
Optimizing the Implementation of Real-Time Simulink Models onto Distributed
Automotive Architectures

Gang Hana, Marco Di Nataleb, Haibo Zengc, Xue Liuc, Wenhua Doua

aNational University of Defense Technology, Changsha, China
bScuola Superiore S. Anna, Pisa, Italy
cMcGill University, Montreal, Canada

Abstract

Future automobiles will support an increasing number of complex, distributed functions such as active safety and X-by-wire. In
a model-based design flow, system properties can be verified in advance on function models, by simulation or model checking.
To ensure that the properties still hold for the final deployed system, the implementation into software tasks and communication
messages should preserve the semantics properties of the model. FlexRay offers deterministic communication and can be used
to provide distributed implementations that are provably equivalent to models like those created from Simulink, by designing the
schedule to ensure the preservation of communication flows. In some cases, such a schedule is not feasible and the model should
be modified by adding communication delays. We provide a formulation of the FlexRay scheduling problem that computes the
optimal solution with respect to the number of additional delays when a flow-preserving implementation is not possible. The
aforementioned scheduling options are applied to an X-by-wire system and a case study with active-safety functions to highlight
tradeoffs between schedulability and additional functional delays.

Keywords: Design Optimization, Model-based Design, Real-Time Systems, Time-Triggered Networks, FlexRay

1. Introduction

Automotive electronics and software systems provide an in-
creasing number of complex, distributed and interdependent
functions, from the set of active safety features to the X-by-
wire functions. These functions share a set of common sen-
sor devices and preprocessing stages (including sensor fusion
and object detection) and drive a set of actuators (steer, brake,
suspensions, throttle) often under the supervision of arbitration
functions. The functions and the controls can be refined in a
top-down fashion or constructed bottom-up from component
models. To ease the daunting task of developing correct func-
tions with a fast time-to-market, the functions are developed
and validated using models and simulation tools like Simulink
from The MathWorks. The automotive industry together with
the avionic industry was the first to embrace model-based de-
sign to simulate the system functions, verify some properties of
interest, remove coding errors, and speed up the software de-
velopment process.

In a model-based design flow, correctness of systems can be
demonstrated by formal reasoning upon the models and their
desired properties. When exhaustive proof of correctness can-
not be achieved, the modeling language should support sim-
ulation and automated testing. Formal methods can be used to
guide the generation of the test suite and guarantee some degree
of coverage. All functional and non-functional constraints and
properties that are captured by the system-level and component-
level models must be propagated at each refinement step and, in
particular, when providing an implementation in software tasks

and communication messages. When a software implementa-
tion is generated, the designer should have control over the con-
ditions that guarantee the preservation of the model semantics
into its refinement. In addition, he/she should be aware of cases
in which a formally correct implementation is not possible be-
cause of scheduling infeasibility and define a new model that
can be feasibly scheduled.

FlexRay [1] is an automotive network communications pro-
tocol. It provides support for the transmission of time-
critical periodic messages in a static segment and priority-based
scheduling of event-triggered messages in a dynamic segment.
It offers the possibility of a deterministic communication and
can be used to define distributed implementations that are prov-
ably equivalent to synchronous reactive models like those cre-
ated from Simulink. The bandwidth of FlexRay is assigned ac-
cording to a time-triggered pattern. Clock synchronization, em-
bedded in the standard, ensures deterministic communication
at no additional cost. However, the low level communication
layers and the FlexRay schedule must be carefully designed to
ensure semantics preservation, especially when models include
subsystems executing at different rates. In this paper, we focus
on the static segment of FlexRay protocol, because it provides
a deterministic communication and is most likely to be used in
the future to support safety-critical applications [2].

1.1. Our Contributions

In this paper, we present possible solutions to the problem
of defining FlexRay schedules that preserve the semantics of
synchronous reactive models including those generated using

Preprint submitted to Journal of Systems Architecture July 16, 2013

Simulink and Stateflow. When the model behavior cannot be
preserved, the schedule can be defined to add known and deter-
ministic delays to the communication links. In this case, the de-
signer may trade performance for schedulability. We estimate
the impact of communication delays on feedback control per-
formances by simulation, and define an optimization procedure
that tries to find the schedulable solution with the minimum
performance loss because of added delays.

To the best of our knowledge, none of the existing work on
the scheduling optimization of FlexRay-based automotive sys-
tems (e.g. [3] and [4]) considers the requirement of preserv-
ing the semantics of synchronous reactive models. We formu-
late the problem in Mixed-Integer Linear Programming (MILP)
framework based on the previous work [3]. Because of the com-
plexity of the problem (formally, NP-completeness has been
demonstrated for a subset of our problem, the packing of signals
into slots [5]), the one-step MILP formulation cannot handle
very large systems. We provide divide-and-conquer techniques
to divide the problems in two subproblems of manageable sizes
and solve the sub-problems in cascade. We apply the proposed
two-step approach to two industrial case studies consisting of a
set of active safety functions and an X-by-wire system respec-
tively to demonstrate its effectiveness and efficiency.

The use of MILP (or in general mathematical programming)
has both advantages and possible disadvantages. The advan-
tages are the formulation in terms of a set of constraints and
metric function is mathematically (and unambiguously) de-
fined, and can be processed by an optimization solver leverag-
ing theory and implementation efforts that have been dedicated
for years to this field. Commercial solvers (such as CPLEX)
are very efficient and optimized for the purpose of dealing with
this type of problems. Second, an MILP formulation can eas-
ily accommodate additional constraints to integrate the fact that
parts of the design are inherited as legacy or cannot be modi-
fied. Finally, MILP solvers work incrementally in the solution
of mixed-integer problems and return a sequence of solutions
with increasing quality. Thanks to the duality theorem, at any
point in time the solver provides not only the current solution,
but also an upper bound estimate of the distance to the true op-
timum. The designer can stop the process at any time, when
a solution of sufficient quality is obtained. These advantages
come at some price (compared with heuristic search methods
or stochastic optimization). First, the problem constraints and
the metric function must be expressed such that the feasibility
region and the metric function are linear (or convex in the case
of convex optimization). In addition, in multi-criteria optimiza-
tion, the multiple optimization goals have to be combined into
a single linear function, with possibly less freedom than the so-
lution evaluation performed in a heuristic search. In our case,
an MILP solution was selected because the optimization goal is
related to a single aspect (the possible addition of delays) and
the linear formulation of constraints and the optimization met-
rics does not pose significant challenges. This, of course may
not be true for other problems.

The rest of the paper is organized as follows. Section 2 sum-
marizes the related work. Section 3 provides an introduction
to synchronous reactive models of computation and Simulink.

Section 4 defines the FlexRay scheduling problem and the fol-
lowing Section 5 discusses the consequences of scheduling de-
cisions on the functional behavior of the system. The formaliza-
tion of an optimization problem that tries to find the schedula-
ble solution with minimum delays is presented in Section 6. In
Section 7, different scheduling options with deterministic com-
munication delays are then examined for case studies consisting
of an X-by-wire and an active-safety automotive system. The
paper is concluded in Section 8.

2. Related Work

Synchronous Reactive (SR) models [6] are used for model-
ing control-dominated embedded applications. SR models are
characterized by the “synchronous assumption” or “logical time
execution”, which requires that the system completes the reac-
tion to an event before the occurrence of any other event. Syn-
chronous languages are implemented in the SCADE commer-
cial tool [7], as well as the very popular MATLAB/Simulink [8]
tool chain from The MathWorks. Both commercial toolsets
(SCADE and MATLAB/Simulink) allow modeling and simu-
lation of the system according to a synchronous reactive Model
of Computation (MoC). In addition, they offer automatic code
generators and an interface to verification tools such as the
plug-in from Prover [9] for SCADE and Design Verifier for
Simulink (also based on Prover technology).

Several research papers have defined a possible formal ap-
proach to the problem of semantics preservation upon mapping
of function onto architecture, at least in the case where the func-
tion is modeled using synchronous reactive MoC. Synchronous
models are based on the assumption that the system reaction
to any event completes before the next event arrives. In some
cases, the mapping of functions onto an architecture may re-
quire preservation of this property. Another (relaxed) property
of the functional model that can be preserved by its implemen-
tation is flow preservation, that is, guaranteeing that the imple-
mentation operates on the same values of the input data streams
as the model. In both cases, the simplest solution is to restrict
the functional model to react to periodic events only and to se-
lect for its implementation time-triggered execution platforms.
This approach is supported by the Time Triggered Architec-
ture [10]. Techniques for generating semantics-preserving im-
plementations of synchronous models on TTA have been stud-
ied in [11]. In [12], an initial discussion is provided for the pos-
sible tradeoffs when defining a FlexRay communication sched-
ule in a model-based design flow.

Methods for desynchronization in distributed implementa-
tions have been studied and presented in [13, 14]. A more
general approach consists of an intermediate mapping of syn-
chronous models into Kahn Process Networks [15], for which a
correct implementation in an unsynchronized architecture plat-
form can be found more easily [16] (albeit, very likely at the
price of additional overhead and pessimism in the time analy-
sis).

There is also a large body of work in the use of other mod-
els of computation for the design and optimization of embedded

2

systems. An overview of possible models of computation, anal-
ysis and synthesis techniques can be found in [17] and [18].

There is abundant literature on code synthesis techniques
for other synchronous languages, including Esterel [19], Lus-
tre [20], and Prelude [21]. The generation of a single-task soft-
ware implementation for Esterel and Lustre models is discussed
in [22] [23] [24]. Reactions decompose into atomic actions that
are partially ordered by the causality analysis of the program.
The scheduling is generated at compile time trying to exploit
the partial causality order of functions and the generated code
executes without the need of an operating system. The gener-
ated code is optimized according to code size, speed and effi-
ciency of the compilation process.

A different model of computation is synchronous dataflows
(SDF [25]), in which the advancement of computation relates
to the productions/availability of (data) tokens (not necessar-
ily associated with a timed event). Code generation techniques
for SDFs are discussed in [26], [27] and [28]. More recent
developments include clustering techniques for implementa-
tion on multiprocessors-on-chip and GPUs [29]. Contrary to
this work, in the synthesis of a code implementation for syn-
chronous dataflows, latencies (and real-time schedulability) are
not the primary concern. The main objectives are the optimiza-
tion of the processing rates and the minimization of the compu-
tation buffers.

Other formal models for which code generation techniques
are available include heterogeneous representations such as
FunState [30]. In this case, system optimization is performed
across the interface/behavior language boundaries. Finally,
the concurrent and synchronous (rendezvous based) model of
Hoares communicating sequential processes (CSP) [31] and
the pure event-based model of UML Statecharts [32] are other
models to which automatic software synthesis techniques are
successfully applied [33].

Techniques for optimization include search-based heuristics
[26], graph clustering and reduction techniques [34] [29] and
MILP optimization methods [35]. A hybrid combination of ge-
netic algorithm and ant colony optimization is used in [36] for
allocating and scheduling tasks. In [37] an automatic platform-
based system synthesis procedure based on the technique of
Satisfiability Modulo Theories is proposed, which can check
the system feasibility with respect to functional and nonfunc-
tional constraints. MILP optimization techniques are also used
for similar synthesis problems driven by performance optimiza-
tion, including the problem of HW/SW partitioning [38].

However, none of these papers considers jointly the prob-
lem of controls performance and buffer optimization under (dis-
tributed) real-time schedulability constraints derived from the
semantics preservation of synchronous reactive models. This is
also the main difference with our previous work [3], in which
only schedulability of the FlexRay bus was considered (without
consideration of semantics preservation issues).

Scheduling techniques for the FlexRay static segment have
been developed by extending the work for scheduling messages
in a TDMA bus [39, 40]. In [39], the authors present a static
cyclic scheduling technique for time-triggered messages. In [5]
both a fast heuristic and a Mixed-Integer Linear Programming

(MILP) optimization formulation are proposed for the problem
of PDU (Protocol Data Unit) to message packing. In [41], in
addition to the minimization of the number of used slots, the
authors also present a formulation for the minimization of the
transmission jitter. [42, 43] propose to use message retrans-
missions in the FlexRay static segment to provide guarantees
on reliability. In [44], the authors consider the case of a hard
real-time application implemented on a FlexRay system. Mes-
sages are scheduled in the static segment only. In [45], the
authors present timing analysis of applications communicating
over FlexRay, for both the static and the dynamic segments.
The authors first present a static cyclic scheduling technique for
messages transmitted in the static segment. Then, they develop
a worst-case response time analysis for event-based transmis-
sions in the dynamic segment. Message analysis is integrated in
a holistic method that computes the worst-case response times
of all tasks and messages. In [2] the authors discuss a system-
level design optimization problem. However, they assume a
communication model where task and message schedules are
not synchronized, and the problem considered in the paper is
characterized by data freshness constraints only. [3] uses MILP
to address the scheduling synthesis for FlexRay-based systems
that are subject to timing constraints such as latency and ex-
tensibility with a synchronous communication model. A sim-
ilar approach is taken in [4], but the scheduling is done at the
task-level (as opposite to job-level in [3]). However, neither [3]
nor [4] accounts for flow preservation of synchronous reactive
models.

Few solutions exist for the design optimization problem.
Starting from [46], the authors discuss the use of genetic al-
gorithms for optimizing allocation and priority assignments of
real-time tasks with respect to a number of constraints, includ-
ing end-to-end deadline and jitter. A similar problem is dis-
cussed in [47], where an MILP formulation is used to jointly
optimize priority assignments and allocations of tasks and mes-
sages. The formulation was extended from single-bus systems
to systems with gateways in [48]. In [49], a design optimization
heuristic for mixed time-triggered and event-triggered systems
was proposed. The algorithm assumes that nodes are synchro-
nized, with an architecture similar to the one discussed in this
work. An algorithm for the optimal synthesis of task priorities
for distributed systems with time-triggered and priority-based
scheduling, based on the performance of the controls is pre-
sented in [50]. In [51], a SAT-based approach was proposed
for the placement and priority assignment problem. In [52],
task allocation and priority assignment were defined with the
purpose of optimizing extensibility with respect to changes in
task computation times. The proposed solution was based on
simulated annealing on a parallel computing cluster. In [53], a
generalized definition of extensibility on multiple dimensions
was presented and a randomized optimization procedure based
on a genetic algorithm was proposed to solve the optimization
problem. Again, none of these design optimization methods
deals with the problem of flow preservation in a model-based
development process, in particular, with the constraints and the
scheduling tradeoffs arising from the consideration of preserv-
ing the semantics of a Simulink model.

3

3. Synchronous Models and Simulink

In Simulink, the system is defined as a network of commu-
nicating blocks. Each block operates on a set of input signals
and produces a set of output signals, according to its specifi-
cations. Formally, a block transforms input functions (of time)
into output functions. The input function domain can be a set
of discrete points (discrete-time signal) or can be defined on a
continuous time interval (continuous-time signal). During code
generation, continuous blocks are implemented by a fixed-step
solver, executing at the base rate. Eventually, every block has a
sampling rate, with the restriction that the discrete part is exe-
cuted at the same rate or at an integer fraction of the base rate.

Simulink computes for each block, at each step, the set of
outputs, as a function of the current inputs and the block state,
and then, it updates the block state. A cyclic dependency among
blocks where output values are instantaneously produced based
on the inputs results in a fixed point problem and possibly in-
consistency. A fundamental part of the model semantics is the
rules dictating the evaluation order of the blocks. Any block
whose output is directly dependent on its input (i.e., any block
with direct feedthrough) cannot execute until the block driving
its input has executed. Some blocks set their outputs based on
the values of state variables, updated independently from the
inputs. The set of topological dependencies implied by direct
feedthrough blocks defines a partial order expressed as a set of
precedence constraints among pairs of blocks. The partial order
must be accounted for in the simulation and correct implemen-
tation of the model.

Before Simulink simulates a model, it orders all blocks based
upon their topological dependencies. This includes expanding
subsystems into the individual blocks they contain and flatten-
ing the entire model into a single list. The tool chooses one total
order in the execution of blocks that is compatible with the par-
tial order imposed by the model semantics. Next, the virtual
time is initialized at zero, the simulator engine scans the prece-
dence list, and executes the blocks for which the value of the
virtual time is an integer multiple of the period of their inputs.

Executing a block means computing the output function, fol-
lowed by the state update function. When the execution of all
the blocks that need to be triggered at the current instant of
the virtual time is completed, the simulator advances the virtual
clock by one base rate cycle and resumes scanning the block
list. In an example multi-rate system, represented in the left
side of Figure 1 (case (a)), characterized by oversampling of
the communication, a possible order of execution of the blocks
at simulation time would be the one represented in the upper
timeline (labeled as (a), bottom part of the figure). Block C is
executed at the base rate and, because of the feedthrough de-
pendencies, it must follow both A and B. However, a different
execution order could be obtained by executing block C first.
This execution order corresponds to the model on the right side,
labeled as (b), in which a delay of one time unit is added to the
communications from A and, respectively, B to C.

Such added delays change the behavior of the model and af-
fect the performance of the control algorithm. We use a rela-
tively complex example taken from the library of the Simulink

C

A
T =4
A

A B C A B CC C C

A

B
T =4
B

A

B
T =4
B

C
T =1
C

C
T =1
C

(a) (b)

(a)

(b) C C CBAC A B

T =4

Figure 1: An example of simulation-time execution order.

tool to illustrate the impact of added delays. Figure 2 shows a
Simulink model of a hydraulic servomechanism controlled by a
pulse-width modulated (PWM) solenoid. It is a representative
of feedback control loops in which there is a flow of data from
the sensor to the control and from the control back to the actu-
ator. If we assume the system is implemented in a distributed
platform, and data communications between the sensor, the ac-
tuator, and the control occur over a FlexRay bus (in the figure,
this is represented by the dashed rectangle over the communi-
cation links), we can simulate the effect of added delays.

Figure 3 shows the same hydraulic servo model, with addi-
tional delay blocks modeling the effect of communication de-
lays of 2 and 3 FlexRay cycles (with a cycle time of 5ms) on
the sensor and actuator paths.

Figure 4: Actuator position and error for the hydraulic servo
without (top) and with (bottom) delays.

Figure 4 shows the simulation results of the example model,
in the top row without added delays, and in the bottom row
when a unit delay is added on the sensor path. The figure shows
the reference signal (left graph), the output (left graph), and the
error (right graph) in these two cases. The control quality with
a unit delay is somewhat degraded, and the simulation results
show an error about four times larger than the one without de-
lay. For this control model, it is possible to measure the control
error on the given reference signal for different delay (∆) val-
ues on the actuator and sensor paths. The results are shown in
Table 1.

In this case, if the control error is the performance parame-
ter of interest, it is possible to associate to each delay value a
performance cost. If convex optimization is used to compute
an optimal design configuration, we will need to approximate

4

Figure 2: A Simulink example of an hydraulic servomechanism (representative of a suspension control).

Figure 3: Hydraulic servo with additional communication delays.

sensor ∆ actuator ∆ max error (mm) sensor ∆ actuator ∆ max error (mm)
0 0 0.75 0 2 1.8
1 0 1.1 1 2 2.25
2 0 1.25 2 2 2.5
3 0 1.75 3 2 2.8
0 1 1.6 0 3 1.8
1 1 1.6 1 3 2.25
2 1 2.2 2 3 2.5
3 1 2.8 3 3 2.8

Table 1: Max errors for different delays (in 5ms units) on the
sensor and actuator paths

the dependency of the performance from the number of delays
with a convex function. For example, we can find a convex
hull or even linearize the function expressed by the table using
a least square approximation. In our example, a least square
approximation returns the two linear coefficients β1 = 0.3895,
β2 = 0.4095 such that the max error e can be approximated
as a function of the number of sensors and actuator delays by
e = 0.75 + β1∆s + β2∆a with an average linearization error of
10%. In many cases, it is typically accurate enough to use con-
tinuous piecewise linear function to approximate such curves,
and use such functions in MILP [54].

Of course, using simulation to find weights to the links possi-
bly affected by delays may be a time-consuming task for large
size systems. First, it should be considered that, at least for

the purpose of this work, only the links/signals mapped into
FlexRay communication needs to be considered by the analy-
sis. This is typically a small subset of all the links in the system.
For each control loop or path on which n links can be affected
by FlexRay communication delays of at most ∆ units, (∆ + 1)n

runs are required. Even if loops could be analyzed assuming no
cross dependencies and the number of links affected for each
loop is typically small, designers may want to limit the analysis
only to those loops that they estimate are most sensitive to the
added delays.

In the following sections, we discuss the FlexRay schedul-
ing problem, highlight the possible tradeoffs when defining
a FlexRay communication schedule in a model-based design
flow, and then present an MILP formulation.

4. Task and Message Scheduling in FlexRay-based Systems

FlexRay is a modern communication standard for highly de-
terministic and high speed communication [1]. In FlexRay, the
maximum communication speed is defined at 10 Mb/s, and the
bus bandwidth is assigned according to a time-triggered pattern.
The available bandwidth is divided in FlexRay communication
cycles with equal length, and each cycle contains up to four seg-
ments (Static, Dynamic, Symbol and Network Idle Time - NIT).
Clock synchronization is embedded in the standard, using part
of the NIT segment (Figure 5).

5

12

Static segment Dynamic segment

FlexRay cycle

N1−1

N1−1

N2−2 N3−3

N3−3

N1−4

N1−4

N4−5

unused

unused 2 3 8 14

4 6

Symbol Nit

11

Figure 5: The FlexRay communication cycle and its four seg-
ments.

The static segment of the communication cycle enables the
transmission of time critical messages according to a periodic
pattern or schedule, in which a time slot, of fixed length and
in a given position in the cycle, is always reserved to the same
node. In the latest version 3.0.1 of FlexRay [1], slot multiplex-
ing is allowed in the static segments, i.e., slots with the same
index in different communication cycles can be owned by dif-
ferent Electronic Control Units (ECUs). Each node only needs
to know the time slots for its outgoing and incoming commu-
nications. The specification of these time slots is kept in local
scheduling tables. As long as the local tables are consistent, no
timing conflicts or interferences arise. Slots that are left free in
the (virtual) global table resulting from the composition of the
local tables can be used for future extensions. Time protection
and isolation from timing faults are guaranteed by the reserva-
tion of time slots and guardians that avoid node transmitting
outside the allocated time window.

In our study, we are interested in the flow-preserving im-
plementation of a model consisting of computations (the block
functions) and communications (the signal links). Hence, our
model of the implementation must include tasks and messages
and consider the integrated scheduling of all of them. We con-
sider a model of the system computations as a dataflow graph
V . The vertices represent the tasks and the edges represent the
data signals communicated among them.

A task τi is characterized by the tuple (ei,Ti,Φi, Ji,Ci, di),
where ei is the ECU resource it needs to execute, Ti is its period,
Φi is its initial phase, Ji is its release jitter, Ci is its execution
time, and di ≤ Ti is its deadline. For priority-based schedul-
ing systems such as OSEK [55], each task τi is assigned with
a static priority Pi, and the scheduling policy is assumed to be
fully-preemptive. We use the convention in OSEK: the higher
the number is, the lower the priority level is, thus Pi < P j im-
plies that τi has a higher priority than τ j. We also denote the set
of tasks with higher priority than τi and executed on the same
ECU as hp(i) = { j : e j = ei, P j < Pi}.

Edges represents the input/output connections between tasks.
An edge between tasks τh and τk denote a data signal σh,k with
a given bit width bh,k produced by τh and available to τk. We
follow the requirement from Simulink that the data communi-
cation only happens between tasks with harmonic periods, i.e.
either Th = j × Tk or Tk = j × Th for some positive integer j.
For simplicity, signals will also be identified and denoted by a
single index as in σi. Each periodic task reads its input at its
activation time and writes its results at the end of its execution.

Each signal σi may optionally be delivered with a ∆i-unit delay,
e.g. the signals from τ8 to τ2 and τ6 in Figure 6 carry a one-unit
delay. Each signal also carries a precedence constraint in the ex-
ecution of the sender and receiver job. If the signal is delivered
without delay, the successor must be executed after the sender
job instance activated immediately before it, but before the fol-
lowing one; otherwise, it is the ∆i-th job of the successor which
will use the signal value produced by the sender (see Figure 7).
To quantify its importance to the system control performance,
we assign a weight wi ≥ 0 to each signal σi.

4

3

τ

4 ms 4 ms1 ms

6 7 8 95

1

5

7

2

4

8

3

9

6

−1

FlexRay bus

N1 N2 N3 N4

τ 9τ 8τ 6

τ 7
τ 5

8 ms

1 2 3

4

−1

τ 1
τ 2

τ

Figure 6: A task model with a unit-delay communication and
allocation of tasks.

The hyperperiod or application cycle H is defined as the
least common multiple (lcm) of the periods of all tasks. Inside
the application cycle, each job is considered as an individual
scheduling entity. The scheduling problem consists of planning
the execution of jobs and the transmission of signals into the
available slots inside H. Jobs can also be denoted with refer-
ence to their task. In this case, tk, j denotes the j-th job of task
τk.

The arrival time of a job instance ti is denoted as ai or, using
the instance index notation as ak, j, with ak, j = Φk + (j − 1) ×
Tk. It indicates the time instant when the job is signalled to
be available for execution. The release time of a job is Ai, the
time instant when the job is actually ready for execution. The
finishing time is fi. The response time ri of a job ti is the time
interval from its arrival to its termination, i.e. ri = fi − ai. The
worst-case task response time Rk of task τk is the maximum
of the response times rk, j of its jobs tk, j. The worst-case jitter
Jk of task τk is the maximum difference between the arrival
time and release time of all the jobs of τk (typically representing
activation delays because of interrupt response times and the
execution time of the scheduler itself).

The set of all the task instances transmitted in the application
cycle defines the application instance graph, as in Figure 7. The
FlexRay communication stack may transmit multiple signals in
the data content of a single message in a communication slot,
upon conditions that they are transmitted by tasks allocated to
the same node.

A path from τi to τ j, or Pi, j, is a sequence p = [τi, . . . , τ j]
of tasks such that there is a link between any two consecutive
tasks. For example, in Figure 6 a path exists between tasks τ1
and τ9. The latency of path Pi, j is defined as the time interval
between the arrival of one instance of τi and the completion
of the instance of τ j that produces a result dependent on the
output of τi. The end-to-end latency of a path p should satisfy
its deadline requirement Dp.

6

Figure 7: Unrolling the task model in task instances in the application cycle.

The scheduling of FlexRay communication consists of the
mapping of the tasks and signals defined in the application cycle
into a set of communication cycle instances. This mapping can
be performed in different ways, according to the selection of the
communication cycle length, the size of the static segment, the
slot size and correspondingly the number of static slots in each
communication cycle. It is practically impossible to encode all
the above into an integrated problem formulation to be solved
by an optimization framework without having an exceedingly
large search space.

Hence, in our previous research work [3], we investigated a
two-step design flow. Starting from the design specification,
we assumed a FlexRay bus configuration (lapp, lcomm, nslot, lslot,
bslot) is given, where lapp is the length of the application cycle
(the least common multiple of the task periods), lcomm is the
length of the FlexRay communication cycle, nslot is the number
of slots in the static segment of the communication cycle, lslot
is the length of the slot in time, and bslot is the size of the slot
in bits. Based on this configuration, we apply a mathematical
programming framework to encode the problem and synthesize
other variables such as slot ownership, signal to slot mapping,
message and task scheduling. The two-step design flow is con-
sistent with the typical design flows in use by the automotive
industry, where the communication cycle and the slot size are
defined based on the need to reuse legacy components and stan-
dardize configurations.

In [3] we formulated our problem in the general framework
of mathematical programming (MP), where the system is repre-
sented with parameters, decision variables, and constraints over
the parameters and decision variables. An objective function,
defined over the same set of variables, characterizes the optimal
solution. The FlexRay scheduling problem allows a mixed in-
teger linear programming (MILP) formulation that is amenable
to automatic processing.

5. Trading Functional Delays for Schedulability

The example in Figure 1(a) is a case of communication with
oversampling. A FlexRay schedule that preserves the execu-
tion order defined by the model semantics and used to validate
the system behavior at simulation time should execute as in the
following Figure 8.

As is clear from the figure, this can be a very tightly con-
strained scheduling problem. Both senders must be executed
before the FlexRay slots allocated for communication of their

FlexRay

Figure 8: Scheduling the tasks and the communication of the
example without delays.

output data. Those slots, in turn, should be allocated so that
they precede the scheduling of the receiver task, which needs to
complete before the end of its period. In conclusion, the entire
chain must be scheduled before the deadline of the receiver task
(shown as a dotted line in the figure).

In a development flow, the system designer and the soft-
ware engineers are presented with a scheduling problem that
defines the execution rate constraints and the execution order
constraints. In the case of Figure 1, the scheduler would be re-
quested to execute both senders within their period of 4 units
and, following the sender task, to assign the communication
slots on the bus for transmission. Receivers would be sched-
uled in such a way that one instance is executed every unit. The
requirement that the first instance of the receivers should pro-
cess the data (in every cycle of 4) should also be considered.
However, because of the tight deadlines, the designer could be
tempted to release the execution constraints to ease schedula-
bility, by adding functional delays to the communication links,
trading functional performance for ease of schedulability.

The scheduling problem may be relaxed if we can select the
receiver instance that reads the data produced by the sender.
This choice, however, is not neutral to the behavior of the func-
tions that are executing the control algorithms.

Consider the case in which one of the communication paths is
delayed allowing communication with the third instance instead
of the first one. In this case, one task and one signal can be
scheduled later to ease feasibility of the system-level schedule
(including the FlexRay scheduling, Figure 9).

An implementation that should be avoided is when even de-
terministic delays are not guaranteed by the scheduler. If the
schedule is generated by only looking at the periods of the com-
municating tasks, with the guarantee that the execution of each
task and the transmission of each signal occur only once during
the period, then the situation could be as in Figure 10, where
the simulation of the resulting system is more complicated and

7

FlexRay

Figure 9: Scheduling the tasks and the communication of the
example with a deterministic delay of two receiver periods on
one of the communication links.

FlexRay

Figure 10: An example of a schedule with nondeterministic de-
lays.

the resulting behavior is less predictable. Such a situation is
unfortunately too common.

By formally defining the (real-time) scheduling problem with
the flow preservation constraints and the optional addition of
delays on communications, it is possible to encode the design
problem as a formal MILP problem, in which we seek the fea-
sible solution with minimum performance penalty because of
communication delays. An MILP problem can be solved by
standard solvers quite efficiently. Compared with possible al-
ternate solutions of developing a heuristic or using a stochastic
optimization method, it has the advantage of having the guar-
antee of optimality when the solver manages to compute the
optimum and (especially) an upper bound on the distance of the
intermediate solutions to the global optimum.

6. Minimization of Functional Delays

We use an MILP formulation to find a solution to the system
scheduling problem (including the FlexRay bus) with respect to
a cost function that accounts for the optimization of the system
control performance. With respect to the MILP formulation
in [3], the main differences are the constraints that depend on
the delays of the communication links (Sections 6.2 and 6.4).

6.1. Task scheduling
Ti and di denote the period and relative deadline for periodic

task τi (di ≤ Ti). ai,k, Ai,k, fi,k denote the arrival time, activation
time, and finish time for a job ti,k, where k represents the job
instance index.

Ti and di are input parameters, while Φi, and consequently
ai,k, Ai,k, fi,k are design variables for the optimization frame-
work. Given that all tasks are periodic with an initial phase, the
arrival times of the jobs must be constrained accordingly.

∀ti,k, ai,k = Φi + (k − 1)Ti

0 ≤ Φi < Ti
(1)

Ai,k is linked to ai,k through Ji. ai,k is the “ideal” periodic ac-
tivation time, as provided by a hardware interrupt coming from
a clock. Ai,k is the corresponding time when the periodic task
(that should arrive at ai,k) is released into the system, or more
precisely, put into the ready queue by the interrupt handler rou-
tine. In OSEK [55], tasks are activated periodically, by an inter-
nal dispatcher or by an alarm and scheduled according to their
priorities. As previously stated, the response time of the sched-
uler may introduce jitter in the activation time. In OSEK sys-
tems, we expect the activation jitter to be significant. Therefore,
we include a jitter term Ji in our formulation.

∀ti,k, Ai,k − ai,k = Ji (2)

The worst-case response time Ri is computed for the tasks
and applies to all their jobs (where hp(i) is the set of tasks with
priority higher than τi).

Ri = Ji + Ci +
∑

j∈hp(i)

⌈
Ri − Ji + J j

T j

⌉
C j (3)

Since all the parameters in Equation (3) except Ri are known,
Ri can be computed beforehand and used as a parameter. Real-
time schedulability theory tells us that the value of Ri computed
according to Equation (3) is the largest possible for any possible
offset assignment and it is therefore safe to use (but pessimistic)
for all the jobs of τi for the purpose of defining end-to-end dead-
line constraints and latency metrics. Hence, the upper bounds
on the finish times of jobs also exhibit a periodic pattern.

∀ti,k, fi,k = ai,k + Ri = Φi + (k − 1)Ti + Ri (4)

6.2. Data dependencies
The constraints in this section are specific to the problem of

providing a flow-preserving implementation with the possible
addition of delays.

The amount of possible delay (an integer variable ∆i) on a
communication link defines the instances of the sender and re-
ceiver jobs that are affected by an order of execution (prece-
dence) constraint. Consider a (remote) communication signal
σi from τh to τk. If the communication of σi is associated with
a variable number of unit delays equal to ∆i, then the j-th in-
stance of τh, produces data that is consumed by the instance of
τk defined by the (variable) index nk,h, j according to the relation
(nk,h, j depends on h and j and is the index of the job following
ah, j with a further delay of ∆i).

ak,n′−1 < ah, j ≤ ak,n′ , where n′ = nk,h, j − ∆i (5)

As both nk,h, j and ∆i are integer variables in the formulation,
we transform the above inequality to an MILP constraint

Φh + (j − 1)Th > Φk + (nk,h, j − ∆i − 2)Tk

Φh + (j − 1)Th ≤ Φk + (nk,h, j − ∆i − 1)Tk
(6)

We impose the data dependency between the j-th job of τh and
the nk,h, j-th job of τk, by making sure that th, j finishes execu-
tion before σi is scheduled for transmission on the bus, and σi

finishes its transmission before the receiver job tk,nk,h, j arrives.

8

fh, j ≤ si ⇒ Φh + (j − 1)Th + Rh ≤ si (7)

fi ≤ ak,nk,h, j ⇒ fi ≤ Φk + (nk,h, j − 1)Tk (8)

Also, to avoid that the data in signal σi is overwritten by
the next job (th, j+1) of the same sender task, σi needs to start
transmission before the arrival of th, j+1, i.e.,

si ≤ ah, j+1 (9)

If the communication between jobs ti and tl occurs on the
same ECU, we can assume the existence of flow-preserving
wait free communication buffers (for a description please refer
to [56]) that guarantee a correct implementation upon condition
that ti is activated before tl (or the sender finishes execution be-
fore the arrival of the receiver if it has lower priority).{

Ai ≤ al, if Pi < Pl

fi ≤ al, if Pi > Pl
(10)

6.3. FlexRay protocol rules
This section provides a summary of the FlexRay scheduling

problem constraints. The detailed MILP formulation for our
method can be found in [3]. In a communication cycle, ss

j,k
is used as an input parameter which denotes the starting time
of the kth slot from the jth communication cycle. ss

j,k is easily
calculated as ss

j,k = j · lcomm + k · lslot.
The mapping of signals to slots is encoded in a set of binary

variables

Ai, j,k =

{
1, if σi is mapped to cycle j, slot k
0, otherwise (11)

If a signal σi is mapped to the kth slot of the jth cycle, the start
time si and finish time fi of σi are automatically constrained to
the start time ss

j,k and finish time f s
j,k of the slot. This can be

formulated using the standard “big-M” formulation (where M
is a constant larger than any of the variables in the constraint)

ss
j,k ≤ si + (1 − Ai, j,k)M (12)

si ≤ ss
j,k + (1 − Ai, j,k)M (13)

fi = si + lslot (14)

Each signal can only be mapped to one slot and the sum of the
payloads over all the signals mapped into a specific slot will be
upper bounded by the slot size.∑

ss
j,k≤tmax

Ai, j,k = 1 (15)

∑
i∈Signals

Ai, j,k · bi ≤ bslot (16)

where tmax is the maximum time span over which the planner
must compute a schedule (see Section 6.5).

Each slot is owned by an ECU or it is free. A set of binary
variable encodes the status of each slot

Aei, j,k =

{
1, if slot k in cycle j is owned by ECU ei

0, otherwise (17)

FlexRay has its requirement for the slot ownership. The new
FlexRay standard allows slot multiplexing, such that the same
slot index at different communication cycles can be allocated
to different ECUs. Constraint (18) encodes slot ownership. If
signal σi is mapped to communication cycle j and slot k, then
its source ECU must own slot k. (19) ensures that every slot
is owned by at most one ECU. In the latest FlexRay standard
3.0 [1], slot multiplexing is allowed, i.e., slots with the same
index in different communication cycles can be owned by dif-
ferent ECUs. If no signal is mapped to slot k in communication
cycle j, then constraint (20) sets the slot ownership to null.

Ai, j,k ≤ Aei, j,k (18)∑
ep∈ECUs

Aep, j,k ≤ 1 (19)

Aep, j,k ≤
∑

i∈signals, j<na

Ai, j,k (20)

where na is the number of communication cycles in [0, tmax].

6.4. End-to-end latency
If Π is the set of latency-sensitive paths, we impose that the

end-to-end delays of the paths are within their deadline con-
straints. However, for a path p = [τ1, · · · , τk], given the in-
stance n1 of the sender task, the sink instance varies depending
on the delay of the communication links. We use the following
set of constraints to identify the index of the sink, and conse-
quently the end-to-end latency.

∀(τi, τi+1) ∈ p,∀n1,
Φi+1 + (ni+1 − ∆i,i+1 − 1)Ti+1 ≥ Φi + (ni − 1)Ti

(21)

where ∆i,i+1 denotes the delay in the communication link
(τi, τi+1). Now the end-to-end latency can be formulated as

fk,nk − a1,n1 ≤ Dp

⇒ (Φk + (nk − 1)Tk + Rk) − (Φ1 + (n1 − 1)T1) ≤ Dp
(22)

6.5. Scheduling window
If Φi is the initial phase of a generic task τi, the scheduling

of the tasks and of the FlexRay bus must be performed until an
entire application cycle has been computed. This means that
the schedule must continue until time H + maxi(Φi). Since the
initial phase values are computed as a result of the optimization,
we will use an upper bound for the previous formula

tmax = H + max
i

(Ti) (23)

In the interval [0, tmax] (see Figure 11) we need to schedule for
each task τi a number of instances

ni =

⌈
tmax

Ti

⌉
(24)

However, not all of those instances can be scheduled freely.
In the example of Figure 11, this is true for t3,3, but not for t1,7,
which must be scheduled in a position defined by t1,1 because

9

1 t2,1 t2,2 t2,3 t2,4

t1,7t1,6t1,5t1,4t1,3t1,2t1,1

t3,1

τ

τ

τ

2

3

1

t2,5

t3,2 t3,3

max(T)jH

Φ

Φ

Φ

2

3

Figure 11: Periodicity constraints in the definition of the
scheduling table

they are actually the same instance in the hyperperiod cycle.
This translates into the constraint on the finish times for both
types of schedulers.

fi,q = fi,k + H where q = nci + k, (25)

where nci is the number of jobs in one hyperperiod for task τi

nci =
H
Ti

(26)

Similar constraints exist on the scheduling of the FlexRay slots.
We need to schedule beyond the application cycle, up to na

number of cycles, where

na =

⌈
tmax

lcomm

⌉
(27)

in the last cycle, however, only

nl =

⌊
tmax − (na − 1)lcomm

lslot

⌋
(28)

slots need to be considered. Similar to job scheduling, signal to
slot mappings must match when they refer to the same position
in the application cycle. The matching set of signals can be
identified as follows. If the sender and receiver jobs of signals
σi and σ j are exactly one application cycle away, i.e.,

src(σi) = tk,l ∧ dst(σi) = tm,n
∧ src(σ j) = tk,p ∧ dst(σ j) = tm,q

where p = l + nck and q = n + ncm

(29)

then the two signals are actually the same and must be allocated
to the corresponding slots (with a distance of H). We denote
this relationship as σi = σ j. For each cycle k and slot index l
and, for each pair σi = σ j, it must be

A j,m,l = 1 if and only if Ai,k,l = 1 ∧ m = k + H/lcomm (30)

6.6. Objective functions

Subject to the satisfaction of the above constraints, we can
seek optimality with respect to different cost functions. In the
experiments, we seek to minimize the weighted sum of the
functional delays on the communication links.

minimize
∑

σi∈Signals

(wi · ∆i) (31)

If the relationship of the control error and the added func-
tional delays is given, we can also use continuous piecewise
linear functions to approximate such curves, and minimize the
weighted sum of the control errors. Because of the lack of
enough information on the Simulink models (and thus the ex-
act quantification of the control errors), we leave such study to
future work.

7. Experiments

Our experiments have been performed on sets of tasks and
signals extracted from actual automotive systems. The first set
of experiments provide a simple example of how the addition
of delays allows for a feasible schedule of an otherwise un-
schedulable system. The following case studies provide ex-
amples of the design optimization procedure presented in the
previous section.

7.1. Leveraging functional delays to improve schedulability: a
case study

The first experimental case is a subset of an automotive sys-
tem, showing how the addition of delays on the communica-
tion by selecting a late receiver instance (when oversampling)
or sender instance (when undersampling) can be leveraged to
find a feasible schedule.

The application configuration of Tables 2 and 3 is obtained
from a prototypical X-by-Wire application from General Mo-
tors [3]. The application has 10 ECUs interconnected by a sin-
gle FlexRay bus, executing 49 tasks, with periods of 1ms and
8ms respectively, and exchanging 132 signals. Tables 2 and 3
show periods and worst case execution time of tasks (in mi-
croseconds) and the size of each signal (in bits). The FlexRay
bus is configured as follows: the application cycle is H= 8ms,
the communication cycle lcomm = 1ms with nslot = 22, and the
slot size lslot = 200bits, or 35µs. The system communication
graph has several instances on communication with oversam-
pling (from sender tasks with period 8ms to receiver tasks with
period 1ms).

In the solution presented in [3] an approach to the problem
that is typical of automotive system developers was used. In the
definition of the software/message implementation of controls,
the partial order of execution and flow preservation constraints
are simply dropped and each task/message is only scheduled
within the end of the corresponding period. This formally cor-
responds to the possible generation of variable communication
delays between each sender and receiver and changes in the
communication flows. This design is typically considered ac-
ceptable under the (often implicit) assumption that the controls
implemented are tolerant with respect to this jitter (variable
number of added delays). This practice, however, is challenged
in those cases where safety-critical controls (such as X-by-wire)
need to be formally demonstrated as correct. In the experiments
presented in this paper we analyze in detail the possible addi-
tion of delays including the more stringent case where no added
delay is allowed.

First, we try to find a feasible solution with no added delays,
with an optimization function that relates to the extensibility

10

τi ei Ti Ci τi ei Ti Ci
τ8 e9 8000 810 τ21 e5 1000 25
τ9 e9 8000 550 τ22/τ26/τ30/τ34 e5/e6/e7/e8 1000 60
τ11 e9 8000 100 τ23/τ27/τ31/τ35 e5/e6/e7/e8 1000 40
τ12 e9 8000 770 τ24/τ28/τ32/τ36 e5/e6/e7/e8 1000 20
τ13 e9 8000 200 τ25/τ29/τ33 e6/e7/e8 1000 30
τ14 e9 8000 110 τ37/τ42/τ47/τ52 e1/e2/e3/e4 8000 1000
τ15 e9 8000 550 τ38/τ43/τ48/τ53 e1/e2/e3/e4 8000 500
τ16 e10 8000 780 τ39/τ44/τ49/τ54 e1/e2/e3/e4 8000 1500
τ10 e10 8000 510 τ40/τ45/τ50/τ55 e1/e2/e3/e4 8000 1300
τ17 e10 8000 190 τ41/τ46/τ51/τ56 e1/e2/e3/e4 8000 350
τ18 e10 8000 260 τ20 e10 8000 230
τ19 e10 8000 100

Table 2: Tasks for the X-by-wire example

Signal Send Size Recv Signal Send Size Recv
σ1 to σ4 τ15 32 τ22/τ26/τ30/τ34 σ48 τ22 32 τ16
σ5 to σ8 τ20 32 τ22/τ26/τ30/τ34 σ49 τ26 32 τ16
σ9 to σ11 τ23 32 τ27/τ31/τ35 σ50 to σ53 τ26 16 τ8/τ16
σ12, σ13 τ21 32 τ22/τ26/τ30/τ34 σ54 to σ63 τ39 16 τ12
σ14 τ12 8 τ39/τ44/τ49/τ54 σ64, σ65 τ42 16 τ12
σ15 to σ18 τ22 16 τ8/τ16 σ66 to σ77 τ44 16 τ12
σ19, σ20 τ23 8 τ8/τ16 σ78 to σ87 τ49 16 τ12
σ21 to σ23 τ27 32 τ23/τ31/τ35 σ88, σ89 τ52 16 τ12
σ24, σ25 τ25 32 τ22/τ26/τ30/τ34 σ90 to σ99 τ54 16 τ12
σ26 to σ32 τ12 16 τ39/τ44/τ49/τ54 σ100 τ8 1 τ17
σ33, σ34 τ27 8 τ8/τ16 σ101 to σ116 τ12 16 τ17
σ35 to σ37 τ31 32 τ23/τ27/τ35 σ117 to σ124 τ12 16 τ17/τ18
σ38, σ39 τ29 32 τ22/τ26/τ30/τ34 σ125 τ30 1 τ8/τ16
σ40, σ41 τ30 16 τ8/τ16 σ126 to σ128 τ34 16 τ8/τ16
σ42 to σ44 τ35 32 τ23/τ27/τ31 σ129, σ130 τ37 16 τ12
σ45 to σ47 τ33 32 τ22/τ26/τ30/τ34 σ131, σ132 τ35 8 τ8/τ16

Table 3: Signal list for the example

of the system: finding the schedule with the minimum number
of used FlexRay slots. The problem is modeled in Python and
solved using CPLEX 12.4 [57], on a machine with an Intel Core
i5 2.4GHz CPU and 8GB memory. The solver very quickly,
with a runtime of 0.1 second, determines that the problem has
no feasible solution.

Then, the same problem is formulated by adding a 7ms com-
munication delay on all the oversampling links with sender pe-
riod 8ms and receiver period 1ms (the last instance of the re-
ceiver in the application cycle is actually reading the data). In
this case, the solver finds a schedulable solution within 50 sec-
onds, computing a feasible schedule that requires 44 slots out
of the available 176 slots in each application cycle.

7.2. Computing the solution with minimum delay cost

Next, we use the same case study with artificially added sig-
nals and tasks to test the scalability, with the objective of find-
ing the feasible solution that minimizes the weighted sum of
functional delays. The delays are added to the communication
links of controls that are sensitive to delays (a subset of the
signals, as shown in Table 4). In this case study, the weights
applied to delays are not obtained from a simulation stage (the
original Simulink models were not available), but are randomly
assigned under the assumption that the solver time and the pos-
sibility of finding an optimal solution are not affected by the ac-
tual delay costs. To support this assumption, we choose another
random weight configuration different from Table 4, with val-
ues 2, 3, 4, 1, 1, 2, 3, 2, 2, 4, 3, 3, 1, and 2 respectively. We com-
pare the two configurations using the two-step approach (which

50 55 60 65 70 75 80 85 90 95 100
10

1

10
2

10
3

10
4

#tasks

R
u
n
ti
m

e
 (

s
)

the 1
st

 group of weights

the 2
nd

 group of weights

Figure 12: Comparison of runtime of problems with different
weight values.

Signal σ1 σ6 σ21 σ24 σ39 σ40 σ41
Weight 1.2 1.1 0.8 0.9 2 0.5 1
Signal σ42 σ43 σ44 σ63 σ76 σ109 σ125
Weight 1.5 2.4 0.8 1.2 1 0.9 1

Table 4: Critical signals and their weights

is detailed in the rest of the subsection). Under both configura-
tions, the optimal solutions are found in a short amount of time,
as shown in Figure 12. We can see that the runtime is similar
for the two groups of weights.

The MILP formulation may not be scalable to large de-
signs. We consider a complete MILP formulation and a heuris-
tic based on divide-and-conquer. In the first approach, we for-
mulate all variables, constraints and the objective into a single
MILP formulation. We call it a one-step approach. For the
original design problem (Tables 2 and 3), the CPLEX solver
finds the optimal solution in 25131 seconds (or about 7 hours).
However, the large runtime for a problem of relatively small
size is a clear indication that this formulation can hardly scale
up to problems of larger size (confirmed by the results of our
scalability analysis).

To simplify the problem formulation and reduce the runtime
of the solver, we propose a two-step approach. The first step
aims at the reduction in the number of signals by applying
a simple bin-packing algorithm. Signals that have the same
sender task and the same period are packed and mapped into a
FlexRay message (a FlexRay static slot) as an atomic unit. The
second step is the MILP formulation of the optimization prob-
lem to schedule the tasks and the messages. After the first stage,
the number of messages to be scheduled on FlexRay is now sig-
nificantly reduced and the MILP problem becomes much easier
to solve. Using this approach, the optimal solution for our case
study configuration can be found in just 151 seconds. In this
case, the two-step approach gives the same optimal result as the
one-step approach.

Next, we study the scalability and quality of our proposed
two-step approach by adding a set of randomly generated sig-
nals and tasks. In the first series of experiments, the number
of tasks is fixed at 49 and system configurations of increasing
complexity are generated by adding 16 signals in each new ex-
periment, from 132 to a maximum of 292. Each configuration
is solved using the two-step approach, and the results and run-

11

time are shown in Figures 13a and 14a. The graphs show that
despite the added number of signals, the cost of the solution that
is found after optimization does not increase significantly. This
is probably because the FlexRay schedule allows to accommo-
date new signals in the existing slots quite easily at first and only
requires shifting signals to later slots when the bus is approach-
ing high utilizations. However, the runtime of the algorithm
is significantly affected by the communication complexity. For
our system configuration with 132 signals, the solver needs 151
seconds to find the optimal solution, but the execution time in-
creases to 6626 seconds for the 292-signal case.

In the second set of experiments, we randomly increase the
number of tasks from 50 to 100 while keeping the number of
signals unchanged. Figures 13b and 14b show the result and
runtime of the experiments. The number of tasks (an indication
of the computation complexity) is now affecting the cost value
of the computed optimum much more than in the scalability
analysis on number of signals. This is because adding more
tasks increases their response times which reduces the window
of scheduling. Thus it has a larger effect on schedulability and
the need to add functional delay.

For the task scalability analysis, we compare the execution
times and the cost of the computed solutions for the one-step
approach and the simplified two-step approach. As shown in
Figure 13c, 6 configurations with different numbers of tasks are
considered. For the first 4 cases, both methods compute the true
optimum solutions (the solutions computed by the two methods
not only have the same cost but are exactly the same). For the
last 2 cases, the one-step approach cannot find the optimal so-
lution as the solver runs out of memory. When this happens,
the best solutions are found by the solver with gaps 4% and
1.8% respectively (the gap is an upper bound of the distance to
the global optimum). The suboptimal solution (with value 40)
computed by the one-step approach on the fifth case (with 90
tasks) is actually worse than the one (with value 39.2) found
using the two-step approach. Since the gap for the one-step so-
lution is 4% and the solution found by the two-step approach is
2% better, it is also (in the worst case) within 2% of the global
optimum. For the sixth case (with 100 tasks), the solution found
using the one-step optimization (with value 44) outperforms the
one computed with the two-step algorithm (with value 44.8).
However, even if we consider the lower bound on the cost of
the optimal solution 44× (1− 1.8%) = 43.2 (which is not likely
to be the global optimum), the solution computed by the two-
step approach is still within 4%. Figure 14c shows a compar-
ison of the runtimes using the two approaches. It can be seen
that the execution time of the two-step heuristic is typically two
magnitudes less than the one of the one-step approach.

7.3. Case study: active safety functions
Finally, we apply the one-step optimization formulation to

another case study available in the literature [44], a set of active
safety functions including a vehicle adaptive cruise controller
(ACC), an electric power steering (EPS), and traction control
(TC) functions. The case study is relatively small, with 28 tasks
and 31 signals (the details can be found in [44]). The selected
signals and their weights are listed in Table 5. As for [3], our

28 30 32 34 36 38 40 42 44 46
1.5

2

2.5

3

3.5

4

4.5

#tasks

W
e

ig
h

te
d

 s
u

m
 o

f
s
e

le
c
te

d
 f

u
n

c
ti
o

n
a

l
d

e
la

y
s

28 30 32 34 36 38 40 42 44 46

10
0

10
1

10
2

#tasks

R
u

n
ti
m

e
 (

s
)

Figure 15: Weighted sum of selected functional delays and run-
time of the optimization method for the active safety functions.

method cannot be directly compared to the solution in [44]. In
the definition of the scheduling, the method in [44] is only in-
terested in finding any schedulable solution (with arbitrary and
possibly non-deterministic communication delays), while we
are interested in the solution with the smallest cost in terms of
deterministic additional delays.

Signal σ1 σ2 σ3 σ9 σ12 σ13 σ16
Weight 1 1.5 1.2 1.1 2.4 0.8 0.8
Signal σ18 σ19 σ23 σ26 σ28
Weight 1.2 1 0.9 2 0.5

Table 5: Critical signals and their weights for the case study on
active safety functions [44].

After applying the one-step optimization approach, the op-
timum solution is found, requiring the addition of functional
delays to only 2 signals (1 delay unit on each link). We also
perform a scalability analysis by increasing the number of tasks
from 28 to 45. The weighted sum of selected functional delays
and the runtime of the algorithm are shown in Figure 15. The
one-step approach returns the optimal results for each of the
configurations in no more than 3 seconds.

8. Conclusions

FlexRay offers the possibility of a deterministic communi-
cation and can be used to define distributed implementations
that are provably equivalent to synchronous reactive models
like those created from Simulink. However, the low level com-
munication layers and the FlexRay schedule must be carefully
designed to ensure the preservation of model semantics, espe-
cially when models include subsystems executing at different
rates. In this paper we provided a discussion and an analysis of

12

120 140 160 180 200 220 240 260 280 300
20

21

22

23

24

25

26

27

28

29

30

#signals

W
e
ig

h
te

d
 s

u
m

 o
f
s
e
le

c
te

d
 f
u
n
c
ti
o
n
a
l
d
e
la

y
s

two−step method

(a) Functional delays vs. number of signals

50 55 60 65 70 75 80 85 90 95 100
20

25

30

35

40

45

50

#tasks

W
e
ig

h
te

d
 s

u
m

 o
f
s
e
le

c
te

d
 f
u
n
c
ti
o
n
a
l
d
e
la

y
s

two−step method

(b) Functional delays vs. number of tasks

50 55 60 65 70 75 80 85 90 95 100
20

25

30

35

40

45

50

#tasks

W
e
ig

h
te

d
 s

u
m

 o
f
s
e
le

c
te

d
 f
u
n
c
ti
o
n
a
l
d
e
la

y
s

one−step method

two−step method

(c) Comparison of one-step and two-step approaches
on functional delay

Figure 13: Weighted sum of selected functional delays.

120 140 160 180 200 220 240 260 280 300
10

2

10
3

10
4

#signals

R
u
n
ti
m

e
 (

s
)

two−step method

(a) Runtime vs. number of signals

50 55 60 65 70 75 80 85 90 95 100
10

1

10
2

10
3

10
4

#tasks

R
u
n
ti
m

e
 (

s
)

two−step method

(b) Runtime vs. number of tasks

50 55 60 65 70 75 80 85 90 95 100
10

2

10
3

10
4

10
5

#tasks

R
u
n
ti
m

e
 (

s
)

one−step method

two−step method

(c) Comparison of one-step and two-step approaches
on runtime

Figure 14: Runtime of the optimization methods.

the issues that need to be faced when defining a FlexRay com-
munication schedule in a model-based design flow, where tasks
and messages provide a distributed implementation of a syn-
chronous model. We provide a formulation of an optimization
problem that computes the optimal solution with respect to the
number of additional delays when a flow-preserving implemen-
tation is not possible. The aforementioned scheduling options
are applied to an X-by-wire system and an active-safety case
study to highlight tradeoffs between schedulability and addi-
tional functional delays.

References

[1] FlexRay Consortium. FlexRay Communications System Protocol Speci-
fication, Version 3.0.1. Available at http://www.flexray.com, 2010.

[2] M. Grenier, L. Havet, and N. Navet. Configuring the communication on
flexray: the case of the static segment. Euromicro Conference on Real-
Time Systems, 2008.

[3] H. Zeng, M. Di Natale, A. Ghosal, and A. Sangiovanni-Vincentelli.
Schedule Optimization of Time-Triggered Systems Communicating Over
the FlexRay Static Segment. IEEE Transactions on Industrial Informat-
ics, 7(1):1–17, February 2011.

[4] M. Lukasiewycz, R. Schneider, D. Goswami, and S. Chakraborty. Modu-
lar Scheduling of Distributed Heterogeneous Time-triggered Automotive
Systems. Asia and South Pacific Design Automation Conference, 2012.

[5] M. Lukasiewycz, M. Glaß, J. Teich, and P. Milbredt. Flexray schedule
optimization of the static segment. IEEE/ACM International Conference
on Hardware/Software Codesign and System Synthesis, 2009.

[6] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic, and

R. de Simone. The synchronous languages 12 years later. Proceedings of
the IEEE, 91(1):64–83, January 2003.

[7] SCADE Suite Product, web page: http://www.esterel-
technologies.com/products/scade-suite (Retrieved on Dec. 31, 2012).

[8] The Mathworks Simulink and StateFlow Users Manuals, Mathworks, web
page: http://www.mathworks.com (Retrieved on Dec. 31, 2012).

[9] Prover Technology, web page: http://www.prover.com (Retrieved on Dec.
31, 2012).

[10] H. Kopetz and G. Bauer. The Time-Triggered Architecture. Proceedings
of the IEEE, 91(1):112–126, January 2003.

[11] P. Caspi, A. Curic, A.Maignan, C. Sofronis, S. Tripakis, and P. Niebert.
From Simulink to SCADE/Lustre to TTA: a layered approach for dis-
tributed embedded applications. ACM SIGPLAN conference on Lan-
guage, compiler, and tool for embedded systems, 2003.

[12] M. Di Natale and H. Zeng. Time Determinism and Semantics Preserva-
tion in the Implementation of Distributed Functions over FlexRay. Society
of Automotive Engineers World Congress, 2010.

[13] D. Potop-Butucaru, B. Caillaud, and A. Benveniste. Concurrency in syn-
chronous systems. Formal Methods in System Design, 28(2):111–130,
March 2006.

[14] P. Caspi and A. Benveniste. Time-robust discrete control over networked
loosely time-triggered architectures. IEEE Control and Decision Confer-
ence, 2008.

[15] P. Caspi and M. Pouzet. Synchronous kahn networks. ACM SIGPLAN
Conference on Functional Programming, 1996.

[16] S. Tripakis, C. Pinello, A. Benveniste, A. Sangiovanni-Vincentelli,
P. Caspi and M. Di Natale. Implementing Synchronous models on
Loosely Time-Triggered Architectures. IEEE Transactions on Comput-
ers, 57(10):1300–1314, October 2008.

[17] A. Jantsch and I. Sander. Models of Computation and Languages for
Embedded System Design. IEEE Proceedings on Computers and Digital
Techniques, 152(2):114–129, March 2005.

[18] E. Lee and A. Sangiovanni-Vincentelli. A Framework for Comparing

13

Models of Computation. IEEE Transactions on Computer Aided Design
of Integrated Circuits and Systems, 17(12):1217–1229, December 1998.

[19] F. Boussinot and R. de Simone. The Esterel language. in Proceedings of
the IEEE, vol. 79, pp. 1293–1304, Sept. 1991.

[20] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: A declar-
ative language for programming synchronous systems. in ACM Symp.
Principles Program. Lang. (POPL), Munich, 1987, pp. 178–188.

[21] J. Forget, F. Boniol, D. Lesens, and C. Pagetti. A multi-periodic syn-
chronous data-flow language. In 11th IEEE High Assurance Systems En-
gineering Symposium (HASE’08), Nanjing, Dec. 2008.

[22] G. Berry and G. Gonthier. The Esterel synchronous programming lan-
guage: Design, semantics, implementation. in Sci. Comput. Program,
vol. 19, pp. 87–152, Nov. 1992.

[23] S. A. Edwards. An Esterel compiler for large control-dominated systems.
in IEEE Trans. Computer-Aided Design, vol. 21, Feb. 2002.

[24] D. Weil, V. Berlin, E. Closse, M. Poize, P. Venier, and J. Pulou. Efficient
compilation of Esterel for real-time embedded systems. in Proc. Int. Conf.
Compilers, Architecture, and Synthesis for Embedded Syst., San Jose, CA,
Nov. 2000, pp. 2–8.

[25] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. in Proceedings
of the IEEE, 1987, 75, (9), pp. 1235–1245

[26] E.A. Lee and D.G. Messerschmitt. Static scheduling of synchronous data
flow programs for digital signal processing. in IEEE Transactions on
Computers, 36(1):24–35, 1987.

[27] S. Bhattacharyya, E. Lee, and P. Murthy. Software Synthesis from
Dataflow Graphs. Kluwer, 1996.

[28] Falk H., Marwedel P. Source Code Optimization Techniques For Data
Flow Dominated Embedded Software. Springer, Berlin 2004

[29] J. Falk, J. Keinert, C. Haubelt, J. Teich, and S. Bhattacharyya. A gen-
eralized static data flow clustering algorithm for mpsoc scheduling of
multimedia applications. ACM International Conference on Embedded
software, 2008.

[30] Strehl, K., Thiele, L., Gries, M., Ziegenbein, D., Ernst, R., and Teich, J.
FunState - an internal design representation for codesign. IEEE Transac-
tions on Very Large Scale Integration (VLSI), 2001, 9(4), pp. 524–544

[31] Hoare, C.A.R. Communicating sequential processes. Communications of
the ACM, 1978, 21, (8), pp. 666–676

[32] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science
of Computer Programming, 8(3):231–274, June 1987.

[33] Andrzej Wasowski. On Efficient Program Synthesis from Statecharts.
Proc. ACM SIGPLAN Conf. of Languages, Compilers, and Tools for Em-
bedded Systems, 2003.

[34] Plishker, William and Sane, Nimish and Bhattacharyya, Shuvra S. A
generalized scheduling approach for dynamic dataflow applications. Pro-
ceedings of the DATE Conference , 2009, Nice, France

[35] Bhattacharyya, S. S. and Murthy, P. K. and Lee, E. A. Optimized soft-
ware synthesis for synchronous dataflow. Proceedings of the IEEE Inter-
national Conference on Application-Specific Systems, Architectures and
Processors, 1997, Washington, DC, USA.

[36] Li, M., Wang, H., and Li, P. Tasks mapping in multicore based system:
Hybrid ACO&GA approach. Proceedings of the International Confer-
ence on ASIC, 2003.

[37] F. Reimann, M. Glaß, C. Haubelt, M. Eberl, and J. Teich. Improving
platform-based system synthesis by satisfiability modulo theories solv-
ing. IEEE/ACM International Conference on Hardware/Software Code-
sign and System Synthesis, 2010.

[38] R. Niemann, P. Marwedel. An Algorithm for Hardware/Software Parti-
tioning Using Mixed Integer Linear Programming. Design Automation
for Embedded Systems March 1997, Vol. 2 (2), pp 165-193

[39] P. Pop, P. Eles, and Z. Peng. Schedulability-Driven Communication
Synthesis for Time Triggered Embedded Systems. Real-Time Systems,
26(3):297–325, April 2004.

[40] A. Hamann and R. Ernst. TDMA time slot and turn optimization with
evolutionary search techniques. Conference on Design, Automation and
Test in Europe, 2005.

[41] K. Schmidt and E. G. Schmidt. Message scheduling for the flexray pro-
tocol: The static segment. IEEE Transactions on Vehicular Technology,
58(5):2170–2179, June 2008.

[42] B. Tanasa, U. Bordoloi, P. Eles, and Z. Peng. Scheduling for Fault-
Tolerant Communication on the Static Segment of FlexRay. IEEE Real-
Time Systems Symposium, 2010.

[43] B. Tanasa, U. Bordoloi, P. Eles, and Z. Peng. Reliability-Aware Frame
Packing for the Static Segment of FlexRay. ACM International Confer-
ence on Embedded software, 2011.

[44] S. Ding, N. Murakami, H. Tomiyama, and H. Takada. A ga-based
scheduling method for flexray systems. ACM International Conference
on Embedded software, 2005.

[45] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing analysis of the
FlexRay communication protocol. Real-Time Systems, 39(1-3):205–235,
August 2008.

[46] R. Racu, M. Jersak, and R. Ernst. Applying sensitivity analysis in real-
time distributed systems. IEEE Real Time and Embedded Technology and
Applications Symposium, 2005.

[47] W. Zheng, Q. Zhu, M. Di Natale, and A. Sangiovanni-Vincentelli. Def-
inition of task allocation and priority assignment in hard real-time dis-
tributed systems. IEEE Real-Time Systems Symposium, 2007.

[48] Q. Zhu, H. Zeng, W. Zheng, M. Di Natale, and A. Sangiovanni-
Vincentelli. Optimization of task allocation and priority assignment in
hard real-time distributed systems. ACM Transactions on Embedded
Computing Systems, 11(4):85, December 2012.

[49] T. Pop, P. Eles, and Z. Peng. Design optimization of mixed time/event-
triggered distributed embedded systems. IEEE/ACM International Con-
ference on Hardware/Software Codesign and System Synthesis, 2003.

[50] S. Samii, A. Cervin, P. Eles, and Z. Peng. Integrated scheduling and
synthesis of control applications on distributed embedded systems. Con-
ference on Design, Automation and Test in Europe, 2009.

[51] A. Metzner and C. Herde. RTSAT– an optimal and efficient approach to
the task allocation problem in distributed architectures. IEEE Real-Time
Systems Symposium, 2006.

[52] P. Emberson and I. Bate. Stressing search with scenarios for flexible so-
lutions to real-time task allocation problems. IEEE Transactions on Soft-
ware Engineering, 36(5):704–718, September 2010.

[53] A. Hamann, R. Racu, and R. Ernst. Methods for multi-dimensional ro-
bustness optimization in complex embedded systems. ACM International
Conference on Embedded software, 2007.

[54] J. P. Vielma, S. Ahmed, and G. Nemhauser. Mixed-integer models for
non-separable piecewise linear optimization: unifying framework and ex-
tensions. Operations Research, 58:303–315, 2010.

[55] OSEK/VDX operating system specification version 2.2.3.
http://www.osek-vdx.org, February 2005.

[56] G. Wang, M. Di Natale, and A. Sangiovanni-Vincentelli, Optimal synthe-
sis of communication procedures in real-time synchronous reactive mod-
els. IEEE Transactions on Industrial Informatics, 6(4):729–743, Novem-
ber 2010.

[57] CPLEX Optimizer, web page: http://www.ibm.com/software/commerce/

optimization/cplex-optimizer/ (Retrieved on Dec. 31, 2012).

14

