A Robotic Vehicle Testbench for the Application of MBD-MDE
Development Technologies

2 2

M. Morelli! Federico Moro Tizar Rizano

Abstract— Models are used in control domains for
early validation of system properties, using simulation
or formal verification, and for the automatic gener-
ation of a software implementation. We propose an
approach in which a functional model of the controls is
matched to a model of the execution platform through
an intermediate mapping model, that represents the
software tasks and communication messages. The
functional model is (partly) developed in Simulink
and code is generated for each subsystem. Next, an
abstract view of the functional model is imported
in SysML. Using SysML, a model of the execution
platform is created, and an implementation of the
subsystems as a set of tasks and messages is defined
and evaluated. The M2T Acceleo tool processes the
mapping model and generates the Orocos-compliant
task code executing the C/C++ functions generated
from Simulink, and the inter-task communication.
This paper outlines the proposed flow and provides
the description of a robotic car testbench used to show
the application of the methodology. The testbench
has enough functional complexity and a distributed
implementation to justify the creation of architecture
models, while requiring a moderate cost and effort for
its construction by the interested researchers.

I. INTRODUCTION

Models are used in control domains such as automotive
and avionics for early validation of system properties,
using simulation or formal verification, and for the auto-
matic generation of control software. Model-Based Design
(MBD) tools such as Simulink [1], based on a synchronous-
reactive (SR) execution semantics, allow the modeling
and simulation of hybrid systems, in which functionality
is represented using an extended finite-state machine
formalism. Early verification of the system functionality
is also valuable in many robotics systems, which perform
complex actions demanding a timely, predictable and
certifiably safe behaviour.

MBD modeling tools represent the control functionality
in abstract terms, according to a set of events in logical
time. When the functionality is implemented on a dis-
tributed computing platform that executes the controls
as a set of software tasks and network messages, the
synchronous assumption (conformance with respect to the
model execution semantics) should be preserved against
computation and communication delays [2]. Alternatively,
the development process should include a suitable model
of the execution platform and the controls implementation
to evaluate the delays and estimate their impact on the

ITECIP Institute, Scuola Superiore S. Anna, Pisa, Italy, 2DISI,
Universitd degli Studi di Trento, Italy

Daniele Fontanelli

Luigi Palopoli? M. Di Natale!

Fig. 1: The robotics car testbench.

controls performance (or the feasibility against deadlines).
This requires a detailed model of the control implemen-
tations and the execution hardware and software [3], for
which languages and tools are not readily (commercially)
available.

We believe that MDE tools and methodologies (in-
cluding the Eclipse Modeling Framework EMF and
SysML) are suited for the specification of the execution
platform and the software and message implementations.
A development flow that integrates MBD and MDE
technologies can provide the appropriate set of models
for the automatic generation of implementations and the
analysis of functional and time properties.

As a testbench for the methodology we propose a
car-like robotics application. The system has sufficient
complexity to justify the development of significant
functionality using a MBD flow, including image pro-
cessing, supervisory controls and low-level control loops.
The execution architecture is distributed and leverages
computation boards and communication technologies
that are widely available. Because of its complexity and
the distributed execution platform, the software and
messaging architecture is not trivial and justifies timing
analysis (schedulability and communication) providing
an additional dimension to the problem.

Overall, the testbench (a picture is in Figure 1) provides
an inexpesive platform to validate controls, development
and analysis methodologies and integration of heteroge-
neous models.

In this WiP paper, we first outline our methodology,

then the testbench and how the methodology can be
applied to its development. To facilitate the dissemination
of information, models and code of the open testbench,
a web site will be created as a platform for exchanging
artifacts, support discussion forums and share results.

II. INTEGRATION OF MBD AND MDE IN THE
DEVELOPMENT FLOow

In our proposed approach, a functional model of the
system controls is matched to a purposely constructed
model of the execution platform through an intermediate
mapping model, that represents the software tasks and
messages (local or on the network) that realize the
functions.

A natural candidate for the functional modeling is
the Simulink/Stateflow synchronous language. However,
functionality could also be implemented directly as code.
In both cases, an abstract view of the functional model
is required. This abstract view should account for all the
information related to the (timed) events that are relevant
for the system, including rate constraints, partial order
of execution constraints and any other synchronization
constraints.

For the model of the execution platform, we are going to
use the open source SysML Papyrus tool, which operates
on top of the Eclipse Modeling Framework. On top of
the modeling features offered by the standard SysML
metamodel, we will provide a domain-specific profile for
robotics applications that leverages (and extends) the
standard OMG MARTE profile [4] for embedded and
real-time systems. In addition, our profile will represent
the common execution hardware in use in robotics systems
and, on top of it, the Orocos-RTT framework [5], which
encapsulates communication and RTOS services and acts
as a middleware.

In addition to a dedicated profile for the model of
the execution architecture, another profile is created to
represent the model of the software implementation. This
model consists of the set of all tasks and messages im-
plementing the system functions and the communication
signals. When a functional model is put in correspondence
with an execution architecture, the task and message
model is produced as the result (either by hand by the
designer or as the result of the operation of synthesis
tools). The profile extensions allow to define the mapping
and evaluate the computation and communication delays,
but are also used for the automatic generation of a
concurrent task implementation on top of Orocos. Code
generation is performed using the standard (and open
source) Model-to-Code transformation tool Acceleo.

These are the process steps. A functional model of the
controls is developed in Simulink and code is generated for
each subsystem. Next, an abstract view of the functional
model is generated and imported in the Ecore framework
and then in SysML using a model-to-model (QVT)
transformation. In the SysML modeling environment,
a model of the execution platform is created, and an

implementation of the subsystems as a set of tasks,
executing on the platform nodes and exchanging messages
is defined.

The task model may be constrained in such a way that
only flow-preserving implementation of the functional
model are allowed. Next, the Acceleo tool processes the
mapping model and generates the Orocos description of
the tasks and the inter-task communication according to
the specification. The Orocos tasks execute the C/C++
functions, generated from Simulink and implementing the
control subsystems.

The resulting methodology is a merger of the MBD
and MDA paradigms. The overall tool flow is represented
in Figure 2.

Eclipse EMF (Ecore)

Functional
metamodel

L Simulink ‘-b ‘ XML ‘\

Simuink coder

Behavioral
code

SysML

Functional
model

Behavioral
code

Mapping

Platform-dependent | g B

code

Platform
model

Fig. 2: Exchange of information and code generation by
the framework tools.

III. CAR-LIKE RoBoOTIC TESTBENCH

The robotic car testbench provides a case study for rea-
soning about all the system levels: functional, execution
platform and software implementation. In the following,
we first describe the functional model by highlighting the
main functional components/subsystems. Then, we will
provide a general description of the execution platform
and the software architecture.

Functional View.

The functionality developed for the car system consists
of a path follower, to be possibly further extended with
more complex features. The car has four weels and
two cameras (front and side) and moves in a physical
environment consisting of a road, external objects and
agents. Sensors collect information (in our case position,
attitude and velocity of the car), and actuators control
the engine and the steering wheels. Sensors and actuators
are involved in low-level feedback control loops targeting
setpoints on a given trajectory. A planner decides the
line to follow, which is implemented as a sequence of
manoeuvres such as go straight with speed X, turn
with radius Y and speed Z etc. Planning decisions are
made based on performance metrics, such as saving time,
saving energy, overtaking slower vehicles, avoiding fixed

Manoeuvre

Planner Control

Speed Control [
2mS | Encoders
x4
Steering Control H Servo

4 ms
Potentiometer

ters |«

Turning Control

200 ms 20 ms

«block»
System

«part»
: CANbus

inout bus: <Undefined>
inout CANPort: <Undefined.
z inout CANPort: <Undefined> 4@ inout CANPort: <Undefineds
«parts «parts «parts
: PandaBoard Flex : BeagleBoard

«parts «parts
dspic: DSPIC blockL: ARM

«parts
arm: ARM
t]

Gyros / Accel S

4@‘

Fig. 3: Sensing and actuating control loops in a nested
structure.

obstacles etc. The decided path is tracked by the low level
controllers.

From a high level perspective, the system consists of
a set of nested control loops, as in Figure 3, with the
planner being the driving block of the entire system. Each
control loop is activated periodically and has a different
frequency/period, as shown in Fig. 3.

At the low level the robotic car has two servos controlled
by a PWM signal: one is the engine that moves the car and
one controls the steering angle. Each wheel has a relative
encoder for speed monitoring, and a potentiometer is
mounted in front of the car to provide feedback on
the steering position. The sensors are used by two low
level feedback loops (with a period of 2ms and 4ms)
implementing the PID controllers on the speed and the
turning angle. A basic Inertial Platform, composed by
gyros and accelerometers, completes the set of low level
sensors and is used to improve the estimate of the car
position.

A line following algorithm controls the position of the
car with respect to the ideal panned trajectory. The
algorithm used data from a high frame rate camera,
pointing sideways, which estimates the position and
attitude of the car with respect to the road line. The
line following algorithm and the speed controller receive
the set points from a manoeuvre controller that defines
the sequence of manoeuvres and monitors their execution.

A second camera, mounted on the front of the vehicle,
is used for path reconstruction and obstacle detection.
This camera is activated with a relatively low rate (5
frame per seconds). The Planner receives an image from
the camera, reconstructs the path and extracts other
meaningful information (e.g., on the presence of obstacles).
Then, it decides the vehicle manoeuvre and communicates
it to the Manoeuvre Controller.

The vision algorithms used for each camera are a combi-
nation of Randomised algorithms (RANSAC) and Kalman
Filtering [6], [7] generating a widely changing computing
workload, difficult to manage with the standard tools of
digital control [8].

In addition to highlighting essential mathematical and
physical aspects related to the stability of the system and
to the correctness of the design, the models composing

inout USB: <Undefined>
inout SPL: <Undefined>

out PWM1: <Undefined>

out PWM2: <Undefined> inout USB: <Undefined

inoui USB: <Undefi
cpart>

: RearCamera

inouf SPL: <Undefined>

inout BPI: <Undefined>
in PWM: <Undefined>

b
: ServoWheels

inout USB: <{ndefined>

part»
: FrontCamera

part>
: ServoSteer

inout SPL: <Undefined> «part»

: Encoders_Poten.

«part»
: Gyros_Accel

Fig. 4: The hardware architecture of the system.

the functional diagram provide a possible decomposition
into subsystems, a definition of their relations and of the
timing constraints for their execution.

Hardware Architecture.

The computing system consists of three boards con-
nected by communication buses. The first board is a
FLEX development board based on a 16 bit dsPIC.
The board is provided with an OSEK-compliant RTOS
(Erika). The PIC microcontroller can be connected to
external devices by means of common digital interfaces
like low power communication systems (SPI or I2C), or
PWM. The FLEX also supports advanced communication
technologies like Ethernet and CAN bus.

The other two components are two ARM evaluation
boards: a Beagleboard and a Pandaboard. Both are Texas
Instruments products based respectively on OMAP3 and
OMAP4 processors version. The RTOS used for these
components is a Linux kernel modified with RTpreempt
patches, to improve its real-time performance. The
boards have SPI and I2C' interfaces for connection with
sensors and other low level peripheral; other connectivity
solutions are the classic USB, Ethernet, Bluetooth and
TEEES802.11 which facilitate remote control and teleme-
try. The Beagleboard and Pandaboard provide enough
computing power to support the camera processing
functionality, but have a limited power consumption and
a low cost, both desirable features for robots used in
laboratory activities.

Fig. 4 shows a view of the overall execution architecture
using an example (and early) version of SysML modeling.

The processing units are connected through a CAN
BUS, which offers a sufficient bit-rate for our applications
without incurring the cost of an Ethernet switch in terms
of power consumption. Other communication technologies
are used for sensors and actuators interface. In general,
the FLEX board is adopted for basic functionalities of
the system: motor and steering controllers, and therefore
for the communication with low level sensors and actu-

Encoder
0.4-0.4

Encoder
04-04

Encoder
04-04

Encoder
04-04

FLEX |

Speed
Control

Potentiometer

Front
Camera
80 -90

Manoeuvre
Control
0.1-0.1

Gyros/ BEAGLEBOARD

PANDABOARD ' 00 | T === i
Accel. 10 | i 1806
| 70 - 70 | : Lateral Turning Chte
| Camera Control
L _ _ . || 10-15 0.1-01 /:
|

Fig. 5: The task set generated from the functional diagram.
Each task is labeled with its average and worst case
execution times in ms. Edges represent messages with
payloads (bytes). The diagram also shows the allocation
of the tasks on the computing units.

Steering
Control
0.1-0.1

ators. Gyros and accelerometers are connected with the
Pandaboard.

The two cameras, seen as high level devices, have
an USB connection to the two ARM boards. Usually,
ARM processors design integrates in the system some co-
processing units, like GPUs or DSPs, which extend the
capabilities of this kind of processing units. In particular,
it is possible to increase the performance of algorithms,
such as the ones used in our study case. This reinforces the
choice of using microprocessors to define a level of sensors
and actuators interaction, and exploit more advanced
processors for the high level intelligence of the system. A
common bus between the processing units facilitates the
data flow for all the tasks running in the system.
Software Architecture and Mapping.

After the system functionality and time constraints are
defined, the computational entities are generated through
automated tools or by a manual coding process. This
refinement step produces a set of concurrent tasks.

The set of tasks is defined by a suitable SysML model.
The signals exchanged among the functional subsystems
are implemented by a set of messages, defined in the same
mapping model. Fig. 5 shows a (non-SysML) task model
derived from the functional scheme of Fig. 3.

In a simple mapping implementation, every functional
block generates a task which receives and sends messages
to the tasks derived from the other functional blocks
involved in the same control loop. If required, some tasks
may be further refined into subtasks. For instance, the
Lateral Camera task could be split in two tasks: one for
frame capturing and one for image processing. The split-
ting increases the complexity of the scheduling problem,
but could give benefits from the overall computational
power utilization. Of course, the allocation of the two
tasks in different computing units would result in a new
message (frame) in the system.

The mapping model defines the refinement of the
functional subsystems onto tasks and the task mapping
onto the processing units of the execution architecture.

Similarly, messages are associated with the interconnec-
tion buses. A feasible task allocation guarantees that
all deadlines are met, that the traffic generated by
tasks communication is schedulable and the semantics
properties of the functional model are preserved. For
this reason, the allocation of tasks should consider the
computation and communication constraints at the same
time.

IV. AVAILABILITY OF THE ROBOTICS TESTBENCH AND
NEXT STEPS

The construction plans, including the components bill,
the functional models, the software components and the
platform and task models of the robotics testbench will
be made available on a dedicated web site that aims at
stimulating collaboration among researchers working in
the fields of controls, modeling and real-time systems. We
hope that the system architecture can provide a suitable
benchmark and possibly a reference platform for teaching
and student competitions.

As for future steps, besides the obvious target of
completing the modeling effort and developing the missing
tool components, we plan to explore the automated/opti-
mal mapping of functional models onto a software/hard-
ware architecture (e.g., as shown by Zheng et al. [9]; the
end-to-end design of distributed real-time systems, where
the different tasks communicate through shared memory
or CAN Bus; the use of specification languages and
planning for autonomous robots; and possibly resource
aware control.

REFERENCES

[1] The MathWorks, Inc. Simulink: Simulation and Model-
Based Design. [Online]. Available: http://www.mathworks.com/
products/simulink/

[2] M. Di Natale, L. Guo, H. Zeng, and A. Sangiovanni-Vincentelli,
“Synthesis of multi-task implementations of simulink models
with minimum delays,” vol. 6 No 4, 2010.

[3] A. Sindico, M. Di Natale, and A. Sangiovanni-Vincentelli, “An
industrial application of a system engineering process integrating
model-driven architecture and model based design.”

[4] OMG: Object Management Group. Modeling analysis of real
time embedded systems (marte) profile. [Online]. Available:
http://www.omg.org/spec/ MARTE

[5] H. Bruyninckx. Open RObot COntrol Software. [Online].
Available: http://www.orocos.org/

[6] F. Moro, D. Fontanelli, and L. Palopoli, “Vision-based robust
localization for vehicles,” in Instrumentation and Measurement
Technology Conference (I2MTC), 2012 IEEE International.
IEEE, 2012, pp. 553-558.

[7] D. Nistér, “Preemptive ransac for live structure and motion
estimation,” in Computer Vision, 2003. Proceedings. Ninth
IEEE International Conference on. IEEE, 2003, pp. 199-206.

[8] D. Fontanelli, L. Palopoli, and L. Greco, “Deterministic and
stochastic qos provision for real-time control systems,” in Real-
Time and Embedded Technology and Applications Symposium
(RTAS), 2011 17th IEEE. 1EEE, 2011, pp. 103-112.

[9] W. Zheng, M. Di Natale, C. Pinello, P. Giusto, and A. S.
Vincentelli, “Synthesis of task and message activation models in
real-time distributed automotive systems,” in Proceedings of the
conference on Design, automation and test in Europe. EDA
Consortium, 2007, pp. 93-98.

