event eo at time Oms and Hms, we

Figure 5. The simplified digraph task model of Figure 4

create two vertices Ay o and A 5 to represent the possible
executions of as within the hyperperiod. Figure 5 shows
the reduced digraph model for the FSM F in Figure 1 (the
back edges to Ay o and A4 o clearly refer to instances in the
next hyperperiod). The minimum inter-arrival time labeled
on edge (A;,A;1)is ({ —k) mod Hr (Hr = 10 in the
example). In general, there are Za TZ;) vertices in the
digraph model. The digraph in Figure 5 can give a more
accurate rbf than the one in Figure 3, as shown in Figure
6. For example, rbf at 10ms is 1.3ms, against a pessimistic
estimate of 1.85ms using the model of Figure 3.

Figure 6. Request bound functions of the digraph models in Figure 3
(dotted line) and in Figure 5 (solid line)

Once the digraph model is generated, the analysis pro-
posed in [19] can be used as a sufficient condition for
checking the system schedulability. However, there are two
sources of possible inaccuracy. The analysis in [19] as-
sumes tasks have arbitrary offsets, while in synchronous
FSMs events have the same offset. Also, [19] assumes
earliest deadline first scheduling, while most commercial
code generators for synchronous FSMs (e.g. [1] [2]) assume
a conventional static-priority scheduling algorithm.

As for the efficiency of the schedulability analysis, there
are two possible improvements compared to [19]. For syn-
chronous FSMs, the possible event pattern repeats every
hyperperiod, so are the demand and request bound functions.
This leads to the introduction of the concept of execution
request matrix, the request bound function for one hyperpe-
riod (with the refinement by a pair of start and end states).



Finally, the algorithm of calculating rbf and dbf functions
can be further improved by leveraging the periodicity of the
execution request matrix (in max-plus algebra).

In the following section, we discuss the conditions for an
exact analysis of task systems implementing synchronous
FSMs, scheduled with fixed priority and preemption.

IV. OVERVIEW OF SCHEDULABILITY ANALYSIS

In a Stateflow model, finite state machines are executed
synchronously, that is, all trigger events and actions occur
with the same offset. Without loss of generality, all event
offsets are assumed to be 0. Therefore, the approach to
schedulability analysis is the one typical of systems with
static offsets, where feasibility is checked for a represen-
tative number of level-¢ busy periods. Theorem 2 in [21]
defines the set of busy periods to be examined for periodic
tasks with synchronized offsets. We first restate the concept
of busy period as introduced in [15].

Definition 5: A priority level-i busy period is defined as
follows [15]:

o It starts at some time s when a task of priority ¢ or
higher is ready for execution, and all the task instances
with priority ¢ or higher that are activated strictly before
s have finished their execution (thus can be ignored).

o It is a continuous time interval during which any task
of priority lower than ¢ is unable to start execution.

o It ends at the earliest time f when there are no tasks
of priority ¢ or higher waiting to be executed that are
queued strictly before time f.

The request bound function of an FSM over time ¢ is
the maximum cumulative execution times by transitions
that are activated within any interval of length t. However,
tasks implementing synchronous FSMs have static offsets.
Therefore, we introduce the request and demand bound
functions for a given time interval.

Definition 6: The request bound function of an FSM F
during a time interval A = [s, f), (s inclusive and f
exclusive), denoted as F.rbf(A), is the maximum sum of
execution times by the actions of F that have their activation
time within A.

Definition 7: The demand bound function of an FSM
F during the time interval A = [s, f] (both s and f
are included in the interval), denoted as F.dbf(A), is the
maximum sum of execution times by the actions of F that
have their activation time and deadline within A.

Similar to rbf(t) and dbf(t), both rbf[s,s + t) and
dbf|s,s + t] are monotonically increasing with respect to
t. By definition, these functions satisfy the following

rbf(t) = mgxrbf[s,s—&—t), dbf(t) = m?xdbf[s,s—i—t]

Using these definitions, the following two theorems pro-
vide the condition for schedulability.

Theorem 2: Task i is schedulable in a level ¢ busy period
[s, f) if V& € [s, f], 3¢’ € [s,t] such that

Ti.dbf[s, 8] + 30 cppiiy T bS8, 8) St —s

Theorem 3: The schedulability of a task ¢ can be checked
by examining the busy periods starting at the release of a
task j of priority higher than or equal to task 3.

Theorems 2 and 3 are trivial extensions of the corre-
sponding ones in [8] and [21], respectively. They can be
demonstrated in a very similar way, and we omit the proof
here. Theorem 3 states that in order to guarantee schedu-
lability, we must consider all level-i busy periods. Because
of the periodicity of the trigger events, a busy period starts
at an integer multiple of the event period within the system
hyperperiod H. For example, consider a system including 2
blocks: a high priority Dataflow block with period 4, and the
low priority Stateflow block in Figure 1 (with event periods
{2,5}). The start times of the busy periods to be considered
are {2,4,5,6,8,10,12,14,15,16, 18}.

The number of busy periods can be very large for State-
flow systems with many different event rates. If the possible
periods of transitions include a maximum of 1000ms and a
minimum of 5ms, the typical runtime for the schedulability
analysis is more than ten minutes. However, if we limit the
set of periods to 5, 10, 20, 25, 50, and 100ms, the runtime
is reduced to be less than two seconds.

Checking the schedulability of task ¢ in a busy period
starting at s by Theorem 2 requires first to compute rbf|s, t)
and dbfl[s,t] for a given pair s,t. The solution to this
problem will be answered in Section V. Also, we need to
find the endpoint ¢ on which to compute these functions. In
Section VI, we derive a bound on the length of the busy
period and therefore for the set of ¢ values.

V. CALCULATION OF rbf(A)

In this section, we show how to compute rbf(A). The
computation of dbf(A) can be easily derived from the
procedure for rbf(A) by filtering the action execution times
according to their deadlines. Because of the periodicity of
the trigger events, if we move (left or right) the time interval
A by an integer number of hyperperiods, the functions
rbf(A) and dbf(A) remain the same. Formally, Vk € N,

{ Fuobfls+kHr, f + kHx) = Frbf[s, f) M
F.dbf[s+kHg, f +kHz| = F.dbf[s, f]
Furthermore, the release times and absolute deadlines for the
jobs of F can only belong to the ordered set T x. Hence,
we only need to consider the calculation of rbf[s, f) and
dbfls, f] for all s,f € Tz, s €[0,Hr).

We now refine the concept of rbf(A) for a given pair of
start and end states.

Definition 8: Given the start and end states s; and sj,
the request bound function F.rbf; ;(A), is defined as the
maximum accumulative execution times of any legal action
sequence [(ag,tr),k = 1,...,n] of F such that



o the source state of the first transition is s;;

o the sink state of the last transition is s;;

. tlzsandtn<f;

o Frbfij(A) =max(};_; Cqp).
If s; is not reachable from s;, then F.rbf; ;(A) is defined
as —oo. With this definition, the domain for the possible rbf
and dbf values is R* = R|J{—oc}. By these definitions,

Frof(A) = max F.rbfi j(A). )
i
Also, rbf; j(A) is additive, i.e. Vi, j,Vt € [s, f],

Farbfosls. ) = max(Farbfo mls, )+ Farbf [t ) G)

Thus, rbf; ;[s, f) for a long interval [s, f) can be com-
puted from its values for shorter intervals [s,t) and [¢, f).
Techniques from dynamic programming can be used for
an efficient calculation of rbf; ;(A). In addition, in the
remainder of this section we show how results from max-
plus algebra (which has tight connection to dynamic pro-
gramming) can be leveraged to find its periodicity. The
rbf(A) function (without constraints on the initial and final
states) is not additive, as shown by the following equation,
thus dynamic programming techniques and max-plus algebra
results cannot be directly used to speedup its computation.

F.rbf(s,t) + Froflt, f)
= max}"rbﬂ [s, t)—|—max]-"rbflj[t )

= HjlaX(]:bezk[S t) Jr]'—rbflj[t 1))

> max (]—' rbfixls,t) + F.rbfi;lt, f)) = F.rbf[s, f)
i3,k

The computatron of rbf; ;(A) requires searching the
reachable states within the possible sequences of events. For
each state s;, we generate an infinite sequence of vertices in
the reachability graph. Each vertex S, t corresponds to the
source state s; before any action trlggered by the event at
time t¢;, Vt; € T . The edge (S N;ﬂ) is added when:

e ;41 is the next time instant after ¢; in the set T r;

o there is a transition 0y = {s;,s;,eq, ., gk, Gk, Pk} € O
from s; to s; in the FSM; the edge is labeled with Cy, .

e t; is an integer multiple of Te(ay)-

it

Intuitively, edge (Sl ¢ 7, ) corresponds to a transition
from s; to s; at time t Furthermore stuttering edges from
S~ 05, - . (denoted by the symbol L and labeled with
0) are added to represent the possible stuttering behavior.
The reachability graph of the example is shown in Figure 7.

Every path from S, .- to S, 5 in the reachability graph
corresponds to a p0531ble legal action sequence from s; to
s; during the interval [t;,t;). Thus, rbf; ;[t;,¢t; ) can be
computed as the longest path from S,,- to S . This
problem can be solved in cubic time to the size of the graph
(which is linear to the length of the time interval) by negating
the weight of the edges and leveraging the classic Floyd-
Warshall algorithm [12] for all-pairs shortest path problem.

Figure 7. Reachability graph of the FSM in the first hyperperiod

Figure 8 shows the 7bf[0, 10) function in the first hyper-
period, where the worst case rbf is actually obtained when
starting from s3. As a comparison, rbf(10) for any time
interval of length 10ms is also shown in the figure.

Figure 8.

rbf[0,10) (dotted line) and rbf(10) (solid line)

Clearly, it is inefficient to build the reachability graph for
arbitrarily long time intervals. In the following, we show
how to utilize the repeating pattern of trigger events in
the hyperperiod as well as the periodicity of rbf function
to efficiently compute it for any interval. The asymptotic
complexity of the resulting algorithm does not depend on
the length of the time interval, but is only a function of the
number of states in the FSM.

A. The execution request matrix

For simplicity, we denote the request bound function
within k& hyperperiods for a pair of given start and end

states as ZC(k]) rbf; ;[0,kH), and the n x n matrix

XEN(F) = (x Ej),z j =1,..,n) where n = |S] is the
number of states in the FSM. We define X(V(F) as the
execution request matrix of the FSM F, and simply denote
it as X. As a special case of Equation (3), we have

Vi vi<i<k a2t = max( oy @
Equation (4) can be used to compute the rbf function for
intervals spanning multiple hyperperiods instead of building
large reachability graphs. This results in a significant im-
provement, typically one to two orders of magnitudes. The
same speedup cannot be applied using generic digraph task
models and is not considered in the analysis in [19].
Example: For the example FSM in Figure 1, we consider
the action sequence of [(a1,0), (as,2), (az2,5), (a1,6),



(as, 8)]. The total execution time request is 1.0ms, and both
the start state and end state are s;. It can be verified that
no other action sequence with s; as a start and end state
has a cumulative execution time larger than 1.0ms. Thus

xgli = 1.0ms. The matrix X(!) is calculated as

0.65 0.9 1.0

XM =1 045 07 08

095 1.2 1.3
Moreover, it can be verified that Yk € N, matrix X*+1) is
0.65 0.9 1.0 1.3 1.3 1.3
X*+) = 045 07 08 |+kx | 1.3 1.3 1.3
095 1.2 1.3 1.3 1.3 1.3

This example discloses some periodic behavior in the
worst case execution request for the FSM, even if the task
graph does not have a cyclic structure as defined in the
literature, e.g. [8] [9] [18]. This periodicity property is
applicable to any FSM system. In the next subsection, we
introduce the max-plus algebra and related research results
that can be leveraged to compute the request bound function
for large time intervals using X ().

B. Max-plus algebra and periodic matrix power sequence
The matrix X(*) and its elements ng) are defined over
the domain R* = R|J{—o00}. A max-plus algebra [5] is
defined over R* (or in general, any dioid) with operations
maximum (denoted by the max operator ) and addition

(denoted by the plus operator ®) defined as

r@y=max(r,y), TQY=r+y )

It is easy to verify that —oo is neutral with respect to &,
ie. ¢ @ (—o0) = z,Vx € R*. Likewise, 0 is neutral with
respect to ®, x ® 0 = z,Vr € R*.

The matrix operations over R* are defined in the same
way as the matrix operation over any field. For example,
Z = X @Y is defined by taking the maximum operation of
the corresponding elements of the matrices X and Y, i.e.
Zij = Tij D Yij-

For matrices X € R*(m, k) and Y € R*(k,n), the result
of the multiplication is a matrix Z € R*(m,n), where its
element is .

Zi,j = max(zig + y1,5) (6)

Under max-plus algebra, Equation (4) can be rewritten as
X*) = X® @X*E=D (max-plus multiplication). Thus X (*)
is the k-th power of the matrix X, with elements xﬁ’“j

The following definitions and results provide insight on
how to partition the computation of long intervals into a
recurrent part plus some possible initial terms (as for the
powers of X in the example).

Definition 9: A sequence z* = (")), r € N* is defined
as almost linear periodic if there exists a finite real number
q € R and a pair of integers d and p such that

vr>d, 0P =200 4 p g @)

The smallest number p with the above properties is called
the linear period of x*, denoted as p = Iper(z*). ¢ is called
the linear factor of x*, denoted as ¢ = [fac(z*). Finally,
the smallest number d with the above properties is called the
linear defect (or coupling time), denoted as d = ldef(x*).

Definition 10: The matrix X = (z; ;) is defined as almost
linear periodic if for each element x; ; in its power sequence
X* = (XM),r € N*, the sequence zj ; is almost linear
periodic. The matrix [fac(X*) = (Ifac(x};)) is the linear
factor of X*, the number ldef(X) = max{ldef(z];)} is
the linear defect of X, and Iper(X) = lem{lper(z; ;)} is
the linear period of X.

The properties of a matrix X are studied by its corre-
sponding digraph.

Definition 11: The digraph G(X) of a square matrix X €
R*(n,n) is a weighted digraph (V, E,w) with the set of
nodes V = {1,...,n}. The set of arcs E = {(i,j)} for every
finite x; ; of matrix X is weighted by the corresponding x; ;.
If x; ; = —oo, there is no arc from ¢ to j in G(X).

A path 7 in G is a sequence of nodes (i1,%2,...,%r+1)
such that (i, ix,1) is an arc in E. The length |r| of 7 is r.
If 44 = 441, m is called a cycle. The weight of m, denoted
as w(m), is defined as the sum of the weights of its arcs.

For a cycle ¢, the cycle mean, denoted as w(c), is
defined as the ratio between its weight and its length, i.e.
w(c) = w(c)/|e|. The maximum mean of any cycle in G(X)
is A(X) = max.eg w(c). G(X) is called strongly connected
if all nodes are connected inside a common cycle. In this
case, X is called irreducible.

Definition 12: A subgraph K = (K,E(K x K) of
G(X) is a highly connected component if all its nodes
are contained in a cycle with mean equal to A\(X).
Its high period is defined as hper(K) = ged{|c|
¢ is a cycle in K, w(c) = A\(X)}. The set of all highly con-
nected components of G(X) is denoted as HCC*(G(X)).

Irreducible matrices can be analyzed using the following
results. In [5] it is demonstrated that an irreducible matrix
is also almost linear periodic. The linear defect of an
irreducible matrix can be upper bounded by, for example, al-
gorithms in [14] in O(n?) time. In [13] an O(n?) algorithm
is proposed for computing the linear period and linear factor
of an irreducible matrix, based on the following theorem.

Theorem 4: If X € R*(n, n) is irreducible, then [13]

e X is almost linear periodic;

o Ifac(X) = Q, with ¢; ; = A(X) for all ¢,5;

o Iper(X) = lem{hper(K) : K € HCC*(G(X))}.

Unfortunately, if the matrix is reducible, the matrix could
still be almost linear periodic, but deciding whether this is
the case has been demonstrated to be NP-complete [13].
When the matrix is not almost linear periodic, there still can
be a way to avoid computing the rbf function over long time
intervals by detecting a more general type of periodicity.
Molnérova [17] introduces the concept of general periodicity
where linear periodicity is a special case.



Definition 13: A sequence z* = (z("), r € Nt is
defined as almost generally periodic if there exists a pair of
integers d and p and a set of (not necessarily finite) numbers
q(k) € R* k =1,...,p such that

Yk =1,.,p,Vr >d,r =k mod p, ") =z 4pxq(k)
The smallest number p (d) with the above properties is called
the generalized period (generalized defect) of z*, denoted
as p = gper(a*) (d = gdef(x*)). q is called the generalized
factor of z*, denoted as ¢ = gfac(z*).

Definition 14: The matrix X = (z; ;) is defined as almost
generally periodic if for each element x;; in its power
sequence X* = (X ("), r € N* the sequence x} ; is almost
generally periodic. The matrix gfac(X*) = ( fac( i)
is called the generalized factor matrix of X, the number
gdef(X) = max gde f(x7 ;) is called its generalized defect,
and gper(X) = lcm{gper( ;)} is its generalized period.

The following theorem states the periodicity property is
applicable for every matrix.

Theorem 5: Every matrix over a max-plus algebra is
almost generally periodic [17].

However, we still need to compute the gper and gfac
terms, and the problem of computing these terms is shown to
be NP-hard [17]. Nevertheless, the complexity is a function
of the size of the matrix (or the corresponding digraph),
i.e., the number of states in the FSM, but is asymptotically
independent from the power of the matrix (or the length of
A for which rbf(A) function is computed). Therefore, it
is still possible to compute these functions for small FSMs
and large A. We leave the analysis of the tradeoffs among
different approaches to future work.

From now on, we assume that given the finite state
machine F, the n x n matrix X = (x; ; = rbf [0 H) i,j =
1,...,n) where n = |S| can be calculated. Its generahzed
defect d = gde f(X), generalized period p = gper(X), and
generalized factor matrix ¢ = g fac(X) are also assumed to
be computed for the following discussion.

C. Calculation of rbfls, f) for small f

We denote n, = [+ ]| and ny = L%J We discuss how to
calculate the values of the functions for relatively small f
when ny —n, < gdef(X). As a special case of (3), the rbf
function can be decomposed into functions defined over the
intervals [s,ns,H), [nsH,nyH), and [nsH, f).

rbfijls, f) = H}calx(rbfi,k[S,nsH) + rbf[nsH,nsH)

+rofilnsH, f))
= n]1¢alx(7‘bfZ k[S, nsH)—}—x;Jflf—ns)

+7”bfl J[O f — an))
(3)
The value of X (s ~"<) can be computed using (4). rbf][s, f)
is computed as the maximum among all the rbf; ;[s, f) for
all possible pairs ¢ and j, as defined in Equation (2).

D. Calculation of rbf[s, f) for large f
For ny —ng > gdef(X), Equation (8) still applies, but

z,(fnlf ") can be directly computed using its periodicity

property (d = gdef(X), p = gper(X), Q = gfac(X)).

l(cnlf_ng) x;nl) +(ng —ngs —n) x qr(k)

where n <dandn+p>d, nf—ns,=n=%k mod p.
VI. UPPER BOUNDS ON rbf AND dbf

In this section, we derive a bound for the rbf and dbf
functions. This bound can be used to compute an upper
bound for the busy period in the case of static priority
scheduling (see Section IV). We first define the utilization
of an FSM, which describes the asymptotical maximum
execution rate that the FSM can create and then we derive
the bounds for rbf and dbf.

Definition 15: The utilization of an FSM, denoted as
U(F) is defined as the maximum cycle mean of its execution
request matrix X(F) divided by its hyperperiod, i.e.

AX(F))
Hr
Theorem 6: The rbf and dbf functlons of FSM F are

bounded by (where C*"™ = Z Ca; X )
;€0

Fabf[s, f) < (f —s)U(F) +2C%™
Proof: Since the relative deadlines of the actions are no

greater than Hr, and C*'™ is the upper bound on the total
execution request within one hyperperiod Hr, it is

U(F) =

e(“])

Vt, Frbfls, f) < F.dbf[s, f + Hr] < F.dbfls, f] + C™.

The bound on the dbf function can be proved using the
results from [19] on digraph task model. An FSM can
be transformed to an equivalent digraph task model as
described in Section III, where the corresponding digraph
model contains TH nodes for each action a;, and the sum

of the execution tlr(ne)s of all nodes in this digraph task model
is Ze,-ee Ca; X Te a_) = "™, By Lemma V.2 from [19],
F.dbfls, f] < (f — $)U(F) + C=™, n

From these upper bounds on rbf and dbf, an upper
bound on the length of the busy periods can be computed.
For an unschedulable task ¢, there exists a busy period
[s,f) and t € [s, f) such that V¢’ € [s,t], 7;.dbf[s,t] +
> jenp(i) Ti-Tbf[s,t) > ' —s holds. In particular, this must
be true for the endpoint ¢ = ¢. By (9) and simple math,
an upper bound on the time instant ¢ to be checked for
schedulability can be derived as

C™ 23 senp G5
1=Ui = jenpy Us

t<s+




VII. EXPERIMENTAL EVALUATION

We generate 1000 random systems with 20 Stateflow
blocks, each block with a maximum of 15 states and random
transitions between them. The maximum degree of the
blocks is 21, and the average is 3.2. A period of 5, 10, 20,
25, 50, or 100ms is randomly assigned to each transition.
The density (defined as the utilization scaled by the ration
between the hyperperiod of the Stateflow and its deadline)
is uniformly distributed between O and 100%. The system
utilization is very low (around 7.2%), as the shortest relative
deadline of the actions is the greatest common divisor of the
event periods, which is typically much shorter than the hy-
perperiod of the Stateflow block. 419 of these 1000 systems
are schedulable using the analysis assuming synchronized
offsets and deadline monotonic priority assignments.

The first objective of our experiments is to evaluate the
possible improvements with respect to analysis accuracy
compared to methods based on digraph task models. To
compare the two methods on equal terms, we use deadline
monotonic to assign fixed priorities to the tasks in the
digraph model and we use the static priority analysis method
instead of the one for earliest deadline first policy. Our
analysis method finds 61 schedulable task sets that are
evaluated as infeasible by the digraph task formalization
and analysis method (or a 6.1% false negative schedulability
from the analysis for digraph tasks). This pessimism comes
from the assumption of arbitrary task offsets in the analysis
of digraph task model.

Next, we tried to evaluate the possible benefits in terms of
running time resulting from the use of the periodicity prop-
erty for the rbf and dbf functions. Among 20000 total ran-
domly generated Stateflow blocks, only 1861 are irreducible.
We leverage the property of linear periodicity to efficiently
calculate the power sequence of the execution request matrix
for these blocks. This improvement results in a reduction
on the runtime of schedulability analysis, from a total of
137.7 seconds to 134.2 seconds. These savings come from
the scenarios that the busy period for schedulability analysis
is several times longer than the linear period of the execution
request matrix for irreducible Stateflow blocks, where this
linear periodicity can help speed up the calculation of rbf
and dbf functions by about three times.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we present methods for the schedulability
analysis of systems with synchronous finite state machines.
We discuss similarities and differences with respect to cur-
rent task graph models, and present analysis techniques that
can benefit from the periodicity of the rbf and dbf functions.
The asymptotic complexity of the resulting algorithm is
independent from the length of the time interval, but only a
function of the number of states in the FSM. As for future
work, we plan to explore efficient algorithms for the case
that the execution request matrix of the Stateflow block is

reducible. We also consider the extension of the periodicity
of rbf and dbf functions to generic digraph task models.

Finally, we would like to thank Prof. Sanjoy Baruah for
the discussion and suggestions on task models.

REFERENCES

[11 The Mathworks Simulink and StateFlow User’s Manuals,
Mathworks, web page: http://www.mathworks.com.

[2] The dSPACE TargetLink Automatic Production Code Genera-
tor, dSPACE, web page: http://www.dspaceinc.com.

[3] The Mathworks Design Verifier User’s Manuals, Mathworks,
web page: http://www.mathworks.com.

[4] M. Anand, “Conditional models for compositional design of
real-time embedded systems,” Ph.D. dissertation, University of
Pennsylvania, Janurary 2008.

[5] F. Baccelli, G. Cohen, G. Olsder, and J. Quadrat, Synchroniza-
tion and Linearity: An Algebra for Discrete Event Systems.
Wiley, 1992.

[6] S. Baruah, D. Chen, S. Gorinsky, and A. Mok, “Generalized
multiframe tasks,” Real-Time Syst. 17(1): 5-22, 1999.

[7] S. Baruah, “Feasibility analysis of recurring branching tasks,”
Euromicro Workshop on Real-Time Systems, 1998.

[8] S. Baruah, “Dynamic- and static-priority scheduling of recur-
ring real-time tasks,” Real-Time Syst. 24(1): 93-128, 2003.

[9] S. Baruah, “The non-cyclic recurring real-time task model,” in
Proc. the 31st IEEE Real-Time Systems Symposium, 2010.

[10] M. Di Natale and H. Zeng, “Task implementation of syn-
chronous finite state machines,” in Proc. the Conference on
Design, Automation, and Test in Europe, 2012.

[11] E. Fersman, P. Krcal, P. Pettersson, and W. Yi, “Task au-
tomata: Schedulability, decidability and undecidability,” In-
ternational Journal of Information and Computation 205(8):
1149-1172, August 2007.

[12] R. Floyd, “Algorithm 97: Shortest Path,” Communications of
the ACM 5(6): 345, June 1962.

[13] M. Gavalec, “Linear matrix period in max-plus algebra,”
Linear Algebra and its Applications 307(1-3): 167-182, 2000.

[14] M. Hartmann and C. Arguelles, “Transience bounds for long
walks,” Math. Oper. Res. 24: 414439, May 1999.

[15] J. P. Lehoczky, “Fixed priority scheduling of periodic task
sets with arbitrary deadlines,” in Proc. IEEE Real-Time Systems
Symposium, 1990.

[16] A. K. Mok and D. Chen, “A multiframe model for real-time
tasks,” in Proc. IEEE Real-Time Systems Symposium, 1996.

[17] M. Molndrova, “Generalized matrix period in max-plus alge-
bra,” Linear Algebra and its Applications, 404: 345-366, 2005.

[18] N. T. Moyo, E. Nicollet, F. Lafaye, and C. Moy, “On
schedulability analysis of non-cyclic generalized multiframe
tasks,” in Proc. the 22nd Euromicro Conference on Real-Time
Systems, 2010.

[19] M. Stigge, P. Ekberg, N. Guan, , and W. Yi, “The digraph
real-time task model,” in Proc. the 16th IEEE Real-Time and
Embedded Technology and Applications Symposium, 2011.

[20] M. Stigge, P. Ekberg, N. Guan, , and W. Yi, “On the
Tractability of Digraph-Based Task Models,” in Proc. the 23rd
Euromicro Conference on Real-Time Systems, 2011.

[21] K. Tindell, “Adding time-offsets to schedulability analysis,”
Department of Computer Science, University of York, Report
No. YCS-94-221, 1994.

[22] Edward A. Lee and Pravin Varaiya, “Structure and Interpreta-
tion of Signals and Systems,” Second Edition, LeeVaraiya.org,
ISBN 978-0-578-07719-2, 2011.

[23] D. Harel, “Statecharts: A Visual Formalism for Complex
Systems”, Sci. Comput. Programming 8(3):231-274, 1987.



