An FPGA Implementation of Wait-Free Data
Synchronization Protocols

Benjamin Nahill', Ari Ramdial', Haibo Zengl, Marco Di Natale?, Zeljko Zilic!
1 McGill University, email: {benjamin.nahill, ari.ramdial } @mail.mcgill.ca, {haibo.zeng, zeljko.zilic} @mcgill.ca
2 Scuola Superiore Sant’Anna, email: marco@sssup.it

Abstract—The synchronization of accesses to shared mem-
ory buffers in multi-core platforms can be realized through
lock-based synchronization protocols. If the embedded ap-
plication executing on the system has hard real-time con-
straints, the worst-case blocking times for accessing remotely
shared resources can negatively impact the schedulability
guarantee. In this case, wait-free communication protocols
can be an effective alternative. In addition, in a model-based
development process, wait-free buffers allow the realization
of communication that provably preserves the signal flows
and guarantees a correct implementation. Flow-preserving
wait-free communication primitives require (in the general
case) the execution of buffer updates procedures at task
activation time, either by the kernel or by a hook procedure
executing at the highest priority level. To minimize the
interference of such procedures on the application-level tasks,
we present and evaluate an FPGA implementation. Our FPGA
implementation is compared with implementations of lock-
based policies in terms of memory, time, and area overhead.

I. INTRODUCTION

In the last decade, major advances in VLSI manufac-
turing allowed to scale down architectures to fractions of
previous generations. This scaling and the corresponding
cost reduction, together with opportunities for power re-
duction and performance increase are leading to the fast
adoption of multicore architectures in embedded devices.
Applications running on multiple cores are common in the
automotive domain and are expected to increasingly support
hard real-time functionality.

Real-time embedded and cyber-physical systems must
provide computation tasks with a deterministic worst-case
response time. In multi-core architectures, tasks can be
scheduled with partitioned or global scheduling. Under
partitioned scheduling, tasks are statically assigned to
processors and each processor is scheduled separately.
Under global scheduling, tasks are scheduled using a single
shared task-queue. They are allocated dynamically and
inter-processor migration is allowed. Global scheduling
algorithms can provide more flexibility and load adaptation.
However, the required job migration can incur significant
overheads [9]. Also, partitioned scheduling is adopted and
supported by commercial standards like AUTOSAR, and
commercial real-time operating systems (e.g. VxWorks,
LynxOS, and ThreadX). In this work, we assume parti-
tioned scheduling.

The response time of a task includes not only its execu-
tion time, but also interferences from higher priority tasks
and any possible blocking time when waiting for lower
priority tasks. An important possible source of blocking
time is waiting for the access to shared resources, since
operations on them must be atomic. One important category
of such shared resources is memory buffers, used for com-
munication among tasks residing on the same or different
cores. The procedures that write into or read from the
buffers must guarantee the consistency of the data content
and buffer management structures.

Data consistency protocols fall into one of the following
three categories.

e Lock-based: tasks are prevented from accessing com-
munication data unless they hold the lock. When a task
wants to access the shared resource while another task
holds the lock, it blocks. In multicore architectures
with globally shared resources, the blocked task can
either suspend operation and enter a global queue or
spin on the lock [10] [7].

o Lock-free: each reader can access the communication
data without blocking but repeats the process if it
detects a concurrent write and has read an inconsistent
value. The total number of repeats can be bounded.

o Wait-free: when the global shared resource is a com-
munication buffer, readers and writers are protected
against concurrent access by replicating communica-
tion buffers.

Wait-free (WF) communication protocols not only can
be used to guarantee data consistency, but can be extended
to provide flow-preservation: a property of interest when
the system tasks are the implementation of a synchronous
reactive (SR) model such as Simulink or SCADE. In model-
based development, a flow-preserving implementation guar-
antees that the data values exchanged by tasks at run time
are the same values that are validated (by simulation or
model checking) on the functional model.

Several implementations of wait-free buffers with flow-
preservation (WF-FP) are possible. In the general case in
which no assumptions can be made on the activation events
of the writer and the reader, the implementation requires
procedures that are executed at task activation time, with
highest priority. Since these procedures interfere with all
application tasks, an efficient implementation is of highest

importance. In this paper, we present an FPGA implemen-
tation of wait-free communication mechanisms with flow
preservation and analyze it against the implementation of
lock-based methods with respect to memory and timing
overheads. The implementation as programmable hardware
enables parallelism at the cost of additional chip area (logic
units).

The paper is organized as follows. We give a brief
overview of methods for achieving data consistency and
flow preservation in Sections II and III, summarizing
the available approaches and algorithms. We then present
our programmable hardware implementation of lock-based
methods in Section IV and the FPGA implementation of
wait-free mechanisms with flow preservation in Section V,
including the design choices and issues. The analysis of
the results and the evaluation of the implementation is
in Section VI. The paper ends with the conclusions in
Section VIIL

II. METHODS FOR DATA CONSISTENCY

In this section, we discuss lock-based and wait-free
mechanisms for data consistency in intercore communica-
tion. Lock-free mechanisms are less relevant for hard real-
time embedded systems and are not considered.

A. Lock-based Methods

Among lock-based mechanisms, the multiprocessor pri-
ority ceiling protocol (MPCP) was developed in [10] for
dealing with the mutual exclusion problem in the context
of shared-memory multiprocessors. MPCP is the extension
of the well-known Priority Ceiling Protocol (PCP) [11] for
sharing resources in single processor systems.

During normal execution, tasks use their assigned pri-
orities. When they enter a critical section, they inherit the
ceiling priority of the shared resource. For local resources,
the ceiling priority is the highest priority of any task
that can possibly use it. In PCP, once a task begins its
execution, it is guaranteed never to be blocked. In MPCP,
a base priority higher than any task is applied to all global
ceilings, so that the priority ceiling of any global resource
is higher than any task priority in the system. Tasks that
fail to lock a resource shared with remote tasks (global
resource) are suspended, and placed in a global priority-
based queue, allowing other local (possibly lower priority)
tasks to execute. Unfortunately, this disrupts the guarantee
of a single blocking time interval of PCP.

The MSRP (Multiprocessor Stack Resource Policy) [7]
is the multiprocessor variant of the Stack Resource Pol-
icy (SRP) [2]. Locally, tasks access resources via SRP-
protected critical sections (using a ceiling protocol similar
to PCP). Global resources have a ceiling with highest
priority in the system. Tasks that fail to acquire the lock on
a global resource do not release their CPU but spin locally
and are kept in a global First-In-First-Out queue.

MSRP has been compared with MPCP in terms of worst-
case blocking times [7]. It performs better for short critical

Algorithm 1: Wait Free Method for Data Consistency
- Writer [13]
Data: BUFFER [1,...NB]; / NB: Num of buffers

Data: READING [1,...,n]; #/ n : Num of readers
Data: LATEST

1 GetBuf();

2 begin

3 bool InUse [1,...,.NB];

4 for i=1 to NB do InUse [i]=false;
5 InUse[LATEST]=true;

6 for i=1 to n do

7 j = READING [i];

8 if j /=0 then InUse [j]=true;
9 end

10 i=1;

11 while InUse [i] do ++i;

12 return i;

13 end

14 Writer();

15 begin

16 integer widx, i;

17 widx = GetBuf();

18 Write data into BUFFER [widx];
19 LATEST = widx;

20 for i=1 to n do CAS(READING [i],0,widx);

21 end

Algorithm 2: Wait Free Method for Data Consistency
- Readers [13]

Data: BUFFER [1,....NB]; // NB: Num of buffers
Data: READING [1,...,n]; / n: Num of readers
Data: LATEST
Reader();
begin
constant id; // Each reader has its unique id,
integer ridx;
READING [id]=0;
ridx = LATEST,
CAS(READING [id],0,ridx);
ridx = READING [id];
Read data from BUFFER [ridx];

o R . I I SR

10 end

sections and worse for large access times to the global
resources. The Flexible Multiprocessor Locking Protocol
(FMLP) [3] combines the strengths of the two approaches.
In FMLP, short resource requests use a busy-wait mech-
anism, while long resource requests are handled using a
suspension approach.

B. Wait-free Method

Wait-free methods can avoid blocking at the expense
of additional memory buffers. In [4], an asynchronous
protocol is proposed for preserving data consistency with
execution-time freshest value semantics in the single-writer
to single-reader communication on multiprocessors. An
atomic Compare-And-Swap (CAS) instruction (required
for atomic resource access in multicores [8]) is used to
guarantee atomic reading position assignments and pointer
updates.

Algorithms 1 and 2 outline the wait-free communication
protocol for the writer and reader respectively [13]. The

writer locates an unused buffer and begins writing. Each
reader obtains the index of the LATEST written buffer
entry and sets it to be in use so that the writer cannot
access it. A CAS operation is used to ensure that the buffer
indexes in use by the readers (READING) are consistent.
The number of buffers is sized to ensure that there is always
a free buffer for the next value produced by the writer.
While this method guarantees data consistency, it does so
at increased runtime overhead as well as memory overhead
since it requires buffer replicas.

III. MODEL-BASED DEVELOPMENT AND FLOW
PRESERVATION

Model-based design is very popular in the development
of embedded control systems, because of the possibility
to verify the functionality of controls by simulation and
formal methods. The functional model is defined according
to the Synchronous Reactive semantics using tools like
MathWorks Simulink [1], and a software implementation
is automatically obtained from a code generator.

A Simulink model is a network of communicating
blocks. Each block operates on a set of input signals and
produces a set of output signals [6]. The domain of the
input function can be a set of discrete points (discrete-time
signal) or it can be continuous (continuous-time signal).
Continuous blocks are implemented by a solver, executing
at the base rate. Eventually, every block has a sample time,
with the restriction that the discrete part is executed at the
same rate or at an integer fraction of the base rate.

A fundamental part of the model semantics is the rules
dictating the evaluation order of the blocks. Any block for
which the output is directly dependent on its input (i.e.,
any block with direct feedthrough) cannot execute until the
block driving its input has executed. The set of topological
dependencies implied by the direct feedthrough defines a
partial order of execution among blocks.

Before Simulink simulates a model, it orders all blocks
based upon their topological dependencies, and chooses one
total execution order that is compatible with the partial
order constraints. Then, the virtual time is initialized at
zero. The simulator engine scans the precedence list in
order and executes all the blocks for which the current
virtual time is an integer multiple of the period of their
inputs. Executing a block means computing the output
function, followed by the state update function. When the
execution of all the blocks that need to be triggered at
the current virtual time instant is completed, the simulator
advances the virtual clock by one base rate cycle and
resumes scanning the block list.

The code generation framework follows the general
rule set of the simulation engine and must produce an
implementation with the same behavior (preserving the
semantics). The Simulink/Embedded Coder code generator
of MathWorks allows two different code generation op-
tions: single task and fixed-priority multitask. Single task

implementations are guaranteed to preserve the simulation-
time execution semantics. However, this comes at the cost
of a very strong condition on task schedulability and a
single-task implementation can be terribly inefficient in
multicore systems. In multitask implementations, the run-
time execution of the model is performed by running the
code in the context of a set of threads under the control of
a priority-based real-time operating system (RTOS). The
code generator assigns each block a task priority according
to the Rate Monotonic scheduling policy.

b, b,
/’*‘\\T N
0,(m) ij(k) 0,(m+1) 0,(m+2) ij(k+1)
‘
Sk o, (m) - 0(m+1)
! \
Y
T m H
(9
Fig. 1. A code implementation that does not preserve the flow of data

from the writer to the reader block.

Because of preemption and scheduling, in a multi-rate
system, the signal flows of the implementation can differ
from the model flows. The bottom side of Figure 1 shows
the possible problems with flow preservation in multi-task
implementations because of preemption and scheduling.
The timeline on top represents the execution of the block
reactions in logical time. The schedule at the bottom shows
a possible execution when the computation of the update
function is performed in real-time by software code, and the
code (task) implementing the k-th instance of the reader is
delayed because of preemption.

In this case, the writer finishes its execution producing
the output o;(m). If the reader performs its read operation
before the preemption by the next writer instance, then
(correctly) i, (k) = o,(m). Otherwise, it is preempted and a
new writer instance produces o;(m + 1). In the latter case,
the reader reads o;(m+1), in general different from o;(m).

Lock-based mechanisms do not guarantee the preser-
vation of SR flows and are not meant to. A correct
implementation of SR flows requires changes to the wait-
free methods in Section II. The data item used by the
reader must be defined based on the writer and reader task
activation times. Both tasks, however, are not guaranteed
to start execution right after their activation because of
scheduling delays. Therefore, the assignment of the buffer
index must be delegated to the operating system. At ex-
ecution time, the writer and readers will use the buffer
positions defined at their activation times. With reference to
the algorithm presented in the previous sections, the writer

Algorithm 3: Wait Free Method for SR Flow Preser-
vation - Writer [13]

Algorithm 4: Wait Free Method for SR Flow Preser-
vation - Readers [13]

Data: BUFFER [1,...NB]; NB: Num of buffers
Data: READINGLP [1,..., nipl; // nyp: Num of lower priority

readers

Data: READINGHP [1.....npp]; #/ npp: Num of higher priority
readers

Data: PREVIOUS, LATEST

1 GetBuf();
2 begin

3 bool InUse [1,...,.NB];

4 for i=1 to NB do InUse [i]=false;
5 InUse[LATEST]=true;

6 for i=1 to ny;, do

7 j = READINGLP [i];

8 if j /=0 then InUse [j]=true;
9

end

10 for i=1 to ny,, do

j = READINGHP [i];

if j /=0 then InUse [j]=true;

13 end

14 i=1;

15 while InUse [i] do ++i;
16 return i;

17 end

18 Writer_activation();

19 begin

20 integer widx, i;

21 PREVIOUS = LATEST;

22 widx = GetBuf();

23 LATEST = widx;

24 for i=1 to np, do CAS(READINGHP [i], 0, PREVIOUS);
25 for i=1 to nj, do CAS(READINGLP [i], 0, LATEST);

26 end

27 Writer_runtime();

28 begin

29 | Write data into BUFFER [widx];
30 end

and reader protocols need to be partitioned in two sections,
one executed at task activation time, managing the buffer
positions (READINGLP[], READINGHP[], PREVIOUS
and LATEST), the other at runtime, executing the write
and read operations using the buffer positions defined at
their activation time as shown in Algorithms 3 and 4.

Readers are divided in two sets. The ones with priority
lower than the writer read the value produced by the
latest writer instance activated before their activation (the
communication link is direct feedthrough). Readers with
priority higher than the writer read the value produced
by the previous writer instance (the communication link
has a wunit delay). The two corresponding buffer entries
are indicated by the LATEST and PREVIOUS variables.
Two separate arrays, READINGLP[] and READINGHP[],
contain one entry for each low and high-priority readers
respectively. The writer updates all zero-valued elements
of READINGHP[] and READINGLP[] with the value of
PREVIOUS and LATEST respectively (lines 24 and 25 in
Algorithm 3). When the reader executes on a different core
than the writer, additional mechanisms need to be used to
ensure the reader starts execution after the data is written.
The execution order can be enforced by an activation signal

1 ReaderLP_activation();

2 begin

3 constant id; / Each lower priority reader has its unique id,
4 integer ridx;

5 READINGLP [id]=0;

6 ridx = LATEST;

7 CAS(READINGLP [id],0,ridx);

8 ridx = READINGLP [id];

9 end

10 ReaderHP_activation();

11 begin
12 constant id; // Each higher priority reader has its unique id;
13 integer ridx;

14 READINGHP [id]=0;

15 ridx = PREVIOUS;

16 CAS(READINGHP [id],0,ridx);
17 ridx = READINGHP [id];

18 end

19 Reader_runtime();

20 begin

21 | Read data from BUFFER [ridx];
22 end

sent to the reader (an inter-core interrupt signal), or by
synchronized activations of the writer and reader. The buffer
bounds for the SR flow-preserving wait-free methods are
computed in a similar way to their non flow-preserving
counterparts [12].

IV. FPGA IMPLEMENTATION OF MSRP

MSRP consists of two distinct synchronization mecha-
nisms for local and global resources respectively. Locally,
we implement the SRP in software since its time- and
memory-overheads are limited. For global synchronization,
we implement a FIFO queue to serve spinning tasks from
different cores on a “First-Come-First-Serve” basis.

The access to the MSRP lock is memory-mapped on the
local buses of the cores. A single address is required for
each resource since no data is encoded in the address. A
read from a core attempts to lock it and returns a non-
zero value if successful. To unlock the resource, the core
must write 1 back to the same address. This interface is
compatible with many processor and bus architectures.

Central to the MSRP FPGA implementation for global
resources is a FIFO queue which keeps track of the cores
that are requesting access to the resource. At any point in
time, only one task can wait on each core. At the head of the
queue is the core which currently holds the resource. The
hardware implementation is straightforward for an arbitrary
number of cores. To simplify write accesses to the FIFO,
only one core is considered at a time in a round-robin
fashion. As such, it is possible in the worst case for a
response to take as many cycles as the number of cores
(NC). The worst-case response time is a function of the
number of cores.

tmsrp =NC+ tspin + tbus_l (1)

Algorithm 5: FPGA Implementation of Wait Free
Method - Writer

Algorithm 7: FPGA Implementation of Wait Free
Method for SR Flow Preservation - Writer

Data: BUFFER [1,...,NB]; NB: Num of buffers
Data: READING [1,...,n]; / n: Num of readers
Data: LATEST, CURRENT

1 GetBuf();

2 begin

// Writer buffer request arrives from any one bus;

w

4 LATEST = CURRENT // Commit current write buffer;
5 1=0;

6 buf fer_found = false ;

7 while !buf fer_found do

8 // Wait one clock cycle ;

9 for j =0—2MW _ 1 do

10 buff =1ix2MW 4 4.

1 if buff ¢ {READING|O :NR—1],LATEST} then
12 buf fer_found = true ;

13 CURRENT = buff ;

14 return buff ;

15 end

16 end

17 1=1+1;

18 end

19 end

Data: BUFFER [1,...,.NB]; NB: Num of buffers
Data: READING [1,....,n]; / n: Num of readers
Data: PREVIOUS, LATEST

1 GetBuf();

2 begin

3 // Writer buffer request arrives from any one bus;,
4 PREVIOUS = LATEST ;

5 1=0;

6 buf fer_found = false ;

7 while !buf fer_found do

8 // Wait one clock cycle ;

9 for j =0 — 2MW _ 1 do

10 buff =1ix2MW 4 4.

1 if buf f ¢ {READINGI|O :NR—1],PREVIOUS} then
12 buf fer_found = true ;

13 LATEST = buff ;

14 return buff ;

15 end

16 end

17 1=1+1;

18 end

19 end

Algorithm 6: FPGA Implementation of Wait Free
Method - Readers

Algorithm 8: FPGA Implementation of Wait Free
Method for SR Flow Preservation - Readers

Data: id; // Each reader has its unique id
Data: READING [1,....,n]; / n: Num of readers
Data: LATEST
1 Reader_activation();
2 begin
3 // Reader buffer request arrives from any one bus ;
4 buff = LATEST ;
5 READING]Jid] = buff ;
6 return buff ;
7 end

where %,y is the spin-lock period, and tpysi0cai 18 the time
cost of a local bus access.

V. FPGA IMPLEMENTATION OF WAIT-FREE PROTOCOL

In our FPGA implementation, a significant effort has
been dedicated to find an efficient hardware implemen-
tation of the wait-free communication algorithms in [13]
(Algorithms 1-4). The resulting algorithms are detailed
for readers and writers in Algorithms 5-8 respectively.
Key state variables, namely LATEST, PREVIOUS, and
READINGTI], preserve their meaning, as defined in [13].

A critical element of the software wait-free methods im-
plementation is the atomic CAS operation. Since tasks can
be preempted for arbitrary amounts of time, there is a risk
that a reader may be blocked before it assigns to its READ-
ING slot, thus resulting in GetBuf{) selecting the buffer
which the reader is about to read. Ideally, lines 57 in Algo-
rithm 2 could be rewritten as READING[1id] = LATEST.
In a software implementation, since both READING and
LATEST are stored in shared memory, this cannot be done
in a single memory operation. In Algorithms 1-4, a CAS
operation is used to ensure that the appropriate buffer index
is used for the read operation. In our custom hardware

Data: id; // Each reader has its unique id

Data: IS_HP; // Is reader higher priority than writer
Data: READING [1,...,n]; / n: Num of readers
Data: PREVIOUS, LATEST

1 Reader_activation();

2 begin

3 // Reader buffer request arrives from any one bus ;
4 if IS_HP then buff = PREVIOUS ;

5 else buff = LATEST ;

6 READINGJid] = buff ;

7 return buff ;

s end

block, we no longer require the CAS operation because we
can perform the assignment READING[id] = LATEST
in a single clock cycle.

A. WF Hardware Design

Our proposed hardware design targets at the Xilinx
MicroBlaze soft processors on a Virtex 6 FPGA, but the
design can easily be adapted to other FPGA vendors, CPUs,
and bus architectures. The WF device acts as a memory-
mapped bus slave. Operations are performed through reads
at addresses that provide the desired parameters. The 32-bit
address format for wait-free methods (with or without flow
preservation) is shown in Figure 2. For the flow preservation
case (WF-FP), the READINGHP[] and READINGLP[]
arrays are merged, and the priority of the reader is simply
indicated by the HP/LP field in the address. Thus, the
address format contains the ID and priority of the reader, as
well as the ID of the buffer being accessed. It also indicates
the requested operation (read or write).

We used the MicroBlaze softcore processors provided in
Xilinx ISE 14.3 to synthesize a multicore system. Figure 3
illustrates how the wait-free block communicates with other

Base Address [...] [nReg|R/nW [HP ReaderID[Iogz(NR)—lzo]-
Fig. 2. Addressing Convention Used in Wait-free Implementation
SHARED
RAM
SV
SHARED
BUS
MST MST MsT
CPUO CPU 1 . e e CPU NC-1
MST MST MST
| sV sV WAITFREE sV |
LOGIC
Fig. 3. Block Diagram of the proposed Wait-free Implementation

peripherals on the system. The wait-free block is designed
to have an arbitrary number of slave bus interfaces to make
the design easily scalable and is connected directly to the
MicroBlaze processors. We used a dedicated bus rather than
a shared one, to avoid the non-determinism in time when
accessing a shared bus.

The device is intended to connect to an arbitrary number
of buses as a slave (not capable of initiating transfers),
providing a communication bridge among the cores. The
single-master buses (referred to as local buses) require
no arbitration and have minimum overhead. As in the
simplified overview of the connections (Figure 3), such a
bus structure is also more tolerant to a single master holding
a lock for multiple cycles. The wait-free block provides the
writer and readers with their index to access a buffer in
shared memory. The communication data may be stored in
a single-port memory on a shared bus as in Figure 3 or in
a multi-port memory on multiple local buses.

1) Readers: A reader activation request, as shown in
Algorithm 8, is the simpler of the two operations and is
performed in a single cycle. An overview of the hardware
design for the reader activation operation is shown in
Figure 4. The returned value is either the value of LATEST
or PREVIOUS, depending on the priority of the reader. To
reduce resource usage, requests are handled in a round-
robin fashion and each bus gets a single cycle to perform
its operation with a bounded worst case response time equal
of NC bus cycles.

2) Writers: Computing the index to be assigned to the
writers is a more complex task, as outlined in Algorithm 7.
The algorithm has O(NR?) complexity, where NR is the
number of readers, to search for an available buffer. This
is undesirable in terms of time and combinational logic
resources (LUTs). Instead of a single-cycle implementation
with NRxNB comparators and large combinatorial logic,
the operation is performed as cycles on oMW NR com-

Buffer Index

READING

Reader ID =
0

X || READING(TaskID)
s

LATEST O

Reader ID =
NR-1

I —core TaskIiD

CORES

ADDRESS

DECODER

Fig. 4. Hardware design for the implementation of the reader activation
operation

parators, where MW (Match Width) is the number of bits
(buffer positions) examined at each cycle. This results in
an upper bound of

twriter = tbus_l +1+ 210g2(NB)7MW (2)

bus cycles at the start of each writer activation to compute
the assigned buffer index. In the majority of our experi-
ments, MW was set to 2. An overview of the hardware
design for the assignment of the writer index is shown in
Figure 5. In the proposed design, the bus is locked during
the writer index computation. This is not strictly necessary.
It is possible to free the bus and let the writer poll until the
operation is completed. The upper bound on the response
time would be higher by one additional local bus access.

VI. RESULTS AND DISCUSSION

We synthesized the WF-FP and MSRP blocks for a
quad-core MicroBlaze design on a Xilinx Virtex 6 ML605
XC6VLX240T-1FFG1156 Evaluation Board. We evaluate
WE-FP for 8, 16, 32, 64, 128, and 256 buffer cases and
analyze the timing and resource usage when different levels
of parallelism are desired (by increasing MW).

A. Timing Analysis

The timing behavior depends heavily on both the archi-
tecture and tools being used. In addition, the performance
is subject to the clock speed and throughput requirements
imposed by the designer. As such we measure the tim-
ing performance as the capability of the design to meet
clock rate constraints rather than exhaustively testing every
possible configuration. We used the SmartXplorer tool to
synthesize and route 5 different strategies, and selected the
one with the best performance. Table I shows the worst
case clock speed for each of the WF-FP configurations. As
shown in the table, increased parallelism (increasing MW)
negatively affects the maximum clock rate. However, such
a high level of parallelism is not required if the FPGA is
used for soft cores or other structures, but may be desirable
if the device is only used for the implementation of wait-
free buffers and schedulability is improved by having the
indexes available in a small number of cycles.

Writing
Core

When Request
Received:

PREVIOUS = LATEST
search enable = 1
i=0

Cycle iin 0: 2™ while search enable = 1

READING
i=0 o READING(0)
ZW 2 (i+1)¥2™- 1 READING (NR-1)

j=2m™-

PREVIOUS

in_use(j)

Set LATEST = i*2™+j

Set search enable =0

Return i*2™4+j

Fig. 5. Hardware design for the assignment of the writer index

Due to its simplicity, the MSRP implementation can
operate at speeds approaching that of the interconnect fabric
of the FPGA.

a) Hardware Optimization: There are many other
possible designs to realize the algorithm that searches for
an available index, with trade-offs between the maximum
clock rate, resource usage, and t,.;er. The design in this
paper was chosen to balance performance and area at
around 200MHz, which is a reasonable target for many
complex soft-SoC applications. Integration with signifi-
cantly faster buses would require a different approach.

A possible example of an alternate implementation of the
writer index assignment algorithm uses reference counting
to reduce the complexity of the operation to O(NR) at the
expense of additional complexity on the reader side. An ad-
ditional set of buffers is maintained, REFCOUNTS[0:NB-
1], where NB is the number of buffers, which tracks the
number of readers using each buffer. Whenever a reader

is assigned a buffer, the reference count for that buffers
is incremented and the reference count of the previous
reference counter is decremented. However, in our FPGA
implementation, the speed benefits (~ 10%) are limited
in comparison to the resource usage (~ 2X increase in
both registers and LUTs). The number of required registers
increases because REFCOUNTS[] is implemented as either
a register array or RAM. The number of LUTs increases
because of the addition operations and combinatorial logic.

B. Resource Utilization

Figures 6 and 7 illustrate the slice register and slice
LUT utilizations for each configuration. Register usage is
not heavily impacted by an increasing MW. However, for
large designs (where MW and NB are large) it does exhibit
significant growth. The LUT utilization, on the other hand,
depends on both MW and NB and it can be seen on Figure 7
that increasing NB and MW by the same factor produce
about the same change in the number of LUTs. However,
this is not a hard conclusion, since the FPGA may place
and route designs irrespective of the computational load
associated with an increased MW or NB.

10000

4
2
) —8-16
@ 1000
« J ——32
]
H =64
A——h———t——p——A
——y— —¥=128
~0—-256
100
0 2 4 6 8
Mw
Fig. 6. Slice Register Utilization

100000

10000

@ :
= =16
3 :
g =32
&
1000 64
=128
-<',§0./. —o—256
100
0 2 4 6 8
MW
Fig. 7. Slice LUT Utilization

C. Basis for Comparison with Software Implementations

It is difficult to compare the FPGA implementations with
their equivalent software implementations due to the variety

TABLE I
CONFIGURATIONS AND THEIR WORST CASE TIMING CONSTRAINTS

Configuration {NB, MW} Constraint (MHz)

(8.1} 400

{162} {82} 300

{64.2} {322} {32.1} {163} {16,1} {83} 250
{1282} {128.1} {64.3} {32.3} {164} 200
{256,1} {1283} {644} {324} 150
{256.4} {256.3} {256,2} {128.4} 100

of ways to arrange the shared memory, affecting the design
and (time/space) cost of the software implementations. We
provide a comparison in terms of clock cycles and shared
memory access cost in the hope that the results can hold
their significance for arbitrary system configurations. As
previously stated, the current implementation assumes that
the bus is locked by the slave while preparing its response.

1) Writer: In a software implementation of the wait-
free methods in Algorithm 1, the writer must make at least
NR+1 accesses to shared memory for GetBuf() and NR
CAS operations at activation, in addition to local memory
operations. It requires a few more in the case of WF-FP
(Algorithm 3). Any overhead for shared memory accesses
(arbitration or signaling overhead) will linearly scale the
time required for the operation. By connecting to a local bus
with little or no arbitration overhead and holding that bus
for the duration of the operation, we incur the cost of the
bus access only once. The polling WF-FP implementation
described in Section V-A2 incurs the additional cost of two
bus accesses in its worst-case response time.

2) Reader: A reader requesting a buffer in either hard-
ware or software performs a relatively simple operation
as listed in Algorithms 2 and 4. In software, the reader
writes ‘0’ to its READING buffer, reads LATEST, and then
attempts to write that data back to its READING buffer
using a CAS operation. It then reads the result of the CAS
operation. This is a total of 4 bus operations, one of which
is a CAS, incurring 4 units of shared bus access overhead or
more depending on the CAS implementation. Our hardware
implementation does this in a single local access which
holds the bus for up to NC (number of cores) cycles before
returning, incurring the overhead of only that single bus
access. The worst case time of this is that of a local bus
access plus NC clock cycles.

Unlike the writer, which only has one active instance, the
reader operation is not easily re-designed to avoid holding
the bus. It can be implemented for a single-cycle return if
the bus structure does not allow for multi-cycle operations.
Such an implementation does not affect the speed of the
circuit considerably due to a discrepancy between the worst
paths in the reader and writer sub-circuits.

VII. CONCLUSIONS AND FUTURE WORK

We describe the issues in the FPGA implementation of
shared resource protection mechanisms. The requirements
for the consistency of communication and state variables

and the possible additional requirements of flow preserva-
tion can be satisfied using several methods. These methods
offer tradeoffs between time overheads and additional mem-
ory. We implement them on an FPGA, to measure their time
and memory overheads.

REFERENCES

[1] MathWorks. The MathWorks Simulink and StateFlow User’s Manu-

als. web page: http://www.mathworks.com.

[2] T. Baker. A stack-based resource allocation policy for realtime

processes. In Proc. 11th IEEE Real-Time Systems Symposium, 1990.

[31 A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A

flexible real-time locking protocol for multiprocessors. In Proc.

IEEE Conference on Embedded and Real-Time Computing Systems

and Applications, 2007.

J. Chen and A. Burns. A fully asynchronous reader/write mechanism

for multiprocessor real-time systems. Technical Report YCS 288,

Department of Computer Science, University of York, May 1997.

J. Chen and A. Burns. Loop-free asynchronous data sharing in

multiprocessor real-time systems based on timing properties. In

Proc. International Conference on Real-Time Computing Systems

and Applications, 1999.

M Di Natale Optimizing the multitask implementation of multirate

Simulink models In Real-Time and Embedded Technology and

Applications Symposium, 2006

[7] P. Gai, G. Lipari, and M. Di Natale. Minimizing memory utilization

of real-time task sets in single and multi-processor systems-on-a-
chip. In Proc. 22nd IEEE Real-Time Systems Symposium, 2001.

[8] M. Herlihy. A methodology for implementing highly concurrent

structures. In Proc. ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, 1990.

K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task

scheduling, allocation and synchronization on multiprocessors. In

Proc. 30th IEEE Real-Time Systems Symposium, 2009.

[10] R. Rajkumar. Real-time synchronization protocols for shared
memory multiprocessors. In Proc. International Conference on
Distributed Computing Systems, 1990.

[11] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance proto-
cols: An approach to real-time synchronization. IEEE Transactions
on Computers, 39(9):1175-1185, 1990.

[12] G. Wang, M. Di Natale, and A. Sangiovanni-Vincentelli. Improving
the size of communication buffers in synchronous models with time
constraints. [EEE Transactions on Industrial Informatics, 5(3):229—
240, Aug. 20009.

[13] H. Zeng and M. Di Natale. Mechanisms for Guaranteeing Data
Consistency and Flow Preservation in AUTOSAR Software on
Multi-Core Platforms. In Proc. 6th IEEE International Symposium
on Industrial Embedded Systems, 2011.

—

[4

[inar)

[5

—_

[6

[t}

[9

—

