
Using Max-Plus Algebra to Improve the Analysis of Non-Cyclic Task Models

Haibo Zeng
McGill University, email: haibo.zeng@mcgill.ca

Marco Di Natale
Scuola Superiore S. Anna, email: marco@sssup.it

Abstract—Several models have been proposed to represent
conditional executions and dependencies among real-time con-
current tasks for the purpose of schedulability analysis. Among
them, task graphs with cyclic recurrent behavior, i.e. those
modeled with a single source vertex and a period parameter
specifying the minimum amount of time that must elapse
between successive activations of the source job, allow for
efficient schedulability analysis based on the periodicity of
the request and demand bound functions (rbf and dbf). We
leverage results from max-plus algebra to identify a recurrent
term in rbf and dbf of general task graph models, even when
the execution is neither recurrent nor controlled by a period
parameter. As such, the asymptotic complexity of calculating
rbf and dbf is independent from the length of the time interval.
Experimental results demonstrate significant improvements on
the runtime for system schedulability analysis.

I. INTRODUCTION

Several abstract models have been proposed to represent
conditional executions and dependencies among real-time
concurrent tasks for the purpose of schedulability analysis.
The available models can be classified based on the concept
of task graph, where vertices represent different kinds of
jobs, and edges represent the possible flows of control. Each
vertex (job) is characterized by its worst case execution
time requirement and relative deadline. Each graph edge
is labeled with the minimum separation time between the
release of the two vertices (jobs) it connects.

A single vertex task graph corresponds to the simplest
model of independent tasks [17] activated by periodic or
sporadic events. The multiframe [19] and generalized mul-
tiframe (GMF) task models [4] assume that worst case
execution times are not constant, but are defined according
to a cyclic pattern. The corresponding task graph is therefore
a chain of vertices. The recurring branching task model [3]
allows selection points to determine the behavior for a given
task instance, in statements such as “if-then-else” and “case”,
thus modeling conditional branches and optional (OR-type)
executions. The corresponding task graph is a directed tree.
The recurring real-time task model [5] allows the task graph
to be any directed acyclic graph (DAG). All the above
models satisfy the property of cyclic recurrent behavior:

• recurrent: the graph has a unique source vertex. The
completion of a sink vertex automatically releases the
source job. This execution pattern may be implicit, or
it can be modeled by explicitly adding back edges from
the sink vertices to the unique source (as in Figure 1).

independent [17]

multiframe [19]
& GMF [4]

recurring branching [3] recurring [5]

non-cyclic
GMF [22]

non-cyclic recurring [6] digraph [23]
digraph with interframe

separation [24]

Figure 1. A summary of the proposed task models.

• cyclic: a period parameter defines the minimum time
interval that must elapse between two consecutive re-
leases of the source vertex job.

Figure 1 summarizes the proposed models, where the top
row shows the cyclic recurrent models. The unique source
vertex is represented in the figure by a shadowed node, with
the periodicity constraint represented by a dotted line as a
self loop on it. A solid line indicates a precedence constraint
associated with minimum inter-release time.

The non-cyclic generalized multiframe model [22] re-
moves the periodicity in the activation pattern of the jobs.
More specifically, it is possible to activate any job as long as
the minimum separation time with respect to its predecessor
has passed. Without considering the (implicit) back edges
from the sink vertices to the source vertex, the task graph
is still a directed tree. The next task graph model is the
one proposed in [1] (called Recurring Task Model with
Branching and Control variables), or in a similar form
in [6] (as the non-cyclic recurring real-time task model).
Such a model is a generalization of both the recurring
real-time [5] and the non-cyclic GMF [22] models. These
three models ([22] [1] [6]) relax the constraint of cyclic
execution of the graph, but still assume a recurrent activation
model of a source job. In addition, they typically satisfy the
frame separation property, where the deadline of a job is
constrained to be no larger than the inter-release times of its

outgoing edges.
The digraph model [23] removes the restriction of recur-

rence by allowing arbitrary cycles and therefore arbitrary
directed graphs to represent the release structure of jobs,
which significantly increases the expressiveness. Another
generalization is to relax the frame separation property to al-
low arbitrary job deadlines. This model is used for the anal-
ysis of implementations of synchronous finite state machines
[27]. The model in [24] further extends the digraph model by
allowing global inter-release separation constraints between
non-adjacent job release (denoted by dashed lines in Figure
1). The analysis on the resulting task model is tractable,
i.e., no worse than pseudo-polynomial time for bounded
utilization systems. The model of timed automata with tasks
[18] is a generalization of all the above models, which allows
complex dependencies between job release times and task
synchronization. However, schedulability analysis is shown
to be very expensive and even undecidable in certain variants
of the model [9]. A discussion on the expressiveness and
complexity of schedulability analysis for task graph models
can be found in [23].

A special subset of task digraphs consists of strongly
connected graphs, where every node is reachable from any
other node. We expect most applications of practical interests
to be represented by such graphs, because of the need to
bring back the system to a (possibly initial) controlled state,
which could be a safe state in case of safety-critical systems.
All examples in Figure 1 are strongly connected graphs.

The concepts of request bound function (or rbf) and
demand bound function (or dbf) have been introduced in
[5] for the analysis of task graphs.

Definition 1: For a task τ , the maximum cumulative
execution times by its jobs that have their release times
within any time interval of length t is defined as its request
bound function τ.rbf(t).

Definition 2: For a task τ , the maximum cumulative
execution times by its jobs that have their release times and
deadlines within any time interval of length t is defined as
its demand bound function τ.dbf(t).

Intuitively, rbf can be used to compute the maximum
amount of execution time that can interfere with a task (by
adding the rbfs of higher priority tasks). dbf quantifies the
amount of execution time from jobs that are released and
must be completed within a given time interval. Schedulabil-
ity analysis based on these two functions has been proposed
for systems with static and dynamic priority scheduling.

The periodicity of the request and demand bound func-
tions for the task graph models is of special interest in this
paper. For task models with a cyclic recurrent behavior, a
repeating pattern of the functions rbf(t) and dbf(t) allows to
compute them for large t based on the values of small t.
This makes the complexity of computing rbf(t) and dbf(t)
independent from t. However, such a periodicity is only
studied for task models with a cyclic recurrent behavior.

Our contributions. In this paper, we study the periodicity
of the request and demand bound functions for non-cyclic
task models, including the non-cyclic generalized multiframe
model [22], the non-cyclic recurring real-time task model
[6], the digraph real-time task model [23] and its extension
[24]. We present our results using the digraph real-time
task model [23], since it is a strict generalization of the
models in [22] [6], and an extended digraph task can be
transformed into a plain digraph task with the same rbf
and dbf functions [24]. We make a key connection of rbf
and dbf to the matrix power in max-plus algebra [2], and
leverage the related research results (e.g. [21]) to prove their
linear periodicity [2], i.e., they can be represented by a
finite aperiodic part and a periodic part repeated infinitely
often. The required proof technique is significantly different
from [27] (which provides initial results on the periodicity of
execution matrix for synchronous state machines), including
the consideration of the sequence of maximum elements of
matrix power and the required task graph transformation. We
also develop efficient algorithms to calculate the periodicity
parameters for strongly connected task graphs. The task
graph transformation is then used to derive a tight upper
bound on rbf and dbf functions, which improves upon [23].

Many schedulability techniques rely on such a linear
periodicity to provide an efficient representation and com-
putation of the system timing behavior. For example, the
Modular Performance Analysis (MPA) toolbox [26] based
on Real-Time Calculus [25] (and in turn, on the min-
plus/max-plus algebra) only supports infinite curves with lin-
ear periodicity property [16]. Also, as in [16], linear periodic
curves can be safely approximated by the standard event
model in SymTA/S [14]. Our results open the possibility
of using non-cyclic task models to represent application
structures within these schedulability analysis frame-
works.

II. THE DIGRAPH TASK MODEL AND ITS EXTENSION

A digraph real-time task (DRT) τ is characterized by a
directed graph D(τ) = (V,E) where the set of n vertices
V = {v1, v2, ..., vn} represents the types of jobs that can
be released for task τ . Each vertex vi ∈ V (or type of job)
is characterized by an ordered pair < e(vi), d(vi) > where
e(vi) and d(vi) denote its worst case execution time (WCET)
and relative deadline, respectively. Edges represent possible
flows of control, i.e. the release order of the jobs of τ . An
edge (vi, vj) ∈ E is labeled with a parameter p(vi, vj) that
denotes the minimum separation time between the releases
of vi and vj . We assume that relative deadlines and minimum
inter-release times are positive integers (i.e. ∈ N+).

An event δ of τ is a pair (t, v) which denotes the release
of a job v ∈ V at time t. An event sequence ∆ is a
(possibly infinite) sequence of job release events. A legal
event sequence ∆ = [(t1, v1), (t2, v2), ...] corresponds to
a (potentially infinite) path (v1, v2, ...) in D(τ), in which

1 1 v2

v3

2

<0.2, 1>

<0.1, 1>

2

1
1

<0.1, 1>
v

Figure 2. An example digraph real-time task.

∀i ≥ 1, (vi, vi+1) ∈ E, and the release times satisfy
ti+1 ≥ ti+p(vi, vi+1). A legal event sequence ∆ = [(ti, vi)]
is called urgent if each ti is the minimum for ∆ to
be legal, i.e. for an arbitrarily small ϵ > 0 and any i,
∆′ = [(t1, v1), ..., (ti − ϵ, vi), ...] is illegal.

We assume that the task satisfy the l-MAD property [4],
i.e. for each edge (vi, vj) ∈ E, d(vi) ≤ d(vj) + p(vi, vj).
This constraint is less restrictive than the frame separation
property, but is sufficient to guarantee that the absolute
deadline of the last job is the largest among all jobs in any
legal event sequence. The results on arbitrary deadlines are
left for future publication due to limited space.

Example: Figure 2 shows an example of a digraph real-
time task with 3 vertices (types of jobs), which satisfies the
l-MAD property. The event sequence ∆ = [(5, v1), (7, v2),
(9, v3)] is legal but not urgent, as the third job (associated
with v3) could be released at time 8.

The extended digraph real-time task model (EDRT)
generalizes the digraph task model by allowing a set of
additional constraints H(τ) to express a minimum sepa-
ration time between any two jobs. Each constraint h =
(vf , vt, γ(vf , vt))∈ H(τ) specifies that a minimum time
interval γ(vf , vt) must occur between the releases of vf and
vt. Each γ(vf , vt) is also assumed to be a positive integer.

A task system Γ consists of a set of independent real time
tasks τ1, τ2, ..., τm. We assume that tasks are scheduled on
a uniprocessor with preemptive scheduling.

III. SCHEDULABILITY ANALYSIS

We review the schedulability analysis techniques devel-
oped for systems scheduled with dynamic or static priority.
For dynamic priority scheduling, Earliest Deadline First
(EDF) is optimal for independent tasks on a preemptive
uniprocessor [17].

Theorem 1: ([23]) A task system Γ is schedulable by
dynamic priority (EDF) if and only if the sum of the demand
bound functions for all tasks over any time interval does not
exceed the length of the interval, that is,

∀t ≥ 0,
∑
τ∈Γ

τ.dbf(t) ≤ t (1)

For a task system scheduled with static priority, schedu-
lability is guaranteed if, for each task, the available cpu time
is no smaller than the total execution time required by the
task itself and all the higher priority tasks.

Theorem 2: For a task system Γ with static priorities, task
τi ∈ Γ is schedulable if and only if

∀t ≥ 0,∃t′ ≤ t s.t. τi.dbf(t) +
∑

τj∈hp(i)

τj .rbf(t
′) ≤ t′ (2)

where hp(i) is the set of tasks with priority higher than τi.
The above theorem derives from the analysis of recurring

real-time tasks presented in [5], as the proof also applies to
the extended digraph task model.

In practice, the schedulability of dynamic priority systems
is analyzed by checking whether there exists a counterexam-
ple to Theorem 1: ∃t ≥ 0 such that

∑
τ∈Γ τ.dbf(t) > t. A

similar approach can be derived for static priority systems.
Thus, schedulability analysis requires the efficient compu-
tation of the rbf and dbf functions of a task τ over a
time interval of given length t. Also, since it is practically
impossible to check the schedulability condition for all
(integer) t ≥ 0, an upper bound tf on such a counterexample
is defined in Section VII, which improves upon [23].

For the periodic task model [17], the rbf and dbf functions
of task τ with period p and WCET e are

τ.rbf(t) =

⌈
t

p

⌉
e, τ.dbf(t) =

⌊
t

p

⌋
e

For other cyclic recurrent task graphs, such as the most
generic one (the recurring task model [5]), every cycle in
the graph contains the unique source node for which two
consecutive releases are separated by the period parameter.
Such properties lead to a regular repeating pattern of rbf
and dbf. For a recurring task with period p, the maximum
execution request for any path from the unique source node
to a sink node is denoted as e. Its rbf and dbf satisfy the
following equations for sufficiently large r (where q = e

p)

∀j ∈ N+,

{
τ.rbf(r + j · p) = τ.rbf(r) + j · p · q
τ.dbf(r + j · p) = τ.dbf(r) + j · p · q (3)

In the following, we show how the dbf and rbf functions
are long-term periodic even for task graphs without
cyclic recurrent properties, including the non-cyclic GMF
model [22], the non-cyclic recurring task model [6], the
digraph real-time task (DRT) model [23], and its extension
(EDRT) [24]. An EDRT can be transformed into an equiv-
alent plain digraph task (with the same rbf and dbf) [24].
We present our results using the digraph task model, since
it is also a strict generalization of the non-cyclic GMF and
non-cyclic recurring task models.

We first introduce in Section IV the background on max-
plus algebra and the matrix power sequence under it. In
Section V we prove the main theorem of the paper on the
periodicity of the rbf and dbf functions for digraph real-
time tasks. In Sections VI and VII we discuss methods for
computing the attributes of periodic rbf and dbf and an im-
proved upper bound on the time interval on which to check
feasibility conditions. Section VIII shows the experimental

results demonstrating the significant improvements of our
analysis over existing methods.

IV. MAX-PLUS ALGEBRA

The max-plus algebra [2] is defined over R∗ = R
∪
{−∞}

(or in general, any dioid) where the addition (denoted by ⊕)
and multiplication (denoted by ⊗) operations are defined as

a⊕ b = max(a, b) a⊗ b = a+ b

The element −∞ is neutral with respect to ⊕, i.e. a ⊕
(−∞) = a, ∀a ∈ R∗. Likewise, 0 is neutral with respect to
⊗, i.e. a⊗ 0 = a, ∀a ∈ R∗.

A. Matrix and its Power Sequence

For two matrices A ∈ R∗(m, k) and B ∈ R∗(k, n), the
result of the multiplication is a matrix C ∈ R∗(m,n), where

ci,j =
k⊕

l=1

(ai,l ⊗ bl,j) =
k

max
l=1

(ai,l + bl,j)

The k-th power of a square matrix A ∈ R∗(n, n), denoted
as A(k), is recursively defined as the multiplication of
A(k−1) and A(1) = A.

a
(k)
i,j =

n
max
l=1

(a
(k−1)
i,l + al,j)

The properties of A are assessed through its graph G(A).
Definition 3: The graph G(A) of a square matrix

A ∈ R∗(n, n) is a weighted digraph (V,E, w) with nodes
V = {1, ..., n}. Every finite ai,j defines an edge (i, j) ∈ E
weighted by its value ai,j . If ai,j = −∞, there is no
edge from i to j. A path Π in G is a sequence of nodes
(i1, i2, ..., it+1) where each (ik, ik+1) is an edge in E. The
length |Π| of Π is t, the number of edges in the path. If
i1 = it+1, Π is called a cycle. The weight of a path Π,
w(Π), is the sum of the weights of its edges. For a cycle c
with length |c| > 0, its cycle mean w̄(c) is the ratio between
its weight and length, i.e. w̄(c) = w(c)/|c|. The maximum
mean of any cycle in G(A) is denoted as λ(A).
G(A) is strongly connected if all its nodes are contained

in a common cycle. In this case, A is defined as irreducible.
Definition 4: Given a subset of the vertexes K ⊆ V

defining a strongly connected component K = (K,E
∩
(K×

K)) of G(A), its maximum cycle mean λ(K) is defined
as the maximum of w̄(c) where c ⊆ K. K is called a
highly connected component of G(A) if λ(K) = λ(A).
HCC∗(G(A)) denotes the set of highly connected compo-
nents with a cycle. The high period of K ∈ HCC∗(G(A))
is defined as

hper(K) = gcd{|c| : c is a cycle in K, w̄(c) = λ(A)}

Definition 5: An elementary path is a path with no
cycle. The operation of cycle deletion replaces a cycle
(i1, i2, ..., i1) with a single node i1. Given two paths Π and

Π′, Π′ is a cycle extension of Π, denoted as Π ⊆c Π
′, if Π

can be created from Π′ by a finite number of cycle-deletions.
The set of paths of G(A) from node i to j is denoted

as PG(A)(i, j). The set of elementary paths is denoted
as P∗

G(A)(i, j). The subset of the paths of length t is
Pt
G(A)(i, j). The power sequence for an elementary path

Π ∈ P∗
G(A)(i, j) is the sequence of the maximum weights

among all the cycle extensions of Π. Each sequence term is

a
(t)
Π = max{w(Π′) : Π′ ∈ Pt

G(A)(i, j),Π ⊆c Π
′}

Intuitively, each element a(t)i,j of A(t) defines the path of
length t with the maximum weight in G(A) from node
i to j. The following fundamental theorem in max-plus
algebra defines the relationship between the power of a
matrix A and the maximum weights of the paths in G(A),
and consequently, the power of elementary paths.

Theorem 3: ([2]) The power sequence of A ∈ R∗(n, n),
for all t ∈ N+ and all i, j ∈ {1, ..., n} can be computed as

a
(t)
i,j = max{w(Π′) : Π′ ∈ Pt

G(A)(i, j)}
= max{a(t)Π : Π ∈ P∗

G(A)(i, j)}
(4)

B. Linear Periodicity and General Periodicity
Definition 6: A sequence a∗ = {a(t)}, t ∈ N+ is almost

linear periodic, if there exists a real number q ∈ R and a
pair of integers r and p such that

∀t > r, a(t+p) = a(t) + p · q (5)

The smallest p with the above property is the linear period
of a∗, denoted as p = lper(a∗). q is the linear factor of
a∗, or q = lfac(a∗). Finally, the smallest r with the above
property is the linear defect, or r = ldef(a∗).

Definition 7: The matrix A = (ai,j) is defined as almost
linear periodic if the power sequence a∗i,j of each element
ai,j in A∗ = {A(t)}, t ∈ N+ is almost linear periodic. The
matrix lfac(A∗) = (lfac(a∗i,j)) is the linear factor matrix
of A, the number ldef(A) = max{ldef(a∗i,j)} is the linear
defect of A, and lper(A) = lcm{lper(a∗i,j)} is the linear
period of A.

A matrix is almost linear periodic if it is irreducible
(as demonstrated in [2]). Gavalec [11] proposed an O(n3)
algorithm for computing the linear period and factor of an
irreducible matrix based on the following theorem:

Theorem 4: ([11]) An irreducible matrix A ∈ R∗(n, n)
is almost linear periodic, its linear factor is lfac(A) = Q,
with qi,j = λ(A) for all i, j; its linear period is

lper(A) = lcm{hper(K) : K ∈ HCC∗(G(A))}. (6)

Example: Consider the square matrix A in (7) and its
digraph G(A) in Figure 3.

A =

0.1 −∞ −∞ 0.1 −∞
−∞ 0 0.2 −∞ −∞
0.1 −∞ 0 −∞ 0.1
−∞ 0 −∞ −∞ −∞
−∞ 0 −∞ −∞ −∞

 (7)

0.2

0.1

0

0
1 4 2

5

00.1

3

0

0.1

0.1

Figure 3. The digraph corresponding to the matrix of Equation (7)

G(A) is strongly connected, thus A is irreducible. There
are three cycles (1, 1), (2, 3, 5, 2), and (1, 4, 2, 3, 1) each
with a cycle mean of 0.1. Since there is no other cycle
with a larger cycle mean, λ(A) = 0.1, and the high period
of G(A) (which is a highly connected component itself) is
gcd{1, 2, 3} = 1. By Theorem 4, A is almost linear periodic
with a linear factor 0.1 and linear period 1. Equation (8)
shows how to apply the linear periodicity of A to compute
its power sequence with its linear defect equal to 6.

∀i ≥ 0,A(6+i) =

0.6 0.5 0.6 0.6 0.6
0.7 0.6 0.7 0.7 0.7
0.6 0.5 0.6 0.6 0.6
0.6 0.5 0.6 0.6 0.6
0.6 0.5 0.6 0.6 0.6

+ 0.1× i (8)

When the matrix is reducible, it can still be almost linear
periodic, but deciding whether this is the case has been
demonstrated to be an NP-complete problem [11]. However,
even when the matrix is not linear periodic, it is still possible
to avoid computing the rbf function over a long time interval
by leveraging the concept of general periodicity ([21]).

Definition 8: A sequence a∗ = (a(t)), t ∈ N+ is defined
as almost generally periodic, if there exist a pair of integers
r and p and a vector Q(i) ∈ R∗, i = 1, ..., p such that

∀i = 1, ..., p, ∀t > r, t ≡ i (mod p),
a(t+p) = a(t) + p ·Q(i)

(9)

The smallest p with the above property is the general period
of a∗, or p = gper(a∗). Q is the general factor of a∗,
or Q = gfac(a∗). Finally, the smallest r with the above
property is the general defect, or r = gdef(a∗).

Definition 9: Matrix A is almost generally periodic
if the power sequence a∗i,j of each element in A∗ =

{A(t)}, t ∈ N+ is almost generally periodic. gfac(A∗) =
(gfac(a∗i,j)) is the general factor matrix of A, gdef(A) =
max
i,j

gdef(a∗i,j) is its general defect, and gper(A) =

lcm{gper(a∗i,j)} is its general period.
The following theorem states the applicability of the

periodicity property to all matrices.
Theorem 5: ([21]) Every matrix is almost generally peri-

odic over the max-plus algebra.
The problem of computing the general period gper(A) or

general factor matrix gfac(A) for a given square matrix A is
shown to be NP-hard [21]. But the complexity is expressed

in terms of the size of the matrix (or the corresponding
graph), and is asymptotically independent from the power of
the matrix (or the time interval for the rbf and dbf functions).

V. DEMONSTRATING THE PERIODICITY OF THE rbf AND
dbf

Existing results on max-plus algebra provide the founda-
tion for original extensions that allow to demonstrate the
linear periodicity of the rbf and dbf for a generic digraph
task:

• As the graph weights are a representation of the com-
puting load in a given time (and the elements of the
matrix power represent the processor load requested
in some time interval), demonstrating the periodicity
of the rbf and dbf requires that the sequence of the
maximum element of the matrix powers is also periodic
(the periodicity of each element is not enough).

• Next, we provide a task graph transformation (to a unit-
weighted digraph or UDRT) that allows to encode the
total execution time request of a sequence of graph
jobs in a given time interval as elements of a max-
plus matrix power sequence. UDRT allows to leverage
results from max-plus algebra and formally demonstrate
the periodicity of rbf and dbf for non recurrent graphs.

We now recapture several definitions and lemmas that are
useful for our extension to max-plus algebra (Section V-A).

Definition 10: Given an elementary path Π, the set of
strongly connected components that includes at least one
node of Π is SCC∗

Π(G(A)) = {K : K
∩

Π ̸= ∅}. The
maximum mean λ(Π) of Π is the maximum cycle mean of
any element K in SCC∗

Π(G(A)), and its period lper(Π) is
defined as the least common multiple of the high periods of
highly connected components of K.

λ(Π) = max{λ(K) : K ∈ SCC∗
Π(G(A))}

lper(Π) = lcm{hper(K′) : K′ ∈ HCC∗(K), λ(K) = λ(Π)}

If Π does not share any node with any strongly connected
component, then λ(Π) = −∞.

Lemma 6: ([12] [21]) For an elementary path Π, if its
maximum cycle mean λ(Π) > −∞, then a∗Π is almost
linear periodic with period lper(Π) (or its integer divisor)
and factor λ(Π); otherwise, it is almost generally periodic
with a general factor of −∞.

Two other lemmas in [21] provide sufficient conditions
for the maximum of two almost linear periodic sequences
to be linear periodic.

Lemma 7: ([21]) Consider two almost linear periodic
sequences a∗ and b∗, where a∗ has period pa and factor
q, and b∗ has period pb and the same factor q. Then the
sequence max(a∗, b∗) is almost linear periodic with period
p as an integer divisor of lcm(pa, pb), and factor q.

Lemma 8: ([21]) Consider two almost linear periodic
sequences a∗ and b∗. a∗ has period pa and factor qa. The
elements of b∗ are all finite, with period pb and factor

qb > qa. Then the maximum sequence max(a∗, b∗) is almost
linear periodic with period pb and factor qb.

A. Periodicity of Largest Element Sequence of Matrix Power

We now prove the maximum element of a matrix power
sequence is linear periodic. We only consider non-trivial ma-
trices (with at least one cycle in the associated graph). The
demonstration requires additional definitions and lemmas as
intermediate steps.

Definition 11: The largest element sequence of A ∈
R∗(n, n), denoted as a∗max = {a(t)max}, ∀t ∈ N+, is the
sequence of the largest element in the power sequence of
A, i.e. a(t)max = max

i,j
a
(t)
i,j , ∀t ∈ N+.

Combining the definition and Theorem 3, the largest
element sequence is the maximum among the power of all
the elementary paths in the graph.

a
(t)
max = max

i,j
{a(t)Π′ : Π

′ ∈ Pt
G(A)(i, j)}

= max{a(t)Π : Π is a primary path in G(A)}
(10)

Definition 12: A generally periodic sequence a∗ with
factor Qa is dominated by a linear periodic sequence b∗

with factor qb, if all elements in b∗ are finite, and each
element in Qa is less than or equal to qb.

The following lemma generalizes Lemmas 7 and 8.
Lemma 9: Consider a general periodic sequence a∗ (pe-

riod pa and factor Qa) and a dominating linear periodic
sequence b∗ (period pb and factor qb). Then the sequence
max(a∗, b∗) is almost linear periodic with period as an
integer divisor of p = lcm(pa, pb) and factor qb.

Proof: By the definitions of periodicity, there exists an
integer r such that for a given i ∈ {1, ..., p}

∀j ∈ N+,

{
a(r+i+j·p) = a(r+i) + j · p ·Qa(i)
b(r+i+j·p) = b(r+i) + j · p · qb > −∞

We consider the maximum sequence of a(r+i+j·p) and
b(r+i+j·p). There are two cases.
Case 1: Qa(i) < qb. We define si = a(r+i)−b(r+i)

p(qb−Qa(i))
if

a(r+i) > b(r+i); otherwise si = 0. By simple arithmetics,
we can prove that ∀j ∈ N+, max(a(r

′
i+j·p), b(r

′
i+j·p)) =

b(r
′
i+j·p) = b(r

′
i) + j · p · qb, where r′i = r + i+

⌈
si
p

⌉
p.

Case 2: Qa(i) = qb. The power sequence of a has the same
factor as b. Thus, ∀j ∈ N+, max(a(r

′
i+j·p), b(r

′
i+j·p)) =

max(a(r
′
i), b(ri)) + j · p · qb, where r′i = r + i.

Thus, as a generalization of the two cases, ∀i = 1, ..., p,
∀j ∈ N+, there exists an integer r′ = maxi(r

′
i) such that

max(a(r
′+j·p), b(r

′+j·p)) = max(a(r
′), b(r

′)) + j · qb

Hence the proof.
We now prove the linear periodicity of the sequence of the

largest matrix element. It is done by constructing a subset
of the elementary paths whose largest element sequence
dominates those of the other paths.

Theorem 10: The sequence of the largest element of any
non-trivial square matrix is almost linear periodic.

Proof: For a non-trivial square matrix A, assume its
maximum cycle mean λ(A) > −∞. There must exist a
cycle c such that w̄(c) = λ(A). Without loss of generality,
we denote c = (1, 2, ..., |c|, 1). We consider a sequence that
is the maximum of the powers of the elementary paths in c:
b(t) = max{a(t)Π : Π ⊂ c}.

The power sequence of a generic elementary path Π ⊂ c
is almost linear periodic with factor λ(A). By Lemma 7, b∗

is also almost linear periodic with the same factor. Moreover,
∀t ∈ N+, we can find a path Π′ which is the concatenation
of j repetitions of (1, 2, .., |c|) and Π = (1, 2, ..., k + 1),
where j = ⌊ t

|c|⌋ and k = t− j · |c|. Π′ is a cycle extension
of the elementary path Π in c. As b(t) ≥ w(Π′), we have
∀t ∈ N+, b(t) is finite.

By Lemma 6, the power sequences of all other (finitely
many) elementary paths are generally periodic with a factor
no larger than λ(A), thus dominated by b∗. By Lemma 9,
the sequence of the largest element (the maximum among
b∗ and those of the other elementary paths) is almost linear
periodic.

Example: The sequence of the largest element of the
irreducible matrix in Equation (7) can be derived as

∀i ≥ 0, a(6+i)
max = 0.7 + 0.1× i (11)

B. Task Transformation

To apply the above extended results on max-plus algebra,
a task transformation and a refinement of the rbf and dbf
functions are needed. We first present the transformation
of a task digraph into an equivalent digraph where all inter-
release times are equal to one1. Such a digraph task with
unit-weighted edges is defined as a unit digraph task
(UDRT). For D(τ) = (V,E), we generate an equivalent
UDRT D′(τ ′) = (V′,E′) by the following rules:

• Each vertex vi ∈ V corresponds to ki vertices
νi,1, νi,2, ..., νi,ki in V′, where

ki = max(1, max
vj :(vi,vj)∈E

p(vi, vj)). (12)

• νi,1 is labeled with an execution time e(νi,1) = e(vi),
and all the other new vertices have zero execution time.
Deadlines can be assigned arbitrarily (as we are only
interested in the rbf function of the transformed graph).

• An edge (νj,i, νj,i+1) ∈ E′ connects all the newly
created nodes for every i = 1, 2, ..., ki − 1.

• Each edge (vi, vj) ∈ E corresponds to an edge
(νi,k, νj,1) in E′ where k = p(vi, vj).

• All edges in E′ are labeled as 1.
We now prove the following property of the transformation.

1It is sufficient to transform it into a digraph with inter-release times
equal to gcd(p(e) : e ∈ E)

v 3,2

v1,1

v 3,1

0

0.1

00.1 0.2
v 1,2 v 2,1

Figure 4. The unit digraph task transformed from Figure 2. The minimum
inter-release times are all equal to 1. Deadlines are omitted.

Lemma 11: The request bound functions of a digraph task
D(τ) and the transformed UDRT D′(τ ′) are the same.

Proof: Let l = |∆| be the number of events in an
arbitrary legal event sequence ∆ = [(ti, vi)] in D(τ). We
construct an event sequence ∆′ in D′(τ ′) by replacing each
event (ti, vi) except the last one in ∆ with a sequence of
events (ti + k − 1, νi,k) for k = 1, ..., p(vi, vi+1). The last
event (tl, vl) in ∆ is replaced with (tl, νl,1). ∆′ is legal as
the inter-release time between any two events is no smaller
than 1. Thus τ.rbf(t) ≤ τ ′.rbf(t). Similarly, we can prove
τ ′.rbf(t) ≤ τ.rbf(t).

In unit digraph task models, in a legal event sequence (and
the corresponding path) containing n events (n nodes), the
minimum separation time between the release times of the
last and first events is n−1. Hence, the length of the path
in τ ′ represents the inter-release time of the first and last
vertices for the corresponding urgent event sequence.

Example: For the digraph task τ in Figure 2, the trans-
formed unit digraph task τ ′ is shown in Figure 4. v1 in
τ is transformed to two vertices ν1,1 and ν1,2 in τ ′, v2 is
transformed to ν2,1, and v3 to ν3,1 and ν3,2.

We extend the definition of rbf by adding the indication
of the initial and final jobs of the path on which it is
computed. Also, the definition of the refined rbf is slightly
modified by removing the execution time (with its release
time) of the last job. Both are necessary to simplify the
formulation of rbf in the max-plus algebra, allowing a simple
composition operation (as explained below).

Definition 13: Given a pair of vertices vi and vj , the
request bound function of a digraph task τ in the time
interval t, denoted as τ.rbf(vi, vj , t), is defined as the max-
imum sum of execution times of any legal event sequence
[(tk, vk), k = 1, ..., l] of τ such that

• the vertex corresponding to the first event is v1 = vi;
• the vertex corresponds to the last event is vl = vj ;
• tl−1 − t1 ≤ t;
• τ.rbf(vi, vj , t) = max

∑l−1
k=1 e(vk).

If vj is not reachable from vi within any time interval of
length t, then τ.rbf(vi, vj , t) = −∞. With this definition,
the domain for the possible rbf values is R∗ = R

∪
{−∞}.

According to the definition,

τ.rbf(t) = max
i,j

{τ.rbf(vi, vj , t)} (13)

For a UDRT τ , rbf(vi, vj , t) is additive, i.e. ∀i, j, ∀t1, t2,

τ.rbf(vi, vj , t1 + t2 + 1)
= max

m
(τ.rbf(vi, vm, t1) + τ.rbf(vm, vj , t2))

(14)

Thus, rbf(vi, vj , t1 + t2 + 1) of a UDRT τ for a long
interval of length t1 + t2 + 1 can be computed from its
values for shorter intervals of length t1 and t2. The need
for this composition explains the omission of the execution
time of the last job, and the sum of the time intervals
is incremented by one when concatenating two paths, as
the inter-release time of (vm−1, vm) is not included in the
interval t1 or t2. Dynamic programming techniques can
be used for an efficient calculation of rbf(vi, vj , t). In
addition, the computation can be represented as a matrix
power sequence in max-plus algebra. Thus, we can leverage
the related results to find its periodicity.

For a generic digraph task, Equation (14) does not apply
since the inter-release times are not uniformly one. Also, the
general rbf(t) function (without constraints on the source
and sink vertices) is not additive:

τ.rbf(t1) + τ.rbf(t2)
= max

i,k
{τ.rbf(vi, vk, t1)}+max

l,j
{τ.rbf(vl, vj , t2)}

= max
i,j,k,l

(τ.rbf(vi, vk, t1) + τ.rbf(vl, vj , t2))

≥ max
i,j,k=l

(τ.rbf(vi, vk, t1) + τ.rbf(vl, vj , t2))

= τ.rbf(t1 + t2 + 1)

C. Periodicity of rbf

For a UDRT τ with n vertices, we define the execution
request matrix as A ∈ R∗(n, n), with elements ai,j =

τ.rbf(vi, vj , 0). We also denote a
(t+1)
i,j = τ.rbf(vi, vj , t).

Equation (14) can be rewritten as (denoting k = t1 + 1 and
l = t2 + 1, then k + l = t1 + t2 + 2)

∀i, j, ∀k, l a
(k+l)
i,j = max

m
(a

(k)
i,m + a

(l)
m,j) (15)

This is exactly the definition of matrix power under the max-
plus algebra. In other words, the rbf function of a UDRT
τ over a time interval of length t can be expressed as
the (t+ 1)-th power of its execution request matrix A.

Example: Equation (7) computes the execution request
matrix A for the UDRT D(τ ′) in Figure 4. D(τ ′) and G(A)
(Figure 3) are similar, with corresponding vertices: ν1,1 ⇔ 1,
ν2,1 ⇔ 2, ν3,1 ⇔ 3, ν1,2 ⇔ 4, and ν3,2 ⇔ 5. Informally,
we can derive G(A) from D(τ ′) by:

• duplicating the topology of D(τ ′);
• adding a self-loop with an edge of weight 0 for each

vertex νi,1. This is to allow the possibility of untight
event sequences. Thus, A is non-trivial.

• assigning the edge (u, v) in G(A) with the same weight
as the source node u in D(τ ′).

We now prove the periodicity of rbf for a digraph task.

Theorem 12: The rbf function of a generic digraph task
τ is almost linear periodic, i.e. there exist a real number q
and a pair of integers r and p such that

∀t > r, τ.rbf(t+ p) = τ.rbf(t) + p · q (16)

Proof: We consider the unit digraph task τ ′ obtained
from τ and its execution request matrix A. By Equation (13),

τ.rbf(t) = τ ′.rbf(t) = max
i,j

a
(t+1)
i,j = a(t+1)

max (17)

i.e., τ.rbf(t) is the maximum element of the (t+1)-th power
of its execution request matrix. The linear periodicity of the
rbf function of τ follows immediately from Theorem 10.

D. Periodicity of dbf

The definition of dbf is also extended to include a restric-
tion to a given pair of start and end vertices.

Definition 14: Given a pair of vertices vi and vj , the
demand bound function of a digraph task τ during the
time interval t, denoted as τ.dbf(vi, vj , t), is defined as
the maximum sum of execution times of any legal event
sequence [(tk, vk), k = 1, ..., l] of τ such that

• the vertex corresponds to the first event is v1 = vi;
• the vertex corresponds to the last event is vl = vj ;
• ∀k = 1, ..., l, dk + tk − t1 ≤ t;
• τ.dbfi,j(t) = max

∑l
k=1 e(vk).

Different from rbf, dbf includes the execution time and
deadline of the last job, since it is not computed by
composition, but starting from the corresponding rbf.

Theorem 13: The dbf function of a generic digraph task
D(τ) = (V,E) is almost linear periodic, i.e. there exist a
real number q and a pair of integers r and p such that

∀t > r, τ.dbf(t+ p) = τ.dbf(t) + p · q (18)

Proof: By the l-MAD property, the last job in an event
sequence always has the latest deadline, thus the execution
times of all nodes in the sequence should be included in the
dbf. For the consideration of τ.dbf(vi, vj , t), the second to
last node vk : (vk, vj) ∈ E has a release time of t−d(vj)−
p(vk, vj). For sufficiently large t, it is

τ.dbf(vi, vj , t)
= max

vk:(vk,vj)∈E
{τ.rbf(vi, vj , t− d(vj)− p(vk, vj))}+ e(vj)

= τ.rbf(vi, vj , t− d(vj)− min
vk:(vk,vj)∈E

p(vk, vj)) + e(vj)

(19)
Thus, τ.dbf(vi, vj , t) can be computed by simply shifting

τ.rbf(vi, vj , t): to the right by d(vj)+ min
vk:(vk,vj)∈E

p(vk, vj),

and up by e(vj). This of course does not affect its period-
icity. Thus τ.dbf(t) is almost linear periodic with the same
linear factor and period as the corresponding rbf.

Example: For the digraph task τ in Figure 2,
we have τ.dbf(v1, v1, t) = τ.rbf(v1, v1, t − d(v1) −
min{p(v3, v1), p(v2, v1)}) + e(v1) = τ.rbf(v1, v1, t − 2) +
0.1. From Equation (8), ∀i ≥ 0, τ.rbf(v1, v1, 5 + i) =

a
(6+i)
1,1 = 0.6 + 0.1 × i. Thus ∀t ≥ 7, τ.dbf(v1, v1, t) =

0.1× t. Similarly, we can derive the dbf functions for other
pairs of source and sink vertices,

∀t ≥ 8, dbf(t) =

[
0 −0.1 0
0.1 0 0.1
0 −0.1 0

]
+ 0.1× t (20)

and the dbf function is ∀t ≥ 8, τ.dbf(t) = 0.1 + 0.1× t.
Although we proved the linear periodicity of the rbf

and dbf functions for any digraph task, to the best of our
knowledge, there is no general procedure for computing the
exact value (or an upper bound) of the general defect if the
execution request matrix is reducible (the digraph task is not
strongly connected).

VI. COMPUTING THE PERIODICITY PARAMETERS FOR
STRONGLY CONNECTED DIGRAPHS

In this section, we outline efficient algorithms to compute
the periodicity parameters for strongly connected task di-
graphs. In such digraph tasks, the sequence of each element
in the irreducible execution request matrix A is almost
linear periodic with period p = lcm{hper(K) : K ∈
HCC∗(G(A))} and factor q = λ(A) (Theorem 4). By
Lemma 7, the sequence of the largest element is linear
periodic with the same period and factor. The linear factor
q (the maximum cycle mean in G(A)) can be computed
using the algorithm in [15], with complexity O(|V′||E′|),
where |V′| and |E′| are the number of vertices and edges
in the transformed UDRT respectively. p is computed using
the algorithm in Theorem 3.6 of [11]. The dominating step
in complexity is the metric matrix (the matrix of all-pairs
longest paths) of A− λ(A), with complexity O(|V′|3).

Since a
(t)
max = 0T ⊗A⊗ 0 (where 0 = (0, 0, ..., 0)T), the

defect of the linear dynamical system A∗ ⊗ 0 provides an
upper bound to the defect of a∗max [13]. The linear defect of a
linear dynamical system can be computed with complexity
O(|V′|3(log r + log p)) [13] (where r and p are its linear
defect and period). This is done by iteratively computing the
matrix power and finding the first r that satisfies A(r+p) ⊗
0 = A(r)⊗0+ p× q. Upper bounds on r can be calculated
more efficiently ([13] [7]) with complexity O(|V′|2) on top
of the algorithms to compute p and q.

In practice, the transformed UDRT can have a much larger
size than the original digraph task, and the computation
of the periodicity parameters (p, q, and r) might be quite
expensive. For a possibly more efficient implementation, we
consider algorithms that operate on the original digraph task
(or a more compact transformation than the UDRT):

• Because of the correspondence between the paths in
the digraph task and its UDRT, λ(A) is the utilization
(the asymptotic maximum value of the ratio execution
request/demand rate) of the digraph task. This is the
maximum cost to time ratio [8], which can be computed
with complexity O(|V|2|E|), where |V| and |E| are the
number of nodes and edges in the original digraph task.

• The computation of the metric matrix for A−λ(A) can
be performed in O(|E|3) time, where |E| is the number
of edges in the original graph. This is because in the
UDRT, every path to νi,k (k > 1) goes through νi,1.

• The linear dynamical system A(t) ⊗ 0 = (a
(t)
j =

maxi rbf(vi, vj , t−1)) is the vector of the rbf functions
ending in vj . Such rbf functions can be computed using
the same algorithm proposed in [23], and the linear
defect is estimated with complexity O((|V|+ |E|) · r).

These algorithms avoid the need to construct and operate
on the possibly large UDRT graph, and allow to compute
(often more efficiently) the linear periodicity parameters on
the original graph. In our experiments, we use them for the
comparison with the analysis in [23]. We leave for future
work the study on the best combination of these algorithms
with the ones operating on the UDRT ([11] [13] [7]).

VII. AN IMPROVED UPPER BOUND ON tf

We now derive a tight linear upper bound on rbf and dbf,
and consequently, a bound for tf , the time limit for checking
the feasibility conditions in (1) and (2).

We use the previously developed task transformation and
the power sequence on its execution request matrix. For the
digraph task τ , the graph of its execution request matrix is
G(A) = (V,E, w). We consider G′(A) = G(A) − λ(A),
i.e. G′(A) = (V,E, w′) where w′(e) = w(e)−λ(A) for all
e ∈ E. G′(A) shares the same topology as G(A), thus for
any path Π in G(A), there exists the same path in G′(A)
but with weight

w′(Π) = w(Π)− |Π| · λ(A) (21)

Hence the maximum cycle mean of G′(A) is zero, and the
longest path in G′(A) is well defined.

We now derive a linear upper bound on the rbf function.
Theorem 14: The linear upper bounds on rbf and dbf are

∀t ≥ 0,

{
τ.rbf(t) ≤ W + λ(A) + t · λ(A)
τ.dbf(t) ≤ X + t · λ(A)

(22)

where W = max{w′(Π)|Π is a path in G′(A)}, X =
W +λ(A)+min{ max

(vk,vj)∈D(τ)
{e(vj)− (d(vj)+ p(vk, vj)) ·

λ(A)},−λ(A) · dmin}, and dmin = min
vj∈D(τ)

d(vj).

Proof: Combining (21) with (17) and (10), we have

τ.rbf(t)
= max{w(Π)|Π is a path in G(A), |Π| = t+ 1}
≤ max{w′(Π) + (t+ 1)λ(A)|Π is a path in G′(A)}
= W + λ(A) + t · λ(A)

The bound on dbf is derived by combining the bound on rbf
with (19) and the fact that dbf(t) ≤ rbf(t− dmin).
W can be computed in O(|V|3) time (V is the number of

nodes in G′(A)) using the Floyd-Warshall algorithm [10].
The bound in [23] is τ.dbf(t) ≤ S+ t ·λ(A) where S =∑
vi∈D(τ) e(vi) is the sum of the WCETs of the vertexes

in D(τ). Our linear bound is always tighter than [23].
Informally, as there is no positive cycle in G′(A), there must
exist a longest path in G′(A) which is elementary. Thus, W
is no greater than the maximum sum of the positive edge
weights in any elementary path (where each node will appear
at most once). Also, the task transformation guarantees that
the edge weight in G(A) equals the WCET of its source node
in D(τ). Hence, W ≤

∑
vi∈D(τ) max{e(vi) − λ(A), 0}.

This implies W ≤ S − λ(A), and X ≤ W + λ(A) ≤ S.
Example: For the example in Figure 2, the linear bound

on the rbf is 0.2 + 0.1× t. For dbf, it is 0.1+ 0.1× t. As a
comparison, the bound on dbf from [23] is 0.4 + 0.1× t.

With the bounds on rbf and dbf in (22), we can compute
the maximum length tf of the time interval to be checked
by using the results in [5], where the utilization of task τi
is the maximum cycle mean λi(A) in its digraph. For task
τj in system Γ with static priority, if the total utilization is
less than 1, i.e.

∑
τi∈Γ λi(A) < 1, then

tf <
Xj +

∑
τi∈hp(j)(Wi + λi(A))

1− λj(A)−
∑

τi∈hp(j) λi(A)
(23)

For systems with dynamic priority (EDF), it is

tf <

∑
τi∈Γ Xi

1−
∑

τi∈Γ λi(A)
(24)

VIII. EXPERIMENTAL RESULTS

In this section, we evaluate the improvements on the
efficiency of schedulability analysis compared to the pre-
vious method in [23]. We generate applications consisting
of random sets with n = 5 to 40 tasks. Each task is a
random graph with 1 to 15 nodes. For each n, 1000 sets
are generated and then examined for schedulability. The
average (in- and out-) degree of the nodes is 3.5, and 77.4%
of the task graphs are strongly connected. The base period
of each task is generated by the product of one to three
factors, each randomly drawn from the harmonic sets (2, 4),
(6, 12), (5, 10). The inter-release time is scaled by a factor
randomly extracted from the set {1, 2, 4, 5, 10}. The deadline
of a node is the minimum inter-release time among those of
its out-going edges, thereby enforcing the frame separation
property. The execution times of the task are selected such
that its utilization is uniformly distributed. For comparison,
we assume the system is scheduled using EDF, the only
policy considered in [23].

We compare the performance of our algorithms, applied to
the original digraph tasks, with the analysis in [23]. Figure 5
shows the improvement for systems with 20 tasks on tf ,
the runtime for calculating the dbf function, and the total
runtime. It also plots the percentage of strongly connected
digraph tasks with r < tf where tf is the improved bound
computed in Equation (24), i.e., the tasks that we explore
the linear periodicity to calculate the dbf function.

 1

 2

 3

 4

 5

 6

 7

 8

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

 20

 40

 60

 80

 100

Im
pr

ov
em

en
t F

ac
to

r

P
er

ce
nt

ag
e

(%
)

Utilization (%)

Improvement on dbf calculation
Improvement on total runtime

Improvement on t f
Percentage of tasks with r < tf

Figure 5. The improvement compared to the analysis in [23] and the
percentage of tasks with r < tf (number of tasks n = 20).

As shown in Figure 5, the computed tf is 3 times smaller
for all utilizations (50% to 99%). The speedup on the total
runtime and the portion for the calculation of dbf function is
a factor of around 1.8 at 60% utilization and then increases
even further, leveraging the improvements in the computed
tf value. For a very high (99%) utilization, nearly 97% of the
strongly connected digraph tasks have a linear defect smaller
than tf . Figure 6 plots the improvement on the total runtime
vs. n, the number of tasks in the system. The speedup is
almost independent from n, since tf is uniformly reduced
about 3 times for all tasks, and the linear periodicity of rbf
and dbf only depends on the graph structure.

 0

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25 30 35 40

R
un

tim
e

Im
pr

ov
em

en
t

Number of tasks

Util = 99%
Util = 95%
Util = 90%
Util = 70%
Util = 50%

Figure 6. The runtime improvement vs. the number of tasks in the system.

IX. CONCLUSION

In this paper, by leveraging results from max-plus algebra,
we extend the concept of periodicity of execution requests
to task models without cyclic recurrent behavior, including
digraph task model and its extension. This essentially makes
the asymptotic complexity of calculating rbf(t) and dbf(t)
independent from the time interval t. We also provide
polynomial time algorithms for the computation of the
linear periodicity parameters for strongly connected graphs.

Experimental results demonstrate that such a property can
be used to improve the efficiency of schedulability analysis
for real-time systems captured by these task models.

REFERENCES

[1] M. Anand, A. Easwaran, S. Fischmeister, and I. Lee, “Compositional
feasibility analysis of conditional real-time task models,” Proc. Sym-
posium on Object Oriented Real-Time Distributed Computing, 2008.

[2] F. Baccelli, G. Cohen, G. Olsder, and J. Quadrat, “Synchronization
and Linearity: An Algebra for Discrete Event Systems,” Wiley, 1992.

[3] S. Baruah, “Feasibility analysis of recurring branching tasks,” Proc.
10th Euromicro Workshop on Real-Time Systems, 1998.

[4] S. Baruah, D. Chen, S. Gorinsky, and A. Mok, “Generalized multiframe
tasks,” Real-Time Syst., 17(1):5–22, 1999.

[5] S. Baruah, “Dynamic- and static-priority scheduling of recurring real-
time tasks,” Real-Time Syst., 24(1):93–128, 2003.

[6] S. Baruah, “The non-cyclic recurring real-time task model,” Proc. 31st
IEEE Real-Time Systems Symposium, 2010.

[7] B. Charron-Bost, M. Függer, and T. Nowak, “On the Transience of
Linear Max-Plus Dynamical Systems,” Computing Research Reposi-
tory (CoRR) abs/1111.4600, 2011.

[8] A. Dasdan, S. S. Irani, and R. K. Gupta. “Efficient algorithms for
optimum cycle mean and optimum cost to time ratio problems,” Proc.
Design Automation Conference, 1999.

[9] E. Fersman, P. Krcal, P. Pettersson, and W. Yi, “Task automata:
Schedulability, decidability and undecidability,” Information and Com-
putation, 205(8):1149–1172, August 2007.

[10] R. Floyd, “Algorithm 97: Shortest path,” Commun. ACM, 5(6):345,
June 1962.

[11] M. Gavalec, “Linear matrix period in max-plus algebra,” Linear
Algebra and its Applications, 307(1-3):167–182, 2000.

[12] M. Gavalec, “Polynomial algorithm for linear matrix period in max-
plus algebra,” Central Europ. J. Oper. Res., 8:247–258, 2000.

[13] M. Hartmann and C. Arguelles, “Transience bounds for long walks,”
Mathematics of Operations Research, 24:414–439, May 1999.

[14] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System Level Performance Analysis - the SymTA/S Approach,” IEE
Proc. Computers and Digital Techniques, 152(2):148–166, 2005.

[15] R. Karp, “A characterization of the minimum cycle mean in a
digraph,” Discrete Math, 23(3):309–311, 1978.

[16] S. Künzli, A. Hamann, R. Ernst, and L. Thiele, “Combined Approach
to System Level Performance Analysis of Embedded Systems,” Proc.
Conference on HW/SW Codesign and System Synthesis, 2007.

[17] C. L. Liu and J. W. Layland, “Scheduling algorithms for multi-
programming in a hard-real-time environment,” J. ACM, 20:46–61,
January 1973.

[18] C. Norström, A. Wall, and W. Yi, “Timed automata as task models for
event-driven systems,” Proc. 6th Conference on Real-Time Computing
Systems and Applications, 1999.

[19] A. K. Mok and D. Chen, “A multiframe model for real-time tasks,”
Proc. 17th IEEE Real-Time Systems Symposium, 1996.

[20] M. Molnárová, “Computational complexity of nachtigall’s represen-
tation,” Optimization, 52:93–104, 2003.

[21] M. Molnárová, “Generalized matrix period in max-plus algebra,”
Linear Algebra and its Applications, 404:345–366, 2005.

[22] N. T. Moyo, E. Nicollet, F. Lafaye, and C. Moy, “On schedulability
analysis of non-cyclic generalized multiframe tasks,” Proc. 22nd
Euromicro Conference on Real-Time Systems, 2010.

[23] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The digraph real-time
task model,” Proc. 16th IEEE Real-Time and Embedded Technology
and Applications Symposium, 2011.

[24] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “On the tractability
of digraph-based task models,” Proc. 23rd Euromicro Conference on
Real-Time Systems, 2011.

[25] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus
for scheduling hard real-time systems,” Proc. IEEE International
Symposium on Circuits and Systems, 2000.

[26] E. Wandeler and L. Thiele, “Real-Time Calculus (RTC) Toolbox,”
http://www.mpa.ethz.ch/Rtctoolbox, 2006.

[27] H. Zeng and M. Di Natale, “Schedulability Analysis of Periodic
Tasks Implementing Synchronous Finite State Machines,” Proc. 23rd
Euromicro Conference on Real-Time Systems, 2012.

