
Undoing the Task: Moving Timing Analysis back to Functional Models

Marco Di Natale
Scuola Superiore S. Anna, email: marco@sssup.it

Haibo Zeng
McGill University, email: haibo.zeng@mcgill.ca

The real-time systems community has traditionally con-
sidered tasks or jobs (from the operating system concept
of thread) as the units for the analysis model. With time,
more complex task models have been created to represent
conditional execution (branching), precedence constraints,
and an increasingly complex model of time dependencies,
from the multiframe model until the most recent extended
digraph model. In the past, research works have explored the
benefits of breaking the task structure to enforce a different
management for subsets of the task execution time (for ex-
ample, by restricting preemption, or changing the execution
priority). Examples are the dual priority scheduling [3] and
the non-preemption sections at the end of the task [4].

In the meantime, the industrial world is moving away
from the traditional manual programming to adopt model-
based design. The threads (as concurrent units of execution,
managed by the operating system) are in the background,
and functional models, such as dataflows or networks of
synchronous blocks, including extended finite state machines
are the modeling entities. The task (or threads) model
becomes an intermediate artifact, and the timing analysis be-
comes part of a synthesis problem. The problem constraints
are the semantic properties of the functional model that
need to be preserved, and the task model must guarantee a
correct implementation that is feasible and memory effective
or time-robust.

I. FUNCTIONAL MODELS

Most functional models in use today are built on a
synchronous reactive (SR) semantics. For simplicity, we
restrict to discrete-time models. The system is a network of
functional blocks bj . Blocks can be of two types. Regular
blocks process a set of (discrete time) input signals at times
that are multiples of a period Tj , which is in turn an integer
multiple of a system-wide base period Tb (the model could
be extended to sporadic activations). We denote inputs of
block bj by ij,p (ij as vector) and outputs by oj,q. At all
times kTj the block reads the signal values on its inputs and
computes two functions: an output update function oj =
fo(ij , Sj) and a state update function SNew

j = fs(ij , Sj),
where Sj (SNew

j) is the current (next) state of bj . Often,
the two update functions can be considered as one oj ,
SNew
j = fu(ij , Sj). For timing analysis, the worst execution

time of the update function is estimated as γj .

State machine (SM) blocks can have multiple activation
events ej,v (as shown in the right hand side of Figure 1
with two events of period 2 and 5). At any integer multiple
of one of the events’ periods kTj,v , an update function is
computed depending on the current state, the subset of input
events that are active and the set of input values. Update
functions are typically extended by allowing the execution of
generic functions whenever a given event is active on a given
state. When multiple events are active, an order is provided
to give some events (for the given state) precedence over
others (thereby guaranteeing determinism). This is typically
summarized in a graph representation as in the right side of
Figure 1. The figure represents an SM with two events with
periods 2 and 5 and the corresponding possible activation
times and actions.

In the case of a state machine block, it pays off to
identify the worst-case execution time associated to each
update/action for each state, event and set of input values.
The structure of the state machine constrains which up-
date/actions can occur in the worst case within a given time
interval (for details refer to [2]). The procedure to calculate
the request and demand bound functions for state machines
is similar to those used for digraph task models. For the
example of Figure 1, the worst-case sequence of actions is
defined by the state graph (which transitions are possible
out of which state). Also, a trivial solution consists in an
implementation with a single task running at the greatest
common divisor of the events periods, but different task
models may be defined.

If two blocks bi and bj are in an input-output relationship
(one of the outputs of bi is the input of bj , and the output
of bj depends on its input), there is a communication link
between them, denoted by bi → bj . Let bi(k) represent
the k-th occurrence of block bi (belonging to the set of
time instants

∪
v kTi,v if a state machine block, or kTi if

a standard block), then a sequence of activation times ai(k)
is associated to bi. Given t ≥ 0, we define ni(t) to be the
number of times that bi has been activated before or at t.

In case of a link bi → bj , if ij(k) denotes the input of
the k-th occurrence of bj , then the SR semantics specify
that this input is equal to the output of the last occurrence
of bi that is no later than the k-th occurrence of bj , i.e.,
ij(k) = oi(m), where m = ni(aj(k)). This implies a partial
order in the execution of the block functions (different from
the precedence constraints assumed in task models). The

top timeline on the left of Figure 1 illustrates the execution
of a pair of blocks with SR semantics. The horizontal axis
represents time. The vertical arrows capture the time instants
when the blocks are activated and compute their outputs
from the input values. In the figure, it is ij(k) = oi(m).

1

7 9

S2

S1

e

e

e

e

i

i

e e

o

o

21

2

1 1

2

e

0 2 4 5 6 81

S3

2

2

2

2

5

3/ {action ; o }

2

2
/ {action ; o }

1

 / {action ; o }2

1 1

/ {action ;o }

1 / {action ; o }

4

3

ufuf j j
time

b i jb

o i (m) o i (m+1)

o i (m) o i (m+1)ji (k)
time

ji (k)

1

1
0.25

0.2
2

0.1 2

0.15

0.3

Figure 1. input-output relationship among blocks (left) / state machine
and activation events (right)

The update functions and their action extensions are
executed by program functions (or lines of code) executed
by a task, thereby providing the level of granularity that
can be leveraged to improve schedulability (for example,
by disabling preemption). This makes the task structure a
design artifact or objective, rather than the starting point.

The function-to-task mapping consists of a relation be-
tween a block update function (or each one of them in the
case of an FSM block) and a task, and a static scheduling
(execution order) of the function code inside the task. The
i-th task is denoted as τi. M(fi,k, p, n) indicates that the
function fi,k of block bi is executed as the n-th segment of
code in the context of τp.

II. THE SYNTHESIS PROBLEM

The stage of the design process in which the functional
model is mapped into a task (thread) model is the starting
point of several optimization problems, including how to
map functions into tasks, how to assign the execution
order of functions inside tasks, how to assign the task
parameters (priority, deadline, offset) to guarantee semantics
preservation and schedulability, how to assign scheduling
attributes to functions (including preemptability and pre-
emption threshold) and even how to design communication
mechanisms that ensure flow preservation while minimizing
the amount of memory used.

The bottom-left side of Figure 1 shows the possible prob-
lems with flow preservations in multi-task implementations.
The writer finishes its execution producing oi(m). If the
reader performs its read operation before the preemption by
the next writer instance, then (correctly) ij(k) = oi(m).
Otherwise, it is preempted and a new writer instance pro-
duces oi(m+1). In case the read scheduling is delayed, the
reader reads oi(m+ 1), in general different from oi(m).

The correct set of values may be provided to the reader by
enforcing an execution order by the scheduler or by using
a suitable communication mechanism (such as an instance

of wait-free communication), with the associated memory
overhead.

The mapping of functional blocks into tasks, the configu-
ration of the task model, and the selection of the mechanisms
for the implementation of the communication over ports
(protecting against data inconsistency and possibly flow
semantics violations) have a large impact on the performance
of the system. The selection of the communication mecha-
nism and the protocol to protect state variables leverages
tradeoffs between time overhead for the execution of the
protocol, memory required for the implementation of the
mechanism, and possible blocking time. For implementation
on single-CPU architecture platforms, solutions have been
proposed (not exhaustively, many problems are still open).

Examples of problems that are open are the following:
Given a system composed of multiple communicating state
machine blocks and dataflow blocks to be executed onto a
multicore platform, find the mapping of the state machine
actions and block reactions onto a suitable set of tasks, the
placement of such tasks onto the cores and the assignment
of activation offsets and priorities to tasks such that the
partial order of execution defined by the functional model
semantics is preserved and each block processes its inputs
and computes its next state and output in time for the
next execution of the follower blocks. As starting point,
a discussion on possible task implementations for a single
state machine block is provided in [1] and the time analysis
of finite state machine actions, implemented by a single
task (with similarities to the analysis of generalized digraph
models [5]) is discussed in [2].

However, other (possibly) simpler problems also exist. one
example is the following: define the set of tasks that can
provide an implementation to a network of block actions in a
multicore platform, with the assignment of task priorities and
possibly activation offsets, and the assignment of preemption
thresholds to actions inside the tasks (to limit preemptability)
in such a way that the implementation is correct and the use
of memory (for stack and communication) is minimized.

REFERENCES
[1] M. Di Natale and H. Zeng, “Task implementation of syn-

chronous finite state machines,” in Proc. the Conference on
Design, Automation, and Test in Europe, 2012.

[2] H. Zeng and M. Di Natale, “Schedulability Analysis of Peri-
odic Tasks Implementing Synchronous Finite State Machines,”
to appear in Proc. 23rd Euromicro Conference on Real-Time
Systems, 2012.

[3] R. Davis and A. Wellings, “Dual priority scheduling,” in Proc.
the 16th IEEE Real-Time Systems Symposium, 1995.

[4] M. Bertogna, G. Buttazzo, and G. Yao, “Improving feasibility
of fixed priority tasks using non-preemptive regions”, in Proc.
the 32th IEEE Real-Time Systems Symposium, 2011.

[5] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The digraph real-
time task model,” in Proc. 16th IEEE Real-Time and Embedded
Technology and Applications Symposium, 2011.

