
Robust and Extensible Task Implementations of
Synchronous Finite State Machines

Qi Zhu
UC Riverside

qzhu@ee.ucr.edu

Peng Deng
UC Riverside

pdeng002@ucr.edu

Marco Di Natale
Scuola Superiore S. Anna

marco@sssup.it

Haibo Zeng
McGill University

haibo.zeng@mcgill.ca

Abstract—Model-based design using synchronous reactive (SR)
models is widely used for the development of embedded software
controls. SR models ease verification and validation, and enable
the automatic generation of implementations. In SR models,
synchronous finite state machines (FSMs) are commonly used
to capture changes of the system state under trigger events.
The implementation of a synchronous FSM may be improved
by using multiple software tasks instead of the traditional single-
task solution. In this work, we propose methods to quantitatively
analyze task implementations with respect to a breakdown factor
that measures the timing robustness, and an action extensibility
metric that measures the capability to accommodate upgrades.
We propose an algorithm to generate a correct and efficient task
implementation of synchronous FSMs for these two metrics, while
guaranteeing the schedulability constraints.

I. INTRODUCTION

Model-based design based on synchronous reactive (graph-
ical or textual) languages is increasingly used in the devel-
opment of control algorithms, for the opportunity of early
validation and verification coming from simulation and for-
mal verification of properties. Today, the most popular tools
supporting SR modeling are SCADE and Simulink. In both
languages, the system is modeled as a network of dataflow
and finite state machine blocks (called Stateflow in Simulink).
At the end of the modeling stage, both environments offer
tools for the automatic generation of a (software or firmware)
implementation. The languages supported by SCADE (Esterel,
Lustre, Synccharts [3]) are typically implemented as a single
executable that runs according to an event server model. Reac-
tions decompose into atomic actions that are partially ordered
by the causality analysis of the program. The scheduling is
generated at compile time, and the generated code executes
without the need of an operating system. References to the
code generation process can be found in [10, 15].

Similarly, in the implementation of Simulink models, cur-
rent tools such as the Embedded Coder/Simulink Coder [1]
generate a single periodic task for each Stateflow block (FSM).
Every time this task is activated, it checks for active trigger
events and processes them. To make sure it will not miss
any trigger event, the task is executed at the greatest common
divisor (GCD) of the periods of its trigger events. In [8], it
is observed that such a single-task implementation may lead
to unnecessary activations, and therefore reduce the system
schedulability and cause memory overhead on communication

buffers. By generating multiple software tasks according to a
partitioning of the FSM based on the periods of the trigger
events, the system schedulability and memory usage may be
improved. Different task implementation models are discussed.
However, no approach is provided for quantitatively comparing
them. The design of a memory-efficient implementation of
communication among blocks can be found in [7] and [6].
In [16], the schedulability analysis of Stateflow models or
real-time task models derived by synthesizing a state machine
formalism is discussed.

In this work, we propose methods to quantitatively an-
alyze and compare task implementations with respect to a
breakdown factor and an action extensibility metric. The two
metrics have different practical implications, and might lead
to different optimal solutions.

The breakdown factor is defined based on the concept of
breakdown utilization (introduced in [12]) as the maximum
scaling factor of task execution times that allows to retain
feasibility (in our work, the factor applies to actions in FSMs).
Intuitively, a larger breakdown factor allows a wider selection
of implementation platforms (e.g. different processor speeds
for cost/performance trade-off) and makes the system more
robust with respect to timing variations.

Action extensibility follows the definition of task extensibil-
ity (proposed in [17]) as the maximum amount by which the
execution time of each single action in the FSMs may increase
without violating the system timing constraints. Optimizing
action extensibility allows adding future functionality or up-
grading existing ones without a major redesign cycle. This is
imperative for large-volume and long-lifetime systems.

The number of possible multi-task implementations for a
given FSM is exponential in the number of transitions. For
complex automotive and avionics systems, the FSM may
contain hundreds or thousand of states, which leads to a huge
number of potential implementations. While intuitively gener-
ating more tasks provides more flexibility in scheduling, it also
causes context switching overhead and in some cases leads
to communication overhead. Furthermore, careful analysis is
required to guarantee that the multi-task implementation is
functionally correct.

The main contributions of this work include:
• algorithms for computing the breakdown factor and

the action extensibility for systems implementing syn-
chronous FSMs.978-3-9815370-0-0/DATE13/ c⃝ 2013 EDAA

3

5 θ3

θ4

e /a2 5

e /a2 2

θ1 e /a1 1

θ3

e1

θ2

θ5

θ4

e2

θ3

e1

θ2 θ4

θ5

e2

τ1

θ1

(b)

θ1

τ2

(c)
S 3

S 2

1

1
2

0.3ms

0.4ms

2
0.2ms

0.5ms

e /a

e /a2

1 (a)

S 1

4

2θ

0.4ms

θ

Fig. 1. An Example of FSM Representation

• an algorithm to improve the task implementations of syn-
chronous FSMs based on these two metrics, while guaran-
teeing functional correctness and satisfying schedulability
constraints.

The paper is organized as follows. Section II introduces
models for synchronous FSMs and their task implementations,
and presents a motivating example. Section III presents meth-
ods to compute the breakdown factor and the action exten-
sibility for given task implementations. Section IV presents
the algorithm to explore the task implementations according
to the two metrics. Section V shows the experimental results
and Section VI concludes the paper.

II. SYSTEM MODELS AND MOTIVATION

A. Synchronous FSM model

We use the similar notations as in [8] to represent a
synchronous (Mealy type, inspired by Stateflow) finite state
machine. An FSM is defined by a tuple (S, S0, I,O,E,T),
where S = {S0, S1, S2, . . . Sl} is a set of states, S0 ∈ S is
the initial state, I = {i1, i2, . . . ip} and O = {o1, o2, . . . oq}
are the input and output signals. E is a set of trigger (or
activation) events. Each event ej is generated by the value
change of a signal, and may only occur with a period tej
that is an integer multiple of a system base period tbase (i.e.
tej = kej · tbase). At each time instant k · tej , the event may
or may not present (in which case the system may stutter).
Finally, T is a set of transition rules. Each transition θj ∈ T is
a tuple θj = {Ssj , Sdj , eθj , gj , aj , γj}, where Ssj is the source
state, Sdj is the destination state, eθj ∈ E is the trigger event
(different transitions may be triggered by the same event), gj is
the guard condition, aj is the action, and γj is the evaluation
order among the transitions that start from the same state.
When two or more transitions from the same source state are
enabled at the same time, the transition with the lowest order
is taken.

Fig. 1(a) shows an example FSM. The periods of e1 and
e2 are 2ms and 3ms respectively. For each transition, the
associated trigger event and action are shown, along with the
transition priority (in red and bold) and the execution time of
the action (in blue and italic). The guard condition is omitted.

In this paper, we do not consider the case in which
transitions are activated by a logical expression evaluated on
multiple events, or events generated by transitions. The State-
flow semantics also allow more advanced constructs such as
concurrent states, superstates, entry/exit actions, while actions
and join transitions. In several cases, a hierarchical FSM can

be flattened and our methods can apply. The conditions for
the translation into flat FSMs are outlined in [14] and the
composition rules can be found in [11].

B. Task implementation model

In this work, we consider implementing a set of FSMs F =
{F1, F2, . . . Fm} on a single embedded processor with a set
of tasks T = {τ1, τ2, . . . τn}. Each task τk has period ψk and
priority πk. If a transition θj (and the corresponding action aj)
is implemented in τk, it is denoted as µ(θj) = τk. We assume
that only transitions from the same FSM may be implemented
in the same task.

In synchronous FSMs, every transition occurs in zero logical
time, meaning that it completes before the next event is
processed. This assumption is important for determining the
functional behavior of FSMs, which may be captured by a
stream of input and output signal values. When implementing
the synchronous FSMs with tasks, it is necessary to preserve
the same stream of input and output signal values (flow
preservation), which requires maintaining the same logic order
among events and actions during execution. This means that in
the implementation, executing in real physical time, any action
execution and update of system state need to be completed
before the next set of inputs is processed (by the task activated
by the next event).

1) Single-task implementation: In a single-task implemen-
tation, all transitions from the same FSM Fk are implemented
in a single task τk, i.e. ∀θj ∈ Fk, µ(θj) = τk. This is the
approach adopted by the the Simulink Coder generator, and
called baseline implementation in [8]. The period of τk is the
GCD of the periods of all trigger events, i.e. ψk = GCD(teθj)
where θj ∈ Fk. To ensure that every transition completes
before the next set of inputs is processed (by a new instance
of the same task), the largest action execution time should be
no larger than the period, i.e. max(Caj) ≤ ψk where Caj is
the execution time of aj .

2) Multi-task implementation: In [8], three task models
are presented for multi-task implementations of synchronous
FSMs – the partitioned model, the mixed-partitioned model
and the deferred output update model. The deferred output
update model is based on separating the state update function
and the output update function into different tasks. This may
require significant development and verification efforts and
cause extra overhead if the two functions share significant
amount of computation. Therefore, in this work, we focus on
the partitioned model and the mixed-partitioned model, and
generalize them to a general partitioned model.

To explain task models, we define a transition graph Gk for
each FSM Fk, where each transition is represented by a node
and there is a directed edge between two nodes/transitions θi
and θj when the source state of θi and θj is the same and
the order of θi is lower than the order of θj . A partition P
divides all the nodes in Gk into a partition graph Gk(P),
where each partition set pi is represented by a node vi, and a
directed edge exists between two nodes vi and vj if at least
one transition in pi has lower order than another transition in

pj . Fig. 1(b) shows a special partition graph Gk(Pe) that is
based on the event partition Pe, where the nodes/transitions
are divided based on their events.

A multi-task implementation of the FSM Fk consists of a
partition P , where the transitions in each set pi is implemented
by a task τi. We assume a fixed priority scheduling among
tasks, therefore a feasible task implementation needs to be
consistent with the transition priorities, i.e. τi has higher
priority than τj if a transition in τi has lower order than
a transition in τj . During execution, τi sends an inhibition
signal to all lower priority tasks τj generated from the same
FSM, if one of its transitions executes. When this happens,
τj skips. It is easy to see that a task implementation has a
feasible priority assignment only if its corresponding partition
graph Gk(P) is acyclic. For instance, there is no feasible task
implementation based on the event partition Pe in Fig. 1(b).
In this case, transitions {θ1, θ2, θ3, θ4} form a 4-cycle, where
a task partition based on events e1 and e2 is infeasible. As the
smallest possible cycles in event partitions, 4-cycles need to
be addressed in any multi-task implementation.

a) Partitioned model: The partitioned model only applies
to the FSMs where the event partition graph is acyclic. The
multi-task implementation in the partitioned model is based
on the event partition. Each task is executed at the period of
the corresponding event. The tasks implementing the FSM are
activated synchronously with offset = 0 and share a variable
encoding the current state of the FSM. The task deadlines are
assigned to ensure that any transition completes before the
next set of inputs is processed. As shown in [8], the absolute
deadline of a task instance (implementing transitions/actions)
is the minimum value between the end of its period and the
earliest activation time of higher priority tasks implementing
transitions of the same FSM. This deadline guarantees that
any task finishes its action execution and state update before a
new task instance for the same FSM starts execution, and that
there is no preemption between tasks from the same FSM.

b) Mixed-partitioned model: The partitioned model does
not apply to the FSMs in which the event partition graph
is cyclic. Therefore, a mixed-partitioned model is proposed
in [8]. The idea is to identify all the transitions that belong to
a cycle in the event partition graph and implement them in a
single task τb, while the remaining transitions are implemented
according to the partitioned model (as in Figure 1(c)). τb will
be assigned the highest priority and a period equal to the GCD
of all the periods of the events that trigger transitions in τb.

c) General partitioned model: The mixed-partitioned
model proposed in [8] generates a particular task implementa-
tion, but many other multi-task implementations are possible,
as long as the corresponding task partition graph is acyclic.
As shown later in the motivating example, those multi-task
implementations may provide better breakdown factor and
action extensibility than the mixed-partitioned model. The
general partitioned model is formally defined as follows.

Definition 1: Given an synchronous FSM F , a task im-
plementation based on the general partitioned model is any
TF = {τ1, τ2, . . . τn} that satisfies the following conditions:

S1

S2

0.4ms

S3

0.2ms

1

2

1
2

0.5ms

0.3ms

S1

0.4ms
S3

inhibition signal

e1

e2

a5

k k+1 k+2

k k+1 k+2

a1

0.4

0.4 -> 1.6

(deadline

of a1)

(deadline

of a5)

�1 : e1 / a1

�2 : e2 / a2

�4 : e2 / a4

�3 : e1 / a3

�5 : e2 / a5

�1 @ 1ms

�2 @ 3ms

Fig. 2. Extensibility for the third multi-task Implementation

(1) any transition in F should be implemented by one and
only one task in TF , i.e. ∀θi ∈ F,∃!τk ∈ TF , s.t. µ(θi) = τk,
(2) any task in TF implements at least one transition in F , i.e.
∀τk ∈ TF , ∃θi ∈ F, s.t. µ(θi) = τk, (3) the priorities of tasks
in TF satisfy all the transition evaluation orders specified in
F , i.e. ∀θi ∈ F, θj ∈ F , if θi > θj , then πµ(θi) > πµ(θj).

The partitioned model and the mixed-partitioned model are
clearly special cases of the general partitioned model.

C. Motivating example

We use the FSM in Fig. 1 as an example to compute the
breakdown factor and the action extensibility.

1) Single-task implementation: A single task τk implements
all transitions. The task period ψk is the GCD of event
periods 2ms and 3ms, i.e. 1ms. All transitions must complete
within the task period, therefore the breakdown factor is
ψk/max(Caj) = 1/0.5 = 2. The extensibility of action a1
is ψk/Ca1 = 1/0.4 = 2.5. Similarly, the extensibility of a2 to
a5 are 5, 3.33, 2 and 2.5, respectively.

2) Mixed-partitioned model: As explained earlier, {θ1, θ2,
θ3, θ4} form a 4-cycle that cannot be partitioned based on
events. In the mixed-partitioned model, the four transitions
are implemented in a single task τ1 with highest priority and
period 1ms, while θ5 is implemented in τ2 with lower priority
and period 3ms. The deadlines of transitions θ1 to θ4 are 1ms;
the deadline of θ5 is also 1ms because τ2 has to finish before
the activation of the higher priority task τ1. In this case, the
breakdown factor and the action extensibility are the same as
in the single-task implementation.

3) General partitioned model: A simple alternative is to
swap the priorities of τ1 and τ2, resulting in the implemen-
tation of Fig. 2. The periods of τ1 and τ2 are still 1ms
and 3ms. However, the deadline of θ5 is now 3ms since
τ2 has higher priority, which increases its extensibility. As
shown in Fig. 2, assuming the execution of a5 starts at time
k (after θ5 is triggered by e2), event e1 may arrive at time
k + 1 and enable θ1, with a deadline at k + 2. To ensure
θ1 completes before k + 2, the execution time of a5 can
be at most k + 2 − Ca1 − k = 1.6 (θ1 is not activated

until θ5 completes because τ1 has lower priority, therefore the
functional correctness is preserved). It can be proved that this
is the worst-case scenario for extending the execution time of
a5, and the extensibility of a5 is 1.6/0.4 = 4, larger than in
the previous cases. The breakdown factor is still 1/0.5 = 2.

The last task model improves the action extensibility but
not the breakdown factor. A different general partition further
improves on both metrics. We implement {θ1, θ2, θ3} in τ1,
and {θ4, θ5} in τ2. τ2 is assigned a priority higher than τ1, and
a period of 3ms. τ1 has a period of 1ms. The extensibility
of a1, a2, a3 is still the same. The extensibility of a5 is 4,
the same as in the last implementation. The extensibility of
a4 increases from 1/0.5 = 2 to 1.6/0.5 = 3.2. This is
computed by considering the case in which e1 arrives 1ms
after θ4 starts (the analysis is similar as for a5). Furthermore,
the breakdown factor is also reached in this case – e1 arrives
1ms after and both θ4 and θ1 need to complete within 2ms.
The breakdown factor is therefore 2/(0.5 + 0.4) = 2.22 (all
actions are scaled by the same factor). It can be proved that
the system is schedulable with all tasks scaled by 2.22.

III. BREAKDOWN FACTOR AND ACTION EXTENSIBILITY

In this section, we propose methods to compute the break-
down factor and the action extensibility of any given task
implementation based on the general partitioned model, for a
set of synchronous FSMs implemented on a single processor.

A. Breakdown factor

Definition 2: Given a set of synchronous FSMs F =
{F1, . . . , Fm} and their task implementation TF =
{TF1 , . . . , TFm}, where each TFk

is a task implementation
of Fk based on the general partitioned model (there may
be multiple tasks in TFk

). Let Fλ denote a modification of
F by scaling the execution time of all actions by λ (i.e.
C ′

ai
= Cai · λ, ∀Fk ∈ F , ai ∈ Fk). Let TFλ be the task im-

plementation of Fλ with the same transition-to-task mapping
and priority assignment as TF . The breakdown factor λmax

TF
of TF is the largest λ that can make TFλ schedulable. △

To compute the breakdown factor, we use a binary search
to explore the range of λ. For each choice of λ, we check
the schedulability of TFλ based on the request bound function
(rbf) and demand bound function (dbf) for each task τi ∈ TFk

λ .
The concepts of rbf and dbf are first introduced in [2] for
the analysis of task graphs. In [16], algorithmic solutions are
proposed to compute the rbf and dbf for synchronous FSMs,
along with the condition for schedulability. Specifically, the
rbf of a task τi during a time interval ∆ = [s, f), denoted
by τi.rbf(∆), is the maximum sum of the execution times by
the actions that are implemented in τi and have their activation
time within ∆. The dbf of τi during ∆ = [s, f), denoted by
τi.dbf(∆), is the maximum sum of the execution times by the
actions that are implemented in τi and have their activation
time and deadline within ∆. The schedulability of τi can be
checked by the following condition, where πi is the priority
of τi ([16]):

Theorem 3.1: Task τi is schedulable if the following con-
straint is satisfied for all level-πi busy periods [s, f):
∀t ∈ [s, f], ∃t′ ∈ [s, t] such that

τi.dbf [s, t] +
∑

τj∈HPτi

τj .rbf [s, t
′) ≤ t′ − s (1)

where HPτi consists of tasks with higher priorities than τi.
The concept of level-πi busy period is introduced in [13].

In a system with periodic trigger events, level-πi busy periods
start at the arrival points of the events within the hyperperiod
that trigger tasks with priority higher than or equal to πi. For
instance, assuming there are two events with periods {2, 3},
the start times of the busy periods to be considered are {0,
2, 3, 4} – these are the set of s to be checked in (1). For
the choices of t and t′ to be checked in (1), we only need to
consider the cases where t is the deadline of an instance of τi
and is within the length of the busy period (for which a bound
is derived in [16]) and t′ is at the arrival time of an event.

Leveraging Theorem 3.1, we propose Algorithm 1 for
computing the breakdown factor of TF . dθi is the shortest
deadline for a transition θi among all its activations. Let τθi
denote the task that implements θi (if θi ∈ Fk, then τθi ∈ TFk

).
For τi ∈ TFk

, let HP f
τi denote the tasks that are in TFk

(i.e.
also implementing the transitions from Fk) and have higher
priority than τi. Θ is the set of all transitions in F , i.e.
Θ = {θi | ∀Fk ∈ F , θi ∈ Fk}.

Algorithm 1 λmax
TF

= compute breakdown factor(F , TF)

1: ∀θi ∈ Θ, compute deadline dθi as the GCD of the task periods from
task set {τθi} ∪HP f

τθi
2: λlb = 0; λub = min{dθi | θi ∈ Θ}
3: while (λub − λlb > MAX ERROR) do
4: λ = (λub + λlb)/2
5: get Fλ and TFλ by scaling Cai by λ for all action ai
6: schedulable = true
7: for all τi in the system do
8: calculate start points s for level-πi busy periods
9: calculate bound f and choices of t, t′ for each busy period

10: for all (s, t) pair for τi do
11: compute τi.dbf [s, t]
12: for all t′, compute τj .rbf [s, t

′) and check Constraint 1
13: if Constraint 1 is not satisfied for any t′ then
14: schedulable = false; break out of the loops
15: if schedulable then λlb = λ else λub = λ

16: return λ

When computing the rbf and dbf of each task τi, we need
to consider the state update and take into account the fact that
other tasks may be generated from the same FSM Fk. Hence,
we derive an FSM F ′

k from Fk by setting the computation time
of those actions that are not in τi to 0, and then compute the rbf
and dbf of F ′

k. This method is also applied when computing
the sum of rbfs and dbfs from several tasks generated from
the same FSM.

B. Action extensibility

Action extensibility can be similarly defined as a breakdown
factor, with a key difference: the execution time of a single
action is increased when computing extensibility.

Definition 3: Given a set of synchronous FSMs F =
{F1, F2, . . . Fm} and its task implementation TF =
{TF1 , TF2 , . . . TFm}, the action extensibility βai of ai ∈ Fk

is the largest scaling factor that, applied to Cai (i.e. C ′
ai

=
Cai · βai) retains the schedulability of the task set. △

Algorithm 2 compute action extensibility single(F , TF)
1: ∀θi ∈ F , compute deadline dθi as the GCD of the task periods from

task set {τθi} ∪HPτθi
2: for all θi ∈ F do
3: slackmin = dθi − Cai

4: for all θj s.t. τθj ∈ LPτθi
do

5: slack = dθj +GCD(πθi , πθj)− Cai − Caj

6: for all τk ∈ (HPτθj
\HPτθi

\ {τθi}) do
7: slack = slack −max{Cam |µ(θm) = τk}
8: slackmin = min(slackmin, slack)
9: βai = (slackmin + Cai)/Cai

A similar approach to the breakdown factor can be used
for computing the action extensibility, i.e. a binary search
on the value of βai , checking the system schedulability for
each candidate value. However, the rbf and dbf computation
for schedulability analysis is very time consuming. If there
is only one FSM F on the processor and the largest action
execution time is not larger than the GCD of the event periods,
a more efficient algorithm (Algorithm 2) can be used to
analyze the worst case scenario for action extensibility and
directly compute its value with conservative approximations
(not overly pessimistic in our tests). The main idea is to check
the schedulability of the first instance of any lower priority task
after the triggering of ai. The motivating example shown in
Fig. 2 shows the simplest case of such analysis.

IV. TASK IMPLEMENTATION OPTIMIZATION

Several algorithms can be designed to explore different
task implementations with respect to the breakdown factor
and the action extensibility. The brute force solution is to
explore all possible task implementations based on the general
partitioned model, and calculate the two metrics for each
implementation using Algorithm 1 and 2. However, the
complexity is likely to be too high for practical systems. We
propose an efficient heuristic that combines local optimization
with global correctness checking and can be easily customized
to optimize either of the two metrics (the use of different
metrics may lead to different optimal solutions).

First, to optimize the action extensibility, we need to extend
the extensibility definition to a system level metric.

Definition 4: Given a set of synchronous FSMs F =
{F1, F2, . . . Fm} and its task implementation TF =
{TF1 , TF2 , . . . TFm} on a single processor, the system action
extensibility BTF is defined as the weighted average of the
action extensibility of each action ai in the system, i.e.
BTF =

∑
ai∈

∪
k
Fk
wi · βai where wi is a pre-assigned weight

that indicates the importance of the action and how likely it
will be increased in future upgrades. △

Other options include considering functional dependencies
among actions and take into account the simultaneous update

of a set of actions (as proposed in [17] for tasks) or to
consider the minimum extensibility among all actions in the
system. Our algorithm can be easily extended to handle other
formulations like those.

The proposed heuristic is shown as Algorithm 3. The
algorithm starts by selecting a task implementation for all
the transitions forming 4-cycles in the event partition graph.
For each set of transitions in a 4-cycle, all the feasible
task implementations are explored by the function opti-
mal task implementation, which returns the best local solution
for the breakdown factor or the action extensibility (according
to the selected metric, ties are broken in favor of the mapping
with less tasks). Next, all remaining transitions are temporarily
mapped to a dedicated task. Then, all cycles in the resulting
task graph are removed by merging the corresponding tasks
(generating a feasible task partition). Next, opportunities for
merging pairs of tasks activated by the same event are explored
(the function if mergeable checks whether merging two tasks
will result in a cycle in the task graph). The result of this stage
depends on how the task pairs are selected for trying a merger
– in our algorithm, they are selected in order of their weights
and execution times. Finally, priorities are assigned to tasks in
agreement with the transition evaluation order. If no order is
defined between any two task partitions, then their priorities
are assigned using a reverse rate monotonic rule (to maximize
task deadlines).

Algorithm 3 optimize task implementation(F)
1: for all Fk ∈ F ; Θk = {θi | θi ∈ Fk} do
2: TFk

= ∅
3: while ∃ a 4-cycle Q = {θ1, θ2, θ3, θ4} ∈ Θk do
4: T ′ = optimal task implementation(Q)
5: TFk

= TFk
∪ T ′; Θk = Θk \ Q

6: for all θi ∈ Θk do
7: generate one task τi for each θi; TFk

= TFk
∪ {τi}

8: Build partition graph Gk(TFk
)

9: while ∃ a cycle (τ1, τ2, ..., τn) in Gk(TFk
) do

10: merge tasks τ1, τ2, . . . , τn into τm
11: update TFk

and Gk(TFk
)

12: while ∃ τi, τj ∈ TFk
s.t. both τi and τj are triggered by the same

event and if mergeable(τi, τj) do
13: merge τi and τj to task τm
14: TFk

= TFk
∪ {τm} \ {τi, τj}, and update Gk(TFk

)

15: Assign task priorities based on transition priorities and task periods

V. EXPERIMENTAL RESULTS

We use the TGFF tool [9] to generate random graphs and
extend them to random FSM models (with added transitions,
randomly selected periods, execution times and priorities) as
our experiment sets. We compare the task implementations
generated from our Algorithm 3 with the single-task imple-
mentation of the FSMs.

First, we compare the system action extensibility, for cases
with a single FSM having from 5 to 25 states. The results are
shown in Fig 3. The line labeled harmonic-fixed represents the
cases where all event periods are harmonic and the transition
priorities entirely depend on their events (the event parti-
tion is feasible). The line harmonic-0.5 represents the cases

0

0.5

1

1.5

2

2.5

3

5 10 15 20 25

S
y

st
e

m
 A

ct
io

n
 E

x
te

n
si

b
il

it
y

 I
m

p
ro

v
e

m
e

n
t

FSM Size (# of States)

harmonic-fixed harmonic-50%

non-harmonic-fixed non-harmonic-50%

Fig. 3. System Action Extensibility Improvement

with harmonic periods and the transition evaluation orders
depending on their events with a 50% probability (which
might lead to 4-cycles). The other two lines are for non-
harmonic event periods. Each data point in the figure is the
average result of 20 random FSMs. For harmonic cases, our
algorithm provides an improvement between 20% to 50% over
the single-task implementation. For non-harmonic sets, the
improvement increases to between 2X and 3X . Non-harmonic
sets allow more improvement since the deadlines in our multi-
task implementations are typically much larger than in the
single-task solution. When computing the action extensibility
of our task implementation, we use Algorithm 2 since this is
a single-FSM system. Action extensibility can be computed
within 10 minutes for FSMs with 250 states.

Next, we compare the breakdown factor. Because of the
timing complexity for computing the breakdown factor in
Algorithm 1, we tested FSMs with size up to 12 states. The
results are shown in Fig. 4, for the same sets of randomly
generated FSMs used in the extensibility case. For non-
harmonic cases, the improvement is between 20% and 40%,
while for harmonic cases it is around 10%. The improvement
on the breakdown factor is less than the action extensibility,
because it is limited by the action with the smallest timing
slack, which is harder to improve.

Finally, we compare the system action extensibility and
breakdown factor, for systems where multiple FSMs are im-
plemented on a processor. In both cases, we need to use rbf
and dbf for schedulability analysis, and therefore we were only
able to test systems that have 3 FSMs and each FSM has 5
states. The average improvement on system action extensibility
is 70% and the improvement on the breakdown factor is 30%
(both for non-harmonic and fixed priority cases).

VI. CONCLUSION

We define a general partitioned model for multi-task im-
plementations of synchronous FSMs and two metrics for
measuring the quality of task implementations: the breakdown
factor and the action extensibility. We propose an algorithm to
explore robust and extensible task implementations based on
the two metrics. In future work, we plan to improve the method

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

5 8 10 12

B
re

a
k

d
o

w
n

 F
a

ct
o

r
Im

p
ro

v
e

m
e

n
t

FSM Size (# of States)

harmonic-fixed

harmonic-0.5

non-harmonic-fixed

non-harmonic-0.5

Fig. 4. Breakdown Factor Improvement

for computing the two metrics by developing approximated
schedulability tests. We also plan to consider the timing and
memory overhead of the task implementations.

REFERENCES
[1] The Mathworks Simulink and StateFlow User’s Manuals, Mathworks,

web page: http://www.mathworks.com.
[2] S. Baruah. Dynamic- and static-priority scheduling of recurring real-time

tasks. Real-Time Syst., 24(1):93–128, January 2003.
[3] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Guernic, and R.

de Simone. The synchronous languages 12 years later. Proceedings of
the IEEE, 91, January 2003.

[4] G. Berry and G. Gonthier. The Esterel synchronous programming
language: Design, semantics, implementation, Sci. Comput. Program.,
19(2):87–152, 1992.

[5] M. Di Natale and V. Pappalardo. Buffer optimization in multitask
implementations of simulink models. ACM Trans. Embed. Comput. Syst.,
7(3):1–32, 2008.

[6] M. Di Natale, L. Guo, H. Zeng, and A. Sangiovanni-Vincentelli. Syn-
thesis of Multi-task Implementations of Simulink Models with Minimum
Delays. IEEE Trans. Industrial Informatics, 6(4):637–651, 2010.

[7] S. Tripakis, C. Sofronis, N. Scaife, and P. Caspi. Semantics-preserving and
memory-efficient implementation of inter-task communication on static-
priority or edf schedulers. Proc. of the 5th ACM EMSOFT conference,
2005.

[8] M. Di Natale and H. Zeng. Task Implementation and Schedulability
Analysis of Synchronous Finite State Machines. In Proc. the Conference
on Design, Automation and Test in Europe, 2012.

[9] R. Dick, D. Rhodes, and W. Wolf. TGFF: task graphs for free. In Proc.
the 6th International Workshop on Hardware/Software Codesign, 1998.

[10] S. Edwards. An Esterel compiler for large control-dominated systems.
IEEE Trans. Computer-Aided Design, 21(2):169–183, Feb. 2002.

[11] E. Lee and P. Varaiya. Structure and Interpretation of Signals and
Systems. Addison Wesley, 2003.

[12] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: exact characterization and average case behavior. In Real Time
Systems Symposium, 1989.

[13] J. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary
deadlines. In Proc. Real-Time Systems Symposium, 1990.

[14] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi Defining
and translating a “safe” subset of Simulink/Stateflow into Lustre. 4th ACM
International Conference on Embedded Software, 2004

[15] D. Weil, V. Berlin, E. Closse, M. Poize, P. Venier, and J. Pulou. Efficient
compilation of Esterel for real-time embedded systems. Proc. Int. Conf.
Compilers, Architecture, and Synthesis for Embedded Syst., 2000.

[16] H. Zeng and M. Di Natale. Schedulability analysis of periodic tasks
implementing synchronous finite state machines. In Proc. 24th Euromicro
Conference on Real-Time Systems, 2012.

[17] Q. Zhu, Y. Yang, E. Scholte, M. Di Natale, and A. Sangiovanni-
Vincentelli. Optimizing the Software Architecture for Extensibility in
Hard Real-Time Distributed Systems. IEEE Transactions on Industrial
Informatics, 6(4): 621–636, November 2010.

