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Abstract. We present an industrial model-driven engineering process
for the design and development of complex distributed embedded sys-
tems. We outline the main steps in the process and the evaluation of its
use in the context of a radar application. We show the methods and tools
that have been developed to allow interoperability among requirements
management, SysML modeling and MBD simulation and code genera-
tion.
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1 Introduction

The complexity of modern cyber-physical systems is rapidly growing. Advanced
system engineering methodologies are required to integrate all the competencies
and specialty groups required for the realization of a system using a structured
development process from concept to production to operation. The motivations
and objectives of the industrial design process we present in this paper are:

– Improve the quality of the requirements moving towards their definition in a
formal language and the need for tracking requirements into design artifacts
and hardware or software implementations;

– Improve the quality of the functional solutions by early verification and
validation on models using simulation, model checking or other forms of
automated verification;

– Produce reusable and documented components at all levels in the design
flow;

– Automatically derive implementations from models that are provably cor-
rect. Also, automatically generate documentations and possibly test cases.

Model-driven approaches such as domain-specific modeling languages, Model-
Driven Architecture (MDA) and Model-Based Development (MBD) are possible
choices to form the backbone of the design flow. Albeit MDA and MBD share the
same principle (models as primary artifacts driving the design and development
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process), they differ substantially in their details. Each on his own is incapable of
addressing all the challenges of modern system design. However, their strengths
and weaknesses are complementary: MBD languages enable the realization of
mathematical specifications that can be exploited for system simulation, testing
and behavioral code or firmware generation, but they lack expressive power to
represent complex system architectural aspects and execution platforms. More-
over, their extension mechanisms are quite limited in scope. On the other hand,
MDA languages are very good at representing architectural aspects and are de-
signed for being easily extended and provide mechanisms to transform models
expressed in a language into another. However it is still hard to exploit these
kind of models for model execution and simulation.

Starting from requirement capture, our approach follows the tenets of Platform-
Based Design (PBD)[2], in which a functional model of the system is paired to a
model of the execution platform. In particular, we present in this paper an inte-
gration of MBD and MBA to realize a comprehensive system engineering process
based on the INCOSE framework [23]at Elettronica S.p.A (ELT)[1], one of the
European leaders in the production of Electronic Defence equipment (EW). We
describe tools and model integration techniques, automatic code generation using
both MDA and MBD tools and the development of domain specific metamodels
and profiles, extending the OMG MARTE standard.

2 The Design Process

2.1 Our Objectives and Motivations to Change

As any industry the main reasons why we have decided to evolve and update
our design and development process are: to increase quality; to increase produc-
tivity; to reduce costs. In order to achieve these objectives we have identified
some aspects of our design and development process that could be positively
affected, for what concerns quality, productivity and costs, by a model driven
approach. The first aspect is: documentation. As a company operating in the
defense industry we have to provide a lot of documentation when designing and
developing a product. According to the MIL-STD-498 standard [24], to which
ELT is conform, more than 20 different documents have to be provided just for
the design and development of the software architectgure of a system. For each
document a review process has to be done in order to ensure its contents are
correct, enough descriptive and coherent. This is a very expensive activity that
has to be repeated every time we modify a project. Thanks to the model driven
workflow here described we have managed to automatically obtain almost all the
documentation from the models. The second aspect we wanted to optimize is the
interaction among engineers with different specialties (i.e. SW, HW, FW) which
work together but use different modeling and development tools. Often errors,
due to misunderstanding, crept in and an extra effort was frequently needed in
order to integrate their design activities. The process we present in this paper is
instead a unified framework enabling SW,FW and HW engineers to share mod-
els and reduce integration effort. The third aspect is the reuse of components
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which is now optimized by the fact that the exploitation of modeling languages
enable the definition of a functional architecture which is independent of a spe-
cific actual execution platform. Only when it has to be deployed onto a specific
platform the functional model is related to a platform model. Such mapping
eventually enables the automatic generation of the SW and FW artifacts which
realize the functional model for that platform.

2.2 The Overall Structure

The model driven design and development process we have defined (shown in
Figure 1) starts with the System Requirements Analysis and Definition stage
that establishes functional and performance requirements. The output of this
phase is a System Subsystem Specification (SSS) [24] document. Requirements
are expressed, documented, managed and linked to test descriptions (for ver-
ification) using the DOORS tool by IBM. In order to provide the required
formalization to requirements, DOORS textual descriptions are supplemented
by SysML state and interaction diagrams, block diagrams, (interface) type def-
initions and OCL constraints. For the creation and management of the SysML
models, the Topcased open source tool, based on the Eclipse Modeling Frame-
work (EMF) is used. The need to preserve the consistency of the requirements
and of the links tracking the requirements to architecture-level design decisions
and (refined) subsystem requirements led to the development of automatic trans-
formations between the DOORS and SysML tools and the information managed
by them, implemented in a custom Eclipse plugin (shown as 1© in the figure).
The plugin leverages the support offered by EMF for the OMG languages for the
development of metamodels (ECORE) to transform the DOORS requirements
modules in an Ecore model, and model-to-model QVT transformations to keep
the DOORS and SysML models synchronized.

The following stage of architecture-level Solution Definition translates these
requirements into a system architecture design and the corresponding document
called System Subsystem Design Description (SSDD) [24] that encompasses the
functional and execution platform architecture, and addresses the functional
requirements defined in the SSS. In the ELT process, DOORS is the master tool
for storing the textual requirements associated with the SSS and SSDD. System
models of the functional architecture and the execution platform are defined
in Topcased, and the plugin connecting Topcased and Eclipse with DOORS
synchronizes the architecture-level requirements in a similar way to what is done
with the system-level specifications. In addition, the plugin detects refinement
chains in the SysML model and automatically imports them as DOORS links
(step 2© in the figure).

System interfaces are described in additional documents: the Interface Require-
ments Specification (IRS)[24], and the Interface Design Description (IDD). The
ELT process realizes a platform-based design approach [2] rendered here for the
sake of simplicity as an early V&V model on top of a (conventional) V process.
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Fig. 1. Early V&V, model transformations and automatic generation of implementa-
tions in the ELT process

Automation is provided for the system-level testing stage, where the SysML
interaction diagrams defined for the system and subsystem specifications are
automatically processed to generate the models of the system- and subsystem-
level tests that verify them ( 3© in the figure). In architecture design, the SysML
models of the system and the subsystems are defined according to the Platform-
based Design paradigm, separating the functional model from the model of the
execution platform, including the physical architecture. A third model represents
the deployment of the functional subsystems onto the computation and commu-
nication infrastructure and the HW devices. To define the execution platform
and the mapping relationships between the functions and the platform (which
defines the model of the software tasks and the network messages, among oth-
ers) domain-specific SysML extensions are required. We found that the standard
MARTE profile [10] is not completely adequate for our needs. We therefore de-
fined our own domain-specific stereotypes as extensions to MARTE (step 4©
in the process). Synchronous reactive behavioral models of algorithmic compo-
nents are developed in MATLAB/Simulink: a Mathworks toolset comprising
a graphical modeling language (Simulink); a scripting language (MATLAB [18])
and a set of simulation, analysis and optimization and synthesis tools. These
models provide an early validation of the system functionality by simulation
and are used to automatically derive a software or firmware implementation.
The Simulink models can refine functional subsystems of the SysML architec-
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ture (in a top-down development) or provide building blocks for the definition of
the system (in a bottom-up flow). To support both paths, we developed scripts
and code generation templates that can be used to transform a Simulink subsys-
tem (hierarchy) into a (set of) SysML block(s) and viceversa, preserving the flow
specifications at the interface ports (step 5©). The process uses code generation
techniques or automatic generation of firmware implementations starting from
the Simulink models for the behavioral part, and from the SysML architecture
description for the implementation of the communication and synchronization
functions and for the code framework of the software tasks 7©. The synthesis of
the communication functions over shared memory and serial links uses a defini-
tion of the message model based on an Ecore metamodel that has been defined
ad hoc 6©.

2.3 Structure of a Project

Figure 2 depicts the reference SysML project structure used to organize and
relate the model elements used in the system design process. The project consists
of six packages:

– a SystemRequirements package containing a SysML model of the system re-
quirements imported from a DOORS SSS module by means of a RIF export;

– an IntefaceDataTypes package containing a SysML model defining the Data
Types and Interfaces provided and required by the system and its parts;

– a SystemFunctionalArchitecture package containing a SysML model describ-
ing the functional architecture of the system, as a network of subsystems
exchanging data signals;

– an ExecutionPlatform package containing a SysML model describing the
execution platform in terms of the HW and basic software components, in-
cluding boards, memories, processing units (cores), network connections, but
also device drivers, operating system(s) and middleware. For this purpose,
we extended the standard MARTE profile [10] for real-time and embedded
systems, providing baseline concepts for representing HW/SW systems;

– a Mapping package containing a SysML model using an extension of the
MARTE Mapping profile to specify how functional components and behav-
iors are mapped onto an execution platform, generating the software archi-
tecture of tasks and messages. To guarantee independence and reusability as
well as visibility of the design entities involved in the mapping, the mapping
model imports both the functional and platform models;

– a Test package containing a SysML model defining all the tests by means of
which the system requirements shall be verified.

Separated from the project models we maintain a domain model which is shared
among the different projects and contains domain specific meta-entities describ-
ing the information managed by the system. This organization enables the reuse
of Interfaces and Data Types and according to the PBD paradigm, allows deploy-
ing (by mapping) the same functional model into different platforms of execution.
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Fig. 2. The structure of SysML projects in ELT

2.4 System Requirement Modeling and Management

Our process starts with the definition of the system requirements in DOORS.
Requirements are expressed in natural language, which can be easily understood
by customers and other stake-holders, but is subject to inconsistencies, omissions
and duplication of information. To partially obviate to these problems, the SSS
requirements are paired with a SysML (semi)formal description. Next, when
the architecture models are defined, each model artefact must be traced to the
requirements that originated it and also to the (subsystem-level) requirements
that it defines.

To this end, we realized an Eclipse plugin for automating the exchange of
information and the synchronization of requirements models and diagrams be-
tween DOORS and Topcased. The plugin exploits a standard XML format for
requirements interchange called RIF (Requirement Interchange Format [25]). A
metamodel for the RIF format is available in Ecore and used in our approach
to automatically generate an Ecore model by importing the RIF XML exported
from DOORS. As with any other Ecore model, the Eclipse modeling framework
automatically generates an editor that can be used to modify the imported data.

In addition, we built a synchronization engine, based on correspondence rules
between the DOORS RIF objects and their attributes (in a given module) and
corresponding SysML elements and attributes in Topcased. The synchronization
module is based on rules written as QVT Model to Model transformations [17]
to synchronize the content of corresponding elements or automatically generate
them when requested. On top of the synchronization component, a wizard allows
the user to create correspondences between sets of requirements and sets of
SysML elements. In this way, parts of a source DOORS module (i.e. paragraphs,
interface requirements, functional requirements, parametric requirements) can
be imported, or updated, into a new or already existing target SysML model.
Among the predefined rulesets provided by the wizard, the user can take a
DOORS module containing SSS requirements and automatically import it into a
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(newly generated) SysML project as a set of SysML requirements. These SysML
requirements are used in the subsequent phase to define Satisfy relationships
with the SysML model entities of the architecture design (SSDD).

2.5 Computational Independent Models

A Computation Independent model or CIM (also called domain model) is a con-
ceptual model of the domain of interest (or problem domain) which describes the
various entities, their attributes, roles and relationships, plus the constraints that
govern the integrity of the model. Using Ecore, ELT defined an electronic warfare
meta-model (details can be found in [20]) as a formal and structured represen-
tation of the electronic warfare concepts, ranging from the concept of Platform
(i.e. aircraft, ships, tanks, etc.), to Sensors (i.e. Radars, ESMs, etc.), electro-
magnetic Waveforms (i.e. Radiofrequency, Pulse Repetition Interval, etc.) and
Countermeasures (i.e. Jammers, Chaff, Flare, etc.). This Ecore model represents
our Computational Independent Model and we want to keep it unique for all
the system we design. Our first aim in designing a new system is thus verifying
whether our domain model is expressive enough to cope with the system require-
ments. If the domain model does not contain concepts or entities’ characteristics
referenced in the system’s requirements we extend it or adapt the requirements
(in collaboration with the customer).

2.6 Defining the (Platform Independent) Functional Architecture

Once the system requirements are defined and the ontology of the domain en-
tities is available in the CIM, we start the actual system design by defining
the functional architecture of the system. To this end, we use SysML with the
MARTE (Modeling and Analysis of Real Time Embedded Systems) profile [10].
The SysML functional model of the system is a network of subsystems. Each
SysML Block represents a (sub)system functionality defined independently of
the eventual implementation technology (i.e. Software, Firmware, etc.) or the
HW upon which it will be executed (i.e. CPU, GPU, FPGA, etc.) according
to the PBD paradigm. The System Functional Architecture package contains
the SysML design of the architecture, consisting of Blocks, representing func-
tional subsystems, ports (interaction points) and connectors among ports. As
in any SysML model, standard (synchronous) invocation of services is modeled
through UML StandardPorts each typed with a UML Interface providing Op-
erations, each of which represents a behavior of the related component invoked
synchronously (in a blocking fashion) with respect to the caller. Non-blocking
communication may occur according to a discrete-event model (through signal
events) or according to a stream of data values produced periodically accod-
ing to a discrete-time base. In the case of (asynchronous) signal events, we use
ports stereotyped in MARTE as ClientServerPort that allow transmission or
reception of UML Signals. The corresponding port interfaces are stereotyped as
ClientServerSpecification. A UML Reception, stereotyped as ClientServerFeature
may be associated to each signal received by the port, specifying the behavior
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Fig. 3. The system-level design flow

response to it. The case of communication through periodic data streams is of
special interest, because it mirrors the communication semantics that is used in
the Synchronous Reactive (SR) models produced by the Simulink tool. In this
case, the behavior of a SR functional subsystem needs to be further restricted.
Communication ports will be SysML flow ports stereotyped as SRFlowPort.
Also, an SR subsystem is stereotyped as SRSubsystem and characterized by the
realization of a standard runtime interface consisting of a single Step method.
The SRSubsystem stereotype is associated with an execution period attribute.
Interfaces and client server specifications are contained in the Interface and Data
Types package so that they can used multiple times in different contexts. Data
types are generated from the previously described domain model. This guaran-
tees that the system relies on well structured and homogeneous data descriptions,
each constrained within the value range prescribed by the SSS. The functional
model of the system is part of the SSDD description and must be linked to the
SSS requirements from which it originated. After being imported from DOORS,
the SSS requirements are mirrored in the SysML tool as a set of SysML re-
quirements. Each component, port, interface and signal of the SysML functional
model is connected to the requirement it satisfies by means of the SysML Satisfy
relationship. OCL scripts verify that each functional component satisfies at least
one requirement. Each subsystem will define a set of derived requirements on its
structure and behavior. Those requirements are linked with a Trace relatonship
to the functional subsystem (or element, like a port or even a connection) that
originates them. By following the chain SSS Requirement → Satisfy → SysML
element→ Trace → SSDD Requirement, the tool is capable of inferring a Derive
Relationship between the SSS and the SSDD requirements. The synchronization
plugin with DOORS allows to define other associations (QVT transformations)
for the automatic generation of the objects in a DOORS SSDD module starting
from a set of SysML architecture design descriptions and requirements. Further,
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the tool generates a DOORS refinement link for each Derive relationships be-
tween SSS and SSDD requirements in Topcased. Figure 4 depicts a portion of
a real functional architecture model extracted from an actual ELT system. The
figure illustrates the kind of complexity in terms of interactions and interfaces
that is typical of ELT models.

Fig. 4. A portion of the Internal Block Diagram of the EW Integrated System

Once the functional architecture is defined, a state diagram must be associated to
every subsystem in the functional architecture model. For each state transition
we define both triggers (e.g., the reception of a signal on a port) and guard
conditions by means of OCL constraints. After, the behaviors associated with
each of the subsystem states are defined.

The UML Superstructure [7] defines two kind of behaviors: executing and
emergent. Interaction diagrams (i.e. sequence diagrams) are used to model emer-
gent behaviors. Communication among active objects occurs through UML Sig-
nals. Active objects hide their Operations, which are invoked only upon the
reception of a signal. This approach improves the separation of concerns. While
modeling emergent behaviors we add time constraints for each request/response
exchange or operation call by means of UML DurationConstraints.

Some executing behaviors are defined by activity diagrams and then imple-
mented manually in C++. Other actions define behaviors that are imported
from a Simulink model or for which an MBD development flow is going to be
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used. These are stereotyped as Analytical and must refer to a Step function
of an SRSubsystem block. In case of a top-down process, the development flow
makes use of transformations from the interface view of the SysML SRSubsystem
block into the specification of a Simulink Subsystem, complete with its ports and
datatype specification as Bus Objects. The Simulink subsystem is then further
developed in the Mathworks environment. The transformation currently in use
is an Acceleo script (described in [21]) that transforms the SysML block into a
set of MATLAB scripts. More often, however, the functionality to be developed
has already been prototyped in Simulink and a reverse transformation generates
a SysML block. In this case, a MATLAB script generates an XML file compliant
with an Ecore metamodel developed ad hoc for the representation of Simulink
subsystems in EMF. A QVT model-to-model transformation then generates the
SysML block from the Ecore model. Later, at code generation time, special care
must be taken when generating the data implementations of the port interfaces
and the calls to the Step operations of the SRSubsystem blocks.

2.7 Execution Platform Modeling and Mapping

The execution platform and the mapping models define the structure of the
HW and SW architecture that supports the execution of the functional model.
For both models we leveraged the standard definitions of the MARTE profile.
However, it was apparent that MARTE is extensive and general and yet still
lacks several features of interest.

The execution platform is defined in a package called PlatformModels with
the same principles of hierarchical decomposition used in the functional model.
Here, blocks represent hardware components at different levels of granularity,
but also classes of basic software, including device drivers, middleware classes
and operating system modules. The MARTE profile provides several concepts
for the basic software classes, but is unfortunately not adequate for the definition
of hardware components. For example, not a single stereotype is dedicated to
the representation of physical network links (of any type), connectors or cables.
Also, concepts like message frames (for Ethernet, Controller Area Network or
other standards) and the placement of data signals onto frames are missing. For
this reason, we had to define our own taxonomy of stereotyped definitions for
most hardware components. Most of them were quite straightforward, others re-
vealed minor complexities or subtleties for usability, such as for the definition of
broadcast buses, which are derived by extension from the connector and block
metaclasses to ensure the possibility of representing one-to-many connections
(impossible with SysML connectors), but at the same time, allowing a more nat-
ural modeling of physical links with connectors whenever possible. The definition
of stereotypes for other physical elements proved to be much more difficult, as is
the case of connectors with multiple pins, a subset of which realizes a communi-
cation bus (such as, for example, an Ethernet link). In this case, the connector
stereotype cannot be simply obtained by extending the port concept, because
ports cannot contain other ports representing pins. Figure 5 shows an example
of UML profile we have developed in order to model serial(e.g., RS232, RS422,
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ARINC-429, and USB) and parallel (e.g., PCI, and VME) busses and cables.
The Mapping definitions are contained in the MappingModels package, in which

Fig. 5. A UML profile involved in physical communications

the mapping of the functional subsystems onto the execution platform generates
the SW architecture of tasks, messages and logical resources. For the definition
of concurrent software we use the SWConcurrency package which defines the
stereotype SwConcurrentResource to represent entities competing for comput-
ing resources and executing sequential instruction segments. The elements of
this package provide an execution context (e.g., stack, interrupts enable/disable
and registers) for an execution flow (sequence of actions).

2.8 Automatic generation of documentation, system and unit tests
and software/firmware implementations

A significant improvement in the productivity and quality of the process is ob-
tained using the tools for the automatic generation of models, documents and
implementations (code and firmware). Documentation Once the elements of
the Functional Architecture and the Execution Platform models have been put
in a mapping relationship, we can apply a transformation workflow aimed at au-
tomatically generating an SSDD document describing the system architecture.
Most of the SSDD, SRS and SDD [24] contents are, in fact, already present in the
defined functional and platform models and can be imagined as different views
of the same models. The QVT transformations of the SysML-to-DOORS plugin
generate a RIF file that is imported, generating DOORS modules for the SSDD.
IRS and IDD specifications and the corresponding documents, each linked to the
related SSS requirements, according to what specified in the SysML model with
the Derive links.
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Test cases

QVT transformations have been defined to process the interaction diagrams
describing the system-level behaviors and generate the sequence diagrams of the
test suites that verify out of range and in range invocations for each constrained
operation call. Additional sequence diagrams are generated for all the duration
constraints aimed at testing out of time conditions. The models representing
system and unit tests are generated from the constraints on the entities of the
functional architecture and can be an input to further transformations aimed
at the automatic generation of the related System Test Plan and System Test
Description documents.

Implementation generation

The automatic generation of the implementation of functionality is performed
using Mathworks tools (Simulink Coder) to derive the FPGA (if firmware) or
C (C++) code implementation (if software) of the behavior of some functional
subsystems. The generated FPGA implementation communicates with the other
subsystems using a set of registers and shared memory locations. The C or C++
generated code follows the conventions of the code generator (two functions for
the subsystem initialization and termination and a function with a conventional
name for the runtime evaluation of the block outputs given the inputs and the
state). The Simulink Coder conventions also define the names of the variables
implementing the interface ports. Other functional subsystems are developed
manually by hand-written code or purposely designed HW or firmware.

For the infrastructure that provides communication and synchronization among
blocks, we exploit the possibility of generating code using Acceleo transformation
rules (this work has not been completed as yet). For the communications among
subsystems implemented by hand-written C++ code, there are two options. In
the case of local communication (detected from the mapping information of the
SysML model), we defined a set of transformations generating boost [27] active
objects, signals and state machines according to what specified in the platform
independent architecture models. In this case, data structures are also automati-
cally generated and OCL constraints turned into run-time checks on the specified
value boundaries. When communication is remote (that is, when the mapping
model places the two communicating subsystems on different nodes) and, in case
the connecting network is of Ethernet type, we make use of a purposely devel-
oped Ecore model that defines mapping details, such as on what (TCP/UDP/IP)
message the data signal is transmitted and with which offset and encoding, to
generate automatically the network interface part of the communication.

For the communication between hand-written C++ code implementing func-
tional subsystems and subsystems generated in SW from Simulink model, Ac-
celeo scripts automatically generate the wrappers that provide the marshalling
of parameters to the variables implementing the input ports and retrieving the
data from the output port variables. The Step function implementing the sub-
system runtime behavior is invoked in the context of a software thread executing
at the appropriate rate.

Finally, for the case of communication between automatically generated firmware
implementations and software subsystems, the read and write interface operat-
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ing on the shared registers and memory locations is automatically generated us-
ing Acceleo based on the information provided in an additional Ecore mapping
model, defining the position of data signals in memory and/or HW registers.

2.9 Dealing with Legacy Systems and Sub-Systems

The described process is applicable to the design and development of any new
system though particular attention has to be provided when dealing with al-
ready existing legacy components (either HW, SW or FW) for which no models
are available. In this case our approach is to manage the legacy component as a
black block and define modeling elements wrapping it. To this end we apply the
Facade design pattern [47] each time the component does not provide a cohesive
enough well structured architecture. Such solution can be permanent, for those
component which are very stable and are not supposed to be extended/improved
in the future, or temporary, for those components we think will need to be ex-
tended or improved in the future. In this second case we may in fact decide to
start a reverse engineering process aimed at obtaining a set of SysML models
describing the component itself. This decision is any time taken after an evalua-
tion of the required extra cost compared to the return of investment that could
derive.

3 A case study on an electronic warfare system

As an example of what can be achieved with our process we present results
related to a project developed at ELT from 2010 to the end of 2011 called Elec-
tronic Warfare Manager (EWM [29]). The EWM realizes a Mission Computer
for an electronic defence suite capable of gathering information from the avail-
able sensors (i.e. Radar Warning Receivers, Laser Warning Systems and Mis-
sile Warning Systems [28]), providing an integrated situation assessment that
decides what of the available electronic countermeasures (i.e. Chaff, Jammers,
etc.) to apply and managing their execution. From an industrial point of view,
a fundamental requirement for the system is that it must ensure connectivity
with different physical communication links on different platforms, according to
the customer. Retargetability of communication interfaces was obtained by the
automatic generation of IRS, IDD, and related C++ implementation from an
abstract SysML model of the interfaces. By modeling each communication pro-
tocol as described in Section 2.4, more than 15K lines of code (LOC) and almost
200 pages of documentation (IRS and IDD) have been automatically generated.
The code implementing these transformations is about 2,4KLOC implying that
the effort has been significantly reduced. Also the remaining part of the system
architecture has been modeled, as described in section 2.4, by means of SysML,
MATLAB and Simulink with the automatic generation of the corresponding im-
plementations for additional 25KLOC. Although it is in principle possible to
generate almost all the required code, as of now we still have to add some glue
code allowing interactions among generated components. For the EWM, this
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code was about 5KLOC so that the whole system is about 45KLOC, 90 percent
of which has been automatically generated from models. In order to have an eval-
uation of the saved effort we used the Constructive Cost Model II (COCOMO
II) [30] [32]. A web application provided by the Center of Systems and Software
Engineering (CSSE) [31] estimates for a SW project of 40KLOC (the amount of
code we automatically generated), leaving all the other COCOMO parameters
as nominal, a development effort of 169.9 Person-months for a cost of 1868638$.
This does not mean that 90% of this amount was actually saved, because the
Inception and Elaboration phases, corresponding to the System Requirement
Analysis and System Design Phases, are still (mostly) manually performed. How-
ever, the design step that is most affected by automatic code generation is the
Construction phase, which is also the most expensive (estimated by the CSSE
to be $1,420,166 for a duration of 12.5 months and 10.3 people involved). Ac-
curacy of the CSSE-COCOMO estimates was confirmed from the fact that the
Inception and Elaboration phase estimates turned out to be quite close to the
actual effort and cost experienced at ELT.

4 Related work

The amount of work related to our project is simply staggering. We provide
some references with respect to and technologies used in the stages of the pro-
cess, but there are surely many more that are omitted. The match of a functional
and execution architecture is advocated by many in the academic community
(examples are the Y-cycle [33] and the Platform-Based Design PBD [2]) and in
the industrial domain (the AUTOSAR automotive standard [34] is probably the
most relevant recent example) as a way of obtaining modularity and separation
of concerns between functional specifications and their implementation on a tar-
get platform. The OMG and the MDE similarly propose a staged development
in which a PIM is transformed into a Platform Specific Model (PSM) by means
of a Platform Definition Model (PDM) [35]. The development of a platform
model for (possibly large and distributed) embedded systems and the model-
ing of concurrent systems with resource managers (schedulers) requires domain-
specific concepts. The OMG MARTE [10] standard is very general, rooted on
UML/SyML and supported by several tools. MARTE has been applied to several
use cases, most recently on automotive projects [37]. However, becasue of the
complexity and the variety of modeling concepts it has to support, MARTE can
still be considered an ongoing work, being constantly evaluated [36] and subject
to future extensions. Several other domain-specific languages and architecture
description languages of course exist, such as, for example EAST-AADL and
the DoD Architectural Framework. Several other authors [38], [39] acknowledge
that future trends in model engineering will encompass the definition of inte-
grated design flows exploiting complementarities between UML or SysML and
Matlab/Simulink, although the combination of the two models is affected by
the fact that Simulink lacks a publicly accessible meta-model [38]. Work on the
integration of UML and synchronous reactive languages [40] has been performed
in the context of the Esterel language (supported by the commercial SCADE
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tool), for which transformation rules and specialized profiles have been proposed
to ease integration with UML models [41]. With respect to the general subject
of model-to-model transformations and heterogenous models integration, several
approaches, methods, tools and case studies have been proposed. Some proposed
methods, such as the GME framework [42] and Metropolis [43]) consist of the
use of a general meta-model as an intermediate target for the model integra-
tion.Other groups and projects [44] have developed the concept of studying the
conditions for the interface combatibility between etherogeneous models. Exam-
ples of formalisms developed to study the formal conditions for compatibility
between different Models of Computation are the Interface Automata [45] and
the Tagged Signal Language [46]. In this context our contribution is to pro-
vide an example of an actual industrial framework in which different tools and
languages (i.e. DOORS, UML, SysML, MARTE, DSLs, SIMULINK, M2M and
M2T Transformations,etc.) are integrated together into a single design and de-
velopment workflow. Our contribution aims to show that there is not a ”ready to
use” model driven process suitable to any industry. It is instead necessary to de-
sign the process itself and properly tailor it around specific needs that could vary
from a company to another. In our experience this process engineering activity
can only be performed by a team with a very deep and wide knowledge of the
existing technologies and methodologies together with a strong understanding
of the company domain and needs.

5 Conclusions

In this paper, we presented an industrial flow and related tools featuring the in-
tegration of Model Driven Architecture and Model Based Design methodologies
using a Platform-Based Design paradigm for the realization of military real-
time embedded systems conforming to the MIL-STD-498 standard. The process
is characterized by integration of heterogeneous languages, methods and tools,
from requirements to implementation generation, in a flow in which the back-
bone is provided by the open source Eclipse Modeling Framework (EMF) and
its metamodeling, model-to-model and model-to-code transformation capabili-
ties. We provide system traceability from DOORS requirements to SysML design
elements and system-level tests, and viceversa. In our process, the functional ar-
chitecture is developed separately from the execution platform and later merged
with it, according to the PBD paradigm. The development of the models for
the execution platform revealed inadequacies and limitations of the standard
MARTE profile, which was suitably extended and for which a new release that
addresses the concerns regarding the communication modeling is strongly ad-
vocated. In our approach, almost all MIL-STD-498 compliant documentation is
automatically generated from system models. Similarly, on selected case studies,
about 90 percent of the target code and firmware implementations are gener-
ated from models with substantial savings. Behavioral code is generated from
Simulink models, while infrastructure, communication code and tasking code is
developed from SysML models and Ecore models, processed by Acceleo scripts.
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