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Abstract—The adoption of AUTOSAR in the development
of automotive electronics can increase the portability and
reuse of functional components. Inside each component, the
behavior is represented by a set of runnables, defining reactions
executed in response to an event or periodic computations.
The implementation of AUTOSAR runnables in a concurrent
program executing as a set of tasks reveals several issues and
trade-offs because of the need to protect communication and
state variables, to guarantee deadlines and to preserve the flow
semantics of the model and the objective of using the least
possible amount of memory. We discuss some of these tradeoffs
and options and outline a problem formulation that can be used
to compute the solution with minimum memory requirements
executing within the time constraints.

I. INTRODUCTION

The AUTOSAR development partnership has been created
to develop an open industry standard for automotive software
architectures, including the definition of components and
their interface. In AUTOSAR, the functional architecture of
the system is a collection of SW Components cooperating
through their interfaces on a conceptual framework called
Virtual Functional Bus or VFB. Components interfaces are
ports for data-oriented or service-oriented communication.
In the first case (of type Send-Receive), the port represents
(asynchronous) access to a shared storage in which one
component may write into and others may read from. In the
case of service-oriented communication, a client component
may invoke the services of a server component.

The behavior of each AUTOSAR component is repre-
sented by a set of runnables, procedures that can be executed
in response to events, such as timer activations (for periodic
runnables), or data writes on ports, or other application
signals. In this work, we restrict to runnables that are
activated in response to periodic timer events.

Runnables may need to update as well as use state vari-
ables for their computations, which requires exclusive access
(write/read) to such state variables. In AUTOSAR these
variables are labeled as InterRunnableVariables and can only
be shared among runnables belonging to the same compo-
nent. Of course, (data) interactions among components occur
when runnables write into and read from interface ports.
When communicating runnables are mapped into different
tasks that can possibly preempt each other, the variables
implementing the communication port need to be suitably
protected to ensure consistency of the data.

The implementation of runnables consists of the code
implementing the functionality. With respect to scheduling,
the runnables code is executed by a set of threads in a task
and resource model. Runnables from different components
may be mapped into the same task and must be mapped
in such a way that ordering relations are preserved. In the
end, the mapping of runnables into tasks takes the shape of
Figure 1.

In this paper, we deal with timing issues at the local
level, that is, for components mapped into tasks executing
on the same CPU. The mapping of runnables into tasks,
the configuration of the task model, the selection of the
right mechanisms for the implementation of the commu-
nication over ports (protecting against data inconsistency
and possibly flow semantics violations) has a large impact
on the performance of the system and defines its correct
implementation. Current tools do not leverage any timing
information in the definition of the mapping. As such, they
often use general rules for the mapping of runnables and
the definition of the communication mechanisms that may
easily result in inefficient implementations. One example
is a pipeline of runnables exchanging activation signals.
Such runnables could be easily mapped into a single task,
provided they are executed in the right order. However,
existing tools [2] translate this model into a set of tasks,
each one sending an activation event to its successor, with
unnecessary context switch overhead.

Of course, context switch overheads should be considered
when defining the mapping, and the reduction of such
overheads is among the main drivers for the mapping scheme
presented in [9], but many other design parameters come
into play. An initial discussion of the possible options was
provided in [6]. To summarize, the mapping of runnables
into tasks and the assignment of priorities to tasks de-
termine the task and runnable response times against the
deadlines. However, preemption can be selectively disabled
or preemption thresholds can be used for the purpose of
improving schedulability of lower priority threads [13] [11]
and, for task sets with arbitrary offsets, [7] to optimize
the requirements of system memory for stack space. Al-
gorithms to optimize the assignment of preemption thresh-
olds for minimizing the use of stack space are presented
in [11]. In [14] a functional model is considered in which
runnables are already mapped into tasks and the priority
of the tasks is given, and preemption thresholds can be
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Figure 1. Mapping of runnables into tasks.

assigned to runnables. The maximum amount of blocking
that can be tolerated by each runnable is computed and the
stack requirement is minimized by iteratively increasing the
preemption threshold of the runnables as much as possible,
starting from those belonging to the second-highest priority
task, as long as the task set remains schedulable, with an
algorithm very similar to the one in [11]. When scheduling
offsets are known, they can be exploited to further improve
the analysis and the definition of the threshold levels, as
discussed in [8] [3].

Of course, disabling preemption comes at the price of
possible task blocking and must be carefully selected to
allow high priority tasks to execute within their deadlines.
Also, in the selection of the communication mechanism and
the protocol to protect state variables several options are
possible, which typically result in tradeoffs between time
overhead for the execution of the protocol, memory required
for the implementation of the mechanism and possible
blocking times.

In this work, using the AUTOSAR model and definitions,
we consider the case in which the runnable to task mapping
and the task priority assignment are given, and present a
scheme for the optimal selection of

• the execution order of runnables mapped into a task
• the assignment of preemption thresholds to runnables
• the selection of the appropriate mechanism for pro-

tecting communication variables and state variables
among a set of possible choices that includes pre-
emption disabling, lock-based methods (priority ceiling
semaphores), and wait-free methods.

within constraints defined on the application as
• deadlines for tasks and runnables
• the (optional) need to preserve the flow semantics on

communication links
with the objective of minimizing the use of RAM memory
for stack space and the implementation of communication.

II. SYSTEM MODEL: ASSUMPTIONS AND NOTATION

An AUTOSAR model of execution is represented by
a Directed Graph G = {V,E}, where V is the set of
vertices, representing the runnables, and E the set of edges
or links between runnables. Such a graph will have inputs

from sampling, source and constant blocks, representing the
signals from the controlled system or plant. At the other
end of the graph, the output signals are the result of the
controller’s computations. We assume an implementation on
a single processor where concurrent tasks are scheduled by
fixed priority. The notation is the following:
ρ = {ρ1, . . . , ρ|ρ|} is the set of runnables. A runnable ρi

reads from a set of input ports, denoted as E in
i , and a set

of output ports, denoted as Eout
i . Each runnable is activated

periodically, with period ti, which is also the sampling
period for the signals on the input ports. The signals are
processed by the runnable and the result of the computation
is a set of signal with the same rate, produced on the output
ports. We also denote the set of data ports accessed by ρi as
Ei = E in

i

∪
Eout
i . Each runnable is characterized by a worst-

case stack requirement σi (in bytes) needed for its execution.
E = {ε1, . . . , ε|E|} is the set of shared resources. We

consider the case of one-to-many communication: a shared
resource εi has a writer runnable, denoted as ρW(εi), and
a set of reader runnables ρR(εi). We also denote the set
of readers with higher (lower) priority than the reader
ρW(εi) as ρHR(εi) (ρLR(εi)). Mi denotes the size of the data
communicated over εi.

The execution time of a runnable ρi is characterized by
(Ci,0, Ci,1, ..., Ci,|E in

i |, ..., Ci,|E in
i |+|Eout

i |), where
• |E in

i | is the number of execution segments of ρi reading
from input ports;

• |Eout
i | is the number of execution segments of ρi writing

into output ports;
• Ci,0 is the total worst case execution time of the normal

execution segments;
• Ci,j , j = 1, ..., |E in

i | is the worst-case execution time of
the critical section on the j-th input port;

• Ci,|E in
i |+j , j = 1, ..., |Eout

i | is the worst case execution
time of the critical section on the j-th output port.

We also use Ci(εk) to denote the worst case execution
time of ρi accessing the input/output port εk, ∀εk ∈
E in
i

∪
Eout
i . The worst case execution time ci of the runnable

ρi also depends on the time overhead of the mechanism used
to protect the shared resources.
T = {τ1, . . . , τ|T |} is the set of tasks. Each task τi has

a priority Πi and an activation period Ti. The lower the



number, the higher the priority. Each task is periodic with
an offset (equal to zero, thus all tasks start at the same time
instant t = 0). It is also characterized by si,0, a quantity
of memory that is required for the stack space to switch
between its runnables.

A mapping relation m(ρi, τj , k) may be defined between
a runnable ρi and a task τj meaning that the code imple-
menting the runnable ρi is executed in the context of task τj
with ordering index k. A mapping relation is only possible
if the execution period of ρi is an integer multiple of τj ,
i.e. ti = ki · Tj for some integer ki. The deadline of the
ρi is defined as the period of the task τj it is mapped to,
thus Di = Tj , which is no greater than the period ti of ρi.
The priority order of runnables is inherited from the priority
order of the tasks they are mapped into, the priority πi of
runnable ρi is inherited from the priority of the task τh it
is mapped to, i.e. πi = Πh. If two runnables are mapped
to the same task, the mapping order index must match the
partial order in the execution of the runnables.

Besides the normal priority πi, a runnable ρi is also
assigned a preemption threshold γi with πi ≥ γi [13]. When
the runnable is activated, it is inserted in the ready queue
inside the task it is mapped to with the normal priority.
When the runnable starts execution, its priority is raised to
the preemption threshold level.

As summarized in [6], there are four different mecha-
nisms, all of which can guarantee data consistency, but only
two of them ensure flow preservation.

• M1: Demonstrating absence of preemption. For any
pair of runnables ρi and ρj mapped to different tasks,
with priority πi > πj , we denote the minimum offset
from the activation of ρi to the following activation of
ρj as oi,j . If the worst case response time ri of ρi is no
greater than oi,j , then there can be no preemption from
ρj to ρi. This can be applied for both data consistency
and flow preservation.

• M2: Disabling preemption. Preemption can be disabled
for runnables with negligible time and memory over-
head. However, this will result in a worst case blocking
time (for other higher priority runnables) equal to
the duration of the longest runnable. However, this
mechanism alone cannot guarantee flow preservation
as it has no awareness on the writer instance the reader
is reading from (which is the key for flow preservation).

• M3: Wait-free communication buffers. For a shared
resource εi, suppose the number of lower priority reader
tasks is nLR

i . We denote the number of additional
buffers needed for the wait-free communication im-
plementation as ni. As in [12] [5], the higher priority
readers use one buffer, and all the others require, in the
worst case, a total of nLR

i +1 buffers. Thus, if there is
any higher priority reader, then ni = nLR

i +2; otherwise
ni = nLR

i +1. This mechanism can be applied for both
data consistency and flow preservation.

The implementation of the wait-free method also results
in time overhead. At activation time, the writer needs
to find a free buffer to store the data it will produce
at runtime. In [5] a constant time implementation is
presented. We denote this overhead as H1. Since the
buffer selection code is executed by the kernel at
activation time, it provides interference to all tasks in
the system. At execution time, the writer simply writes
the data in the free buffer it has been assigned at
activation time with no time overhead. Each reader is
similarly assigned at activation time the buffer position
from which it reads. The timing overhead is denoted as
H2. The time overhead at execution time is assumed to
be negligible.

• M4: (Immediate) Priority Ceiling semaphores. The
other possibility is the use of immediate priority ceiling
semaphores. In this case, the timing overhead is a
constant H3, and the memory overhead is zero. The use
of priority ceiling semaphores also introduces blocking
time in the measure of the largest critical section
executed by a lower priority task on a resource also
used by the task itself or a higher priority one. This
mechanism does not apply to the purpose of flow
preservation.

III. DEFINITION OF THE FEASIBILITY REGION

The design space must be constrained to contain only
the feasible solutions (for which runnables complete before
their deadlines). This requires an efficient formulation of the
feasibility region as well as other time constraints that apply
to runnable completion times in the mixed integer linear
programming (MILP) framework.

The original response time analysis for task sets scheduled
with preemption threshold was proposed in [13] and later
corrected in [10]. It considers all q∗ instances in the busy
period of level πi. This fact, together with the fact that the
number q∗ of such instances is not known a-priori, results
in excessive complexity for our purposes. Thus, we look
for lower and upper bounds to the region, corresponding,
respectively, to sufficient-only (pessimistic) and necessary-
only (optimistic) conditions for feasibility. We make use
of a method for the efficient encoding of schedulability
conditions in an MILP framework [15] [16].

Tasks are scheduled with two different modes. When
ready, they are scheduled with their priority, but as soon as
they start execution, they behave as if their priority is raised
to the preemption threshold. Accordingly, The analysis is
performed in two steps. First, the worst-case start time for
a generic task τi needs to be computed. According to [13],
the worst case start time Si of the first instance of τi can be
calculated iteratively by the following,

Si = Bi +
∑

j∈hp(i)

(1 +

⌊
Si

Tj

⌋
)Cj (1)



Once Si is computed, the worst case finish time Fi of the
first instance of τi is

Fi = Si + Ci +
∑

πj>γi

(

⌈
Fi

Tj

⌉
− 1−

⌊
Si

Tj

⌋
)Cj (2)

Unfortunately (as explained in [10]), the first instance
is not necessarily the one resulting in the largest response
time, but all instances in the busy period of level πi need to
be considered. Hence, the previous (1) and (2) need to be
changed as follows. The start time for the first q instances
in the busy period q = 0, 1, . . . , q∗ is computed as

Si(q) = Bi +
∑

j∈hp(i)

(1 +

⌊
Si(q)

Tj

⌋
)Cj + qCi (3)

correspondingly, the finish time of the q-th instance is

Fi(q) = Si(q)+Ci+
∑

πj>γi

(

⌈
Fi(q)

Tj

⌉
−1−

⌊
Si(q)

Tj

⌋
)Cj (4)

The worst-case response time of τi is computed as

Ri = max
q=0,...,q∗

{Ri(q) = Fi(q)− qTi}

where the largest index q∗ = ⌊Li

Ti
⌋ to be considered is the

number of instances in the level-i busy period Li, and Li

can be calculated by the following iterative formula

Li = Bi +
∑

j∈hp(i)
∪
{i}

⌈
Li

Tj

⌉
Cj

From (3) and (4), the amount of workload from higher
priority tasks before the completion of τi depends on the
finish time Fi as well as the start time Si.

The need to consider the first q∗ instances, together with
the fact that the number q∗ of such instances is not known
a-priori results in excessive complexity for our purposes.
Given that the linearization of the exact feasibility region
is probably exceedingly complex, we look for lower and
upper bounds to the region, corresponding, respectively, to
sufficient-only (pessimistic) and necessary-only (optimistic)
conditions for feasibility.

A sufficient condition for the schedulability of τi is that
τi is schedulable assuming it is fully preemptive, i.e., its
preemption threshold is the same as its priority.∧

τi∈Γ

∨
t∈Ii

Bi +
∑

j:πj≤πi

rbfj(t) ≤ t (5)

where rbfj(t) =
⌈

t
Tj

⌉
Cj denotes the request bound func-

tion of τj within the interval of length t. The set of points Ii
can be computed using the methods described in [15]. The
blocking time Bi needs to account for the use of preemption
thresholds and priority ceiling protocols.

A necessary condition for task τi to be schedulable is that
the first instance in the busy period is schedulable. In this
case, feasibility can be evaluated by computing the worst-
case start and finish times of the first instance, respectively.
Its linearization and simplification in MILP framework can
be found in [16].

The sufficient condition provides a much easier formula-
tion, but its use may easily result in a sub-optimal solution.
The necessary condition is definitely more complex, but the
small difference between the necessary and exact feasibility
regions (the average difference is 0.021%, and the maximum
is 6.1% for randomly generated task sets [16]) indicate
a very good chance that the solution obtained using the
necessary-only condition is also feasible with respect to the
exact test. In this work, we employ the heuristic that we first
use the necessary-only feasibility condition and check the
returned result against the exact test. If the result is feasible,
then it is also optimal. Otherwise, the sufficient condition is
used in the formulation and we settle with a possibly sub-
optimal solution.

IV. PROBLEM FORMULATION IN MILP

In this formulation, we consider that the runnable to
task mapping and task priority assignment are given. The
designers still has the freedom to decide the execution order
of runnables inside a task. We only focus on the problem of
guaranteeing data consistency (thus all four mechanisms can
be used) and leave the problem of flow preservation to future
work. We make use of a mixed integer linear programming
(MILP) formulation. An MILP program in standard form is:

minimize cTx
subject to Ax = b

x ≥ 0
(6)

where x = (x1, ..., xn) is a vector of positive real, integer,
or binary-valued decision variables. Constraints of the type
Ax ≤ b can be handled by adding a suitable set of variables.
MILPs can be solved very efficiently by a variety of solvers
such as CPLEX.

A. Constraints

We define a set of optimization variables associated to
runnables and tasks.
Execution order relation among runnables.

The priority order of runnables is inherited from the
priority order of the tasks they are mapped into, the priority
πi of runnable ρi is inherited from the priority of the task τh
it is mapped to, i.e. πi = Πh. If two runnables are mapped
to the same task, the mapping order index must match the
partial order in the execution of the runnables. For each pair
of runnables ρi and ρj mapped to the same task, we define
an execution order relation pi,j between them. pi,j is 1 if ρi



has a smaller execution index than ρj ; otherwise, it is 0.

∀ρi ̸= ρj ,m(ρi, τk, l) = m(ρj , τk, n) = 1,

pi,j =

{
1 if l < n
0 otherwise

(7)

The execution order is subject to the antisymmetric and
transitive properties of the execution order relation

pi,j + pj,i = 1
pi,j + pj,k − 1 ≤ pi,k

(8)

Preemption threshold assignment.
Once it starts execution, the preemption threshold of a

runnable is used to check whether other runnables can
preempt it. For each pair ρi, ρj , ρi cannot preempt ρj if
and only if πi ≥ γj . A set of binary variables is used to
encode this condition

qi,j =

{
1 if πi ≥ γj
0 otherwise (9)

Also, if a runnable ρi has priority higher than or equal to
ρj , then ρj can not preempt ρi.

∀j : πj ≥ πi, qj,i = 1 (10)

Obviously if ρi and ρj are mapped to the same task (thus
πi = πj), they can not preempt each other.

If ρi cannot preempt ρj , then any runnable ρk with priority
≥ πi cannot preempt ρj , too; conversely, if ρi can preempt
ρj , any runnable with priority ≤ πi can preempt ρj .

∀k : πk ≥ πi, qk,j ≥ qi,j
∀k : πk ≤ πi, qk,j ≤ qi,j

(11)

Absence of preemption by timing analysis.
For any pair of runnables ρi and ρj mapped to different

tasks (with different priority πi > πj), we use a binary
variable to denote whether the minimum offset oi,j from
the activation of ρi to the following activation of ρj allows
to demonstrate that ρj cannot preempt ρi.

∀ρi, ρj with πi > πj

zi,j =

{
1 if ri ≤ oi,j
0 otherwise

(12)

If oi,j ≥ Di, then the feasibility of ρi implies the absence
of preemption. In this case, we can set zi,j to be 1 and just
enforce the schedulability of ρi with respect to its deadline.

∀ρi, ρj with πi > πj and oi,j ≥ Di, zi,j = 1 (13)

No preemption between runnables.
Preemption cannot happen when:
• two runnables are mapped into the same task;
• preemption thresholds are assigned in such a way that

they cannot preempt each other;
• time analysis shows there can be no preemption.

The first condition is a special case of the second. Both are
captured by the binary variable qi,j .

For each pair of runnables ρi and ρj with priority πi >
πj , we use an additional set of binary variables to indicate
that ρj does not preempt ρi because of: 1) timing analysis
(zi,j = 1); 2) disabling preemption by preemption thresholds
(qj,i = 1).

∀ρi, ρj with πi > πj

hi,j =

{
1 if ri ≤ oi,j or qj,i = 1
0 otherwise

(14)

hi,j should satisfy a set of constraints by definition

hi,j ≤ zi,j + qj,i
hi,j ≥ zi,j , hi,j ≥ qj,i

(15)

Semaphore locks.
The set of shared resources can be protected by immediate

priority ceiling semaphores. For each resource εk, we define
a binary variable lk to indicate whether or not it is guarded
by a semaphore lock.

lk =

{
1 if εk is protected by semaphore lock
0 otherwise (16)

Wait free methods.
For each link εk, we define a binary variable to indicate

the use of wait-free communication

wk =

{
1 if εk is protected by wait free method
0 otherwise (17)

For each link between the writer ρi ∈ EW
k and the low

priority reader ρj ∈ ELR
k , the wait free buffer can be avoided

if there is no preemption between ρi and ρj (hj,i = 1). We
define the set of binary variables

∀ρi ∈ EW
k , ρj ∈ ELR

k

fk,i,j =

{
1 if (ρi, ρj) is protected by wait free method
0 otherwise

(18)
wk and fk,i,j should be consistent with their definitions

fk,i,j ≤ 1− hj,i, fk,i,j ≤ wk (19)

Providing data consistency.
As discussed, there are four mechanisms to guarantee the

data consistency in the runnable to task implementation.
Thus for any shared resource εk ∈ E , we have the

following constraint

∀ρi ∈ ρW(εk), ρj ∈ ρLR(εk), fk,i,j + lk ≥ 1− hj,i

∀ρi ∈ ρW(εk), ρj ∈ ρHR(εk), wk + lk ≥ 1− hi,j

(20)
For efficiency issues considering timing and overhead, we

only need to choose one mechanism between wait-free and
semaphore locks

wk + lk ≤ 1 (21)



If there is no preemption between the writer and any of
the readers, then wait-free buffers or semaphore locks are
not needed

wk+ lk ≤
∑

ρi∈ρW(εk),ρj∈ρLR(εk)

(1−hj,i)+
∑

ρi∈ρW(εk),ρj∈ρHR(εk)

(1−hi,j) (22)

Non-preemption group.
The set of runnables can be partitioned into non-

preemption groups by assigning a preemption threshold or
by proving that there is no preemption between them. For
each pair of runnables ρi and ρj mapped into different tasks,
we define a variable gi,j equal to 1 if ρi and ρj ar in the
same non-preemption group, and 0 otherwise.

gi,j =

{
1 if ρi and ρj are in the same group
0 otherwise (23)

ρi and ρj can only be in the same non-preemption group
if it is proven that there is no preemption between them or
the preemption threshold is assigned in such a way that they
cannot preempt each other.

∀i, j with πi > πj , gi,j ≤ hi,j (24)

The non-preemption group variable is subject to the
symmetric and transitive properties

gi,j = gj,i
gi,j + gj,k − 1 ≤ gi,k

(25)

Execution time of runnables.
The worst case execution time of the runnable ρi is also

dependent on the mechanism to protect the shared resources.
Different mechanisms require different time overhead. For
each runnable ρi, we define c′i(εk) as the execution time
considering the time overhead on each link εk ∈ Ei. It is

c′i(εk) = Ci(εk) +H3 · lk (26)

The total execution time of ρi is now

ci = Ci,0 +
∑
εk∈Ei

c′i(εk)

= Ci,0 +
∑
εk∈Ei

Ci(εk) +H3

∑
εk∈Ei

lk
(27)

Blocking time.
Each runnable ρi can only block once, with a worst-

case blocking time equal to the maximum execution time
of a lower priority runnable ρj with a preemption threshold
γj ≤ πi, and the largest critical section on a shared resource
protected using priority ceiling and shared by a lower- and
a higher-than-or-equal-priority tasks.

Bi = max
j:πi<πj

(qi,j · cj , max
εk∈Ei

lk · c′j(εk)) (28)

Note that lk · lk = lk, the second item lk · c′j(εk) in (28)
can be linearized as lk ·Cj(εk) + lk ·H3. However, the first

item qi,j · cj needs to be linearized by adding an additional
set of binary variables

∀ρi, ρj with πi < πj , εk ∈ Ej
qli,j,k =

{
1 if qi,j = 1 and lk = 1
0 otherwise

(29)

The variables qli,j,k, qi,j and lk should satisfy

qi,j + lk − 1 ≤ qli,j,k
qli,j,k ≤ qi,j , qli,j,k ≤ lk

(30)

Thus (28) can be written in a set of MILP constraints as

∀j : πi < πj , Bi ≥ qi,j · Cj,0 + qi,j
∑

εk∈Ej

cj(εk) +H3

∑
εk∈Ej

qli,j,k

∀εk ∈ Ej , Bi ≥ lk · cj(εk) + lk ·H3

(31)
Kernel level timing overhead.

Wait free methods require the execution of several pro-
cedure at task activation time, with the highest priority in
the system. These procedures are executed at the activation
time of the runnables, with their period.

The request bound function during the time interval t of
these kernel level overhead for shared resource εk can be
formulated as

rbf0(εk, t) =
∑

ρi∈ρW(εk)

(wk ·
⌈
t

ti

⌉
H1

+
∑

ρj∈ρLR(εk)

fk,i,j ·
⌈
t

tj

⌉
H2 +

∑
ρj∈ρHR(εk)

wk

⌈
t

tj

⌉
·H2)

(32)
The total request bound function for all the shared re-

sources is
rbf0(t) =

∑
εk∈E

rbf0(εk, t) (33)

Real-time Schedulability.
To verify the schedulability of ρj , we check whether there

exists a point t ∈ Ij such that the sum of the possible
execution requests within the time interval t is no larger
than the available CPU time. The possible execution requests
include:

1) Bj : worst case blocking time;
2) rbf0(t): kernel-level timing overhead;
3) rbfj(t): the computation time cj of ρj (as t ≤ Tj);
4) rbfi(t),∀i with πi < πj : the sum of the interferences

from blocks ρi with higher priority, which is∑
i:πi<πj

⌈ t
ti
⌉ · ci (34)

5) rbfi(t),∀i with πi = πj : the sum of the interferences
from blocks ρi mapped to the same task, which is



∑
i:πi=πj

pi,j⌈
t

ti
⌉ · ci (35)

However, in (35) it contains the product of two variables
pi,j and ci. By (27), ci is a linear function of yk and lk for
each input and output link εk of ρi. We define the following
two variables to make the constraint (35) linear:

∀ρj ̸= ρi, εk ∈ E in
i

∪
Eout
i

vi,j,k =

{
1 if pi,j = 1 and yk = 1
0 otherwise

(36)

vi,j,k should satisfy the following constraints:

pi,j + yk − 1 ≤ vi,j,k
vi,j,k ≤ pi,j , vi,j,k ≤ yk

(37)

Similarly,

∀ρi ̸= ρj , εk ∈ E in
i

∪
Eout
i

wi,j,k =

{
1 if pi,j = 1 and lk = 1
0 otherwise

(38)

wi,j,k should satisfy the following constraints:

pi,j + lk − 1 ≤ wi,j,k

wi,j,k ≤ pi,j , wi,j,k ≤ lk
(39)

Stack usage.
The stack usage of the system includes:
• the fixed stack usage si,0 of each task τi;
• the maximum possible stack usage of runnables be-

cause of preemption.
We order the runnables according to their decreasing

usage of stack:
o : ρi → N+ (40)

such that o(ρi) < o(ρj) ⇒ σi ≥ σj .
We define the following binary variable

ui =

 1 if ρi has the largest stack size
in the non-preemption group

0 otherwise
(41)

ui is dependent on gi,j and should satisfy

1−
∑

j:o(ρj)≤o(ρi)

gi,j ≤ ui

ui ≤ 1− gi,j , ∀j : o(ρj) ≤ o(ρi)

(42)

The maximum stack usage is

s =
∑
τi∈T

si,0 +
∑
ρi∈ρ

σi · ui (43)

Memory constraints.

The memory cost of the additional wait free buffers for
resource εk is

nk =


∑

ρi∈ρW
k ,ρj∈ρLR

k

fk,i,j + 2wk if ρHR
k ̸= ∅∑

ρi∈ρW
k ,ρj∈ρLR

k

fk,i,j + wk if ρHR
k = ∅

(44)

When adding the base memory requirements of the appli-
cation MA, the overall required memory, including the stack
used by runnables and tasks is

m = MA +
∑
εk∈E

Mk · nk + s (45)

B. Objective Function

In addition to satisfying the constraints, we can also
minimize the memory usage considering stack and overhead
introduced by mechanisms to ensure data consistency and
timing determinism.

minimize m (46)

V. EXPERIMENTAL RESULTS

We implemented our MILP approach in AMPL (A Math-
ematical Programming Language) and used CPLEX as the
solver. The experiments are performed on an industrial case
study consisting of a fuel injection embedded controller. The
case study is a simplified version of the full control system
(for confidentiality reasons) with 90 runnables (out of 200
in the real system).

The runnables are mapped into 16 tasks, as shown in Table
I. The execution times of some functions are provided as
part of the case study. The others are assigned to achieve
a system utilization of 94.1%, which is close to the values
found in real systems of this type.

Task Period(ms) Priority Ci(µs) NW NLPR NHPR Stack (bytes)
τ0 1000 6 1500 4 0 0 512
τ1 1000 7 5000 4 3 0 704
τ2 8 3 148 4 0 0 128
τ3 4 0 208 4 0 1 256
τ4 8 4 100 3 0 2 608
τ5 1000 15 131100 3 2 0 640
τ6 1000 11 150000 3 2 1 768
τ7 8 1 340 4 1 12 608
τ8 5 5 5 6 1 1 448
τ9 1000 12 110000 3 14 2 768
τ10 1000 14 110000 3 13 2 640
τ11 4 2 39 2 4 18 288
τ12 12 9 820 2 10 6 1024
τ13 50 8 1000 0 0 0 160
τ14 100 10 9846 1 11 6 544
τ15 1000 13 110000 0 29 4 736

Table I
LIST OF TASKS IN THE AUTOMOTIVE FUEL INJECTION APPLICATION

The first three columns of Table I are task indices, periods
and priorities. Periods and priorities are taken from the



automotive application. The runnables are executing at 7
different periods (in ms) in the example: 4, 5, 8, 12, 50,
100 and 1000. Columns 5, 6, and 7 represent the numbers
of writers (output ports), lower-priority readers (input ports
connected with higher-priority writers), and higher-priority
readers (input ports connected with lower-priority writers)
respectively that the task implements. In the information
available from the real application, the communication
topology was only defined as communication flows among
the components. Based on these, we made assumptions
about the estimated communication among runnables and
finally among tasks, thereby completing the definition of the
communication topology. The communication link delays
are assumed to be one from low-priority writers to high-
priority readers and zero otherwise. There are 46 writers and
145 readers (90 lower-priority readers and 55 higher-priority
readers) in the derived example.

Using the formulation corresponding to the reduced set
presented in this paper, the optimal solution can be found
by the MILP solver in 14677 seconds, or about 4 hours.
Our optimization framework requires 69% less memory to
guarantee data consistency compared to commercial tools
such as [2]. The reason is that we selectively disable
the preemption among runnables while still guarantee the
system’s real-time schedulability, which enables the sharing
of stack space.

VI. CONCLUSION

We presented an algorithm for optimizing the implemen-
tation of AUTOSAR runnables in a concurrent program
executing as a set of tasks. We showed that there is an oppor-
tunity for optimizing the memory requirements (including
stack usage and communication buffers) when implementing
a model. The solution is based on an MILP optimization
framework that explores the design/implementation space
while trying to share the stack and avoid additional com-
munication buffers whenever possible. We plan to propose
fast heuristics and demonstrate that they yield a solution
with close to minimal memory usage while satisfying real-
time schedulability constraints. We also plan to consider the
requirement that semantic properties of the functional model
need to be preserved.
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