
A Two-step Optimization Technique for Functions Placement,
Partitioning, and Priority Assignment in Distributed Systems

Asma Mehiaoui, Ernest Wozniak
CEA LIST DILS

{asma.mehiaoui, ernest.wozniak}@cea.fr

Sara Tucci-Piergiovanni, Chokri Mraidha
CEA LIST DILS

{sara.tucci, chokri.mraidha}@cea.fr

Marco Di Natale
Scuola Superiore Sant’Anna

marco@sssup.it

Haibo Zeng
McGill University

haibo.zeng@mcgill.ca

Jean-Philippe Babau Laurent Lemarchand
Lab-STICC, University of Brest

{jean-philippe.babau, laurent.lemarchand}@univ-brest.fr

Abstract
Modern development methodologies from the industry and the
academia for complex real-time systems define a stage in which
application functions are deployed onto an execution platform. The
deployment consists of the placement of functions on a distributed
network of nodes, the partitioning of functions in tasks and the
scheduling of tasks and messages. None of the existing optimiza-
tion techniques deal with the three stages of the deployment prob-
lem at the same time. In this paper, we present a staged approach to-
wards the efficient deployment of real-time functions based on ge-
netic algorithms and mixed integer linear programming techniques.
Application to case studies shows the applicability of the method
to industry-size systems and the quality of the obtained solutions
when compared to the true optimum for small size examples.

Categories and Subject Descriptors C.3 [Real-time and embed-
ded systems]; G.1.6 [Optimization]: linear programming; stochas-
tic programming

Keywords Distributed real-time applications, response-time anal-
ysis, optimization, linear programming, genetic algorithm, place-
ment, partitioning, scheduling

1. Introduction
In the development of real-time cyber-physical systems, abstrac-
tion levels are used to manage complexity [17]. Industrial standards
(like the automotive AUTOSAR [2] and the Model-Driven Archi-
tecture from the OMG [1]) and academic frameworks (including
the Platform-Based Design [27]) recommend system development
along the lines of the Y-chart approach [15]: a functional model rep-
resenting the system functions and the signals exchanged among
them is deployed onto an execution platform model consisting of
nodes, buses, tasks and messages. End-to-end real-time constraints
(deadlines) are specified on transactions, that is, chains of func-
tions, activated by an external event (e.g. as detected by a sensor)
or a timer, and terminating with the execution of a sink function

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES’13, June 20–21, 2013, Seattle, Washington, USA.
Copyright c© 2013 ACM 978-1-4503-2085-6/13/06. . . $15.00

(e.g. sending a command to actuators) [2]. Classically as in AU-
TOSAR, two subsequent and separated activities (often carried out
by different teams) are dedicated to functional deployment. First,
the placement of functions on execution nodes is defined. Next, the
partitioning of the set of functions and signals in tasks and mes-
sages and the scheduling of tasks and messages is computed. In
fixed-priority scheduled systems, this includes the assignment of
priorities. Once the functional level is arranged in tasks and mes-
sages, the worst-case timing behavior can be computed and com-
pared against end-to-end deadlines. Ideally, the placement, parti-
tioning, and scheduling problem should be automated by solving an
optimization problem with respect to the metrics and real-time con-
straints, but because of its inherent complexity – placement, parti-
tioning, and scheduling are NP-hard problems – suboptimal staged
approaches and heuristics are used. The first stage (as in [17]) may
be dedicated to placement in isolation, i.e. functions and signals
are assigned to nodes and buses without the definition of the task
and message model (including their priorities). As the deployment
is only partial, worst-case latencies cannot be evaluated and the
placement is evaluated by simple metrics and constraints, such as
resource utilization. Other approaches lie in solving the placement
and scheduling of tasks and messages with respect to latency-based
constraints and metrics [8, 32]. In this case, the function-to-task
and signal-to-message partitioning is previously solved in isolation
with simple heuristics, such as grouping in one task all functions
belonging to the same transaction and/or executing at the same rate
or a one-to-one mapping between functions and signals to tasks and
messages. Both approaches may lead to sub-optimal deployments.

In this paper we are intersted in tackling function placement,
partitioning and scheduling exploring the use of Mixed Integer Lin-
ear Programming (MILP) and Genetic Algorithms (GA). MILP and
GA algorithms are complementary and may derive mutual benefits
from a joint application to the problem. An MILP formulation is
easily extensible, re-targetable to a different optimization metric
and can easily accommodate additional constraints or legacy com-
ponents. An MILP formulation may benefit from the application
of powerful commercial solvers. The method also guarantees op-
timality in case the solver terminates (when the problem size is
manageable) and the distance of the current solution from the op-
timum can be bounded at any time (computed as the gap between
the current best solution and the one of the relaxed linear problem),
thus it is possible to evaluate the quality of the intermediate solu-
tions generated by the solver. GA solutions typically scale much
better. However, the quality of the solution provided by GA de-
pends on many factors, for example, the appropriate choice of a

crossover operator, and is very hard to evaluate. Using both tech-
niques, the MILP solver can provide the true optimum for average
size problems, helping in the tuning of the GA formulation and the
assessment of its quality. For larger size problems, it can provide
an upper bound to the optimum metric, helping in the evaluation of
the quality obtained by the GA.
Our Contributions. In this paper we first present a MILP tech-
nique that solves the placement, partitioning and scheduling prob-
lem (from now on PPS) at the same time (unlike existing ap-
proaches). The MILP formulation of the problem can be solved and
returns the optimal solution, but it is practically applicable only to
small-size systems. In order to scale to industry-size systems we
then propose a staged, divide-and-conquer approach with an iter-
ative improvement optimization. Through divide-and-conquer the
PPS is divided in two sub-problems of manageable size solved in
cascade. Response-time optimization and latency constraints are
considered for both sub-problems. This staged approach has been
implemented using MILP and GA techniques. Of course, when a
staged MILP solution is used, several benefits are lost, including the
guarantee of optimality. However, the staged MILP solution pro-
vides a good tradeoff between scalability (a primary concern for
industrial size systems) and the quality of solutions. Furthermore
the MILP solution is useful to well-design the staged GA solution,
which scales to even larger systems.

The paper is organized as follows. Section 2 presents the related
work. Section 3 presents basic definitions and assumptions, then
formally introduces the PPS problem. Section 4 presents the staged
optimization strategy for the PPS problem and the two proposed
formulations (MILP and GA) for the inner optimization stages.
Section 5 shows the experimental results and Section 6 concludes
the paper.

2. Related work
Most automotive controls are designed based on run-time static
priority scheduling of tasks and messages. Examples of standards
supporting this scheduling model are the AUTOSAR operating
system [2], and the CAN bus [10] arbitration model.

Optimization techniques have been extensively used to find
good solutions to deployment problems. [3] classifies 188 papers
along many axes, i.e. design goals and constraints, degrees of
freedom, problem solved. None of the surveyed papers, however,
considers worst-case latency of the deployed transactions as either
design constraint or goal.

End-to-end deadlines have been discussed in research work in
single-processor and distributed architectures. In transaction-based
activation models (such as the holistic and jitter propagation model
in [24, 28] and the transaction model with offsets in [21]), mes-
sages are queued by sender tasks and the arrival of messages at
the destination node triggers the activation of the receiver task. In
such models, task and message schedulers have cross dependencies
because of the propagation of the activation signals and real-time
analysis can be performed using the holistic model [28] [23] based
on the propagation of the release jitter along the computation path.
When offsets can be enforced for tasks and messages to synchro-
nize activations, the system can be analyzed as in [21].

Despite advances in timing analysis, the optimized deployment
synthesis problem has not received comparable attention. In [24]
the authors discuss the use of genetic algorithms for optimizing
priority and period assignments to tasks with respect to an exten-
sibility metric and a number of constraints, including end-to-end
deadlines and jitter. In [9], the authors describe a procedure for
period assignment on priority-scheduled single-processor systems.
In [22, 23], a heuristics-based design optimization algorithm for
mixed time-triggered and event-triggered systems is proposed. The
algorithm, however, assumes that nodes are synchronized. An inte-

grated optimization framework is also proposed in [14] for systems
with periodic tasks on a network of processor nodes connected by a
time-triggered bus. The framework uses Simulated Annealing (SA)
combined with geometric programming to hierarchically explore
task allocation, task priority assignment, task period assignment
and bus access configuration.

In [8], task allocation and priority assignment were defined with
the purpose of optimizing the extensibility with respect to changes
in task computation times. The proposed solution was based on
simulated annealing. In [13], a generalized definition of extensi-
bility on multiple dimensions (including changes in the execution
times of tasks but also period speed-ups and possibly other metrics)
was presented. Also, a randomized optimization procedure based
on a genetic algorithm was proposed to solve the optimization
problem. The focus is on the multi-parameter Pareto optimization,
and how to discriminate the set of optimal solutions. Other works
assume a communication-by-sampling model, in which tasks and
messages are activated periodically and exchange information over
shared variables. In this context, [32] provides an MILP formula-
tion for the problem that considers the placement, scheduling and
signal partitioning as degrees of freedom. The formulation is ex-
tended to consider extensibility in [30]. Azketa et al. used genetic
algorithms to assign priorities to tasks and messages, then to map
tasks and messages on the execution platform for event-triggered
systems [6]. Finally, a mixed model in which information can be
exchanged synchronously (with tasks and messages activating the
successors, as in the transaction model) or by periodic sampling is
considered in [29], where only the optimization of the activation
modes is provided (task and message placement and priorities are
fixed). A common characteristic of the above cited works is that
function placement and partitioning is not considered.

Functions partitioning problem was considered in [7] [26] and
[16] but only for a single-processor system, i.e., without the place-
ment problem.

3. System model and the PPS problem
This section introduces the basic definitions and assumptions on
the system model. Then, the PPS problem is defined and most
significant parts of the MILP formulation are given.

3.1 System model
The considered system consists of a physical architecture (Network
topology) and a logical architecture(Functional graph).

The network topology is represented by a graph ζ
′

of execution
nodes C ={c1, c2, ..., cc} connected through buses β ={b1, b2,...,
bβ}. Each node runs a real-time operating system with a preemptive
fixed-priority scheduling (such as an AUTOSAR OS). Communi-
cation buses are assumed to be Controller Area Networks (CAN),
arbitrated by priority (the identifier field of the message). The ex-
ecution nodes and communication buses may have different pro-
cessing and transmission speeds. Both execution nodes and com-
munication buses have a maximal capacity utilization, respectively
µc and µβ , that must not be exceeded. Each execution node offers
a set of tasks that perform the computation required by the system
functions.. We denote the set of tasks offered by all the execution
nodes as T = {t1, t2,, . . . , tn}. Each task ti is characterized by
a set of functions that it executes and a priority level πti . We de-
note as τfi the task to which fi belongs. In turn, communication
buses offer a set of messages ψ ={m1,m2, ...,mm} that realize
the transmission of signals between remote tasks. Each message
mi is defined by the set of signals that it transmits and a priority
level πmi .

The functional graph depicts the operational process of the
system, in which events generated by sensors or by users trig-

ger the computation of a set of control functions or algorithms,
which eventually define a system response. This behavior may
be captured by a dataflow model, and described as a directed
acyclic graph ζ composed by a set of concurrent linear transac-
tions ζ = {Γ1,Γ2,...,ΓΓ}. Each transaction is a 2-tuple,{F, ρ},
where F={f1,f2,...,ff} is the set of functions that represent the
atomic operations and ρ ={l1,l2,...,ll} is a set of links represent-
ing the interactions between functions. Functions exchange data
through signals on these links. Φ ={s1,s2,...,ss} denotes the set
of signals. A transaction Γi is triggered by an external event ei
that can be periodic or sporadic with, respectively, an activation pe-
riod or a minimum inter-arrival time, denoted in both cases as Pi.
Functions and signals within a transaction inherit their period (re-
spectively Pfi and Psi) from the activation period of the external
event triggering this transaction. In addition, each transaction Γi
has a deadline Di that represents the maximum time value allowed
for the associated transaction to be executed. Functions and signals
are, respectively, characterized by a vector of worst-case execution
times (WCETs) −→ωfi = (ωfi,c1 , ωfi,c2 , ..., ωfi,cc) and worst-case
transmission times (WCTTs) −→ωsi = (ωsi,b1 , ωsi,b2 , ..., ωsi,bβ),
where ωfi,cc and ωsi,bβ are respectively the WCET of fi on node
cc and the WCTT of si on bus bβ .

The event-triggered activation model [28] is considered for
functions and signals. In this model, the first function in each trans-
action Γi is triggered by an external event ei. Subsequent functions
are activated upon the completion of the predecessor function (if
local) or the arrival of the message delivering the data values for
its incoming signal (if remote). Messages are transmitted upon the
completion of the sender functions. Figure 1 shows an example.

f1 f2 f3 f4 f5

ωf1 ωf3ωf2

l1 (s1)

D1
ωf4 ωf5

D2

(e1,P1) (e2,P2)

ωs1 ωs2 ωs3

l3 (s3)l2 (s2)

External stimulus SignalFunction

Γ2Γ1

Figure 1. Example of a functional graph

3.2 PPS problem for system response-time optimization
The PPS problem consists in three sub-problems, namely place-
ment, partitioning and scheduling. Placement consists in finding an
execution node for each function and a bus for each signal. Parti-
tioning decides which functions/signals to execute/transmit in each
task or message. Scheduling is the problem of finding an execu-
tion or transmission order among tasks and messages in the same
node/bus, this order is expressed by a priority order.

The WCET and WCTT of each function and signal is cho-
sen from its WCETs and WCTTs vector, respectively. This choice
depends on placement decisions. Then in the partitioning and
scheduling stage, each task gets its set of functions as the group
of functions with the same priority level and inherits this priority
level. In the same way, a message is constructed such as it contains
a set of signals with the same priority level.

Given a functional graph and a network topology, we are in-
terested in finding a valid placement, partitioning and scheduling
optimized with respect to the system response time. In this paper,
we consider two metrics to express the optimization of system re-
sponse time, the minimization of end-to-end transactions latencies
and the maximization of the minimum transactional slack time, as
detailed later in this section.

The constraints for the problem are detailed with their associ-
ated MILP formulation. For reasons of space availability, we do
not report the full MILP formulation but only the most significant
or original parts (the full description is available from [18]). For
what concerns the variables representing tasks and messages used

in MILP formulation, since their number is unknown before op-
timization, we reserve one task and message slot for each func-
tion/signal on each node/bus. Empty slots are not considered in the
formulation of the constraints and the metric function. In the fol-
lowing, when clear from the context, task slots and messages slots
will be called tasks and messages.

Partitioning constraints include harmonic rate and functional
partitioning constraints. Harmonic rate constraints prevent two
functions/signals with non harmonic periods from being mapped
into the same task/message. Functional partitioning constraints
consists in mapping each function into exactly one task and each
signal into at most one message. Ai,k is a boolean variable set
to 1 if function fi (signal si) is placed on task tk (message mk).
Xi,j,k is also a boolean, and denotes whether both fi and fj are
partitioned to tk. The following constraints guarantee that each
function is assigned to exactly one task and ensure the consistent
definition of Xi,j,k. Constraints for signal and messages can be
found in [18].∑
tk∈T

Ai,k = 1

Xi,j,k ≤ Ai,k, Xi,j,k ≤ Aj,k, Xi,j,k + 1 ≥ Ai,k +Aj,k

Placement constraints are divided into two subsets. The first
concerns resource utilization and consists in meeting the maxi-
mum capacity utilization of all execution nodes and communica-
tion buses. The second relates to allocation, and includes: (i) fixed
allocation, when a function must be allocated to a specific node
(e.g. a function responsible for collecting data from sensors has to
be placed on the node linked to the sensor); (ii) exclusive allocation
enforcing the placement of each function on exactly one node and
each signal on one bus at most; and (iii) bus allocation enforcing
the mapping of a signal on the bus connecting the nodes on which
its sender and receiver functions are executed. This last constraint
needs to take into account the topology of the communication net-
work (e.g. if c1 and c2 are not connected then communicating func-
tions f1 and f2 cannot be placed on c1 and c2, respectively). Func-
tion fi is placed on node cj if and only if it is placed on task tk al-
located to node cj . The parameter TN [j] represents the set of tasks
slots for cj .Ani,j is a boolean variable which denotes whether fi is
placed on cj .X2i,j,k is another boolean variable, with value 1 if fi
and fj are placed on ck and 0 otherwise. The following constraints
ensure the consistency of the definitions of X2i,j,k.

Ani,j =
∑

tk∈TN [j]

Ai,k

X2i,j,k ≤ Ani,k, X2i,j,k ≤ Anj,k, X2i,j,k + 1 ≥ Ani,k +Anj,k

Signal si is placed on bus bj if and only if it is placed on the
message slot mk belonging to bj . MB[j] represents the set of
messages slots belonging to bj . Abi,j is a boolean variable which
denotes whether the signal si is transmitted over the bus bj .

Abi,j =
∑

mk∈MB[j]

Ai,k

Gi is a boolean variable equal to 1 if si is transmitted on a bus and
0 if si is a local signal; NB[j] is the set of nodes communicating
through bus bj . The following constraints enforce the conditions
for si to be on bj .

Abi,j ≤ Gi,
0 ≤

∑
ck∈NB[j]

Anreci,k +Gi +
∑

ck∈NB[j]

Ansndi,k − 3 ·Abi,j ≤ 2

where sndi and reci are, respectively, the source and destination
function of the signal si.

Execution order constraints are local total order and func-
tional order constraints. The local total order constraints consist

in a total priority order for tasks/messages belonging to the same
node/bus. However, within each node and bus we assign a different
priority order to task ti and message mj slots, which is denoted
respectively as πi and πj . Functional order constraints represent
partial orders of execution (such as tj may not be executed before
ti when tj depends on the output of ti). Tasks dependencies are
derived from the dependencies of the functions mapped in them.
The (constant) parameter dpi,j = 1 indicates that the execution of
fj depends on fi in the functional graph. In this case, fj cannot be
placed on a task with priority higher than the task slot on which fi
is placed.

∀fi, fj s.t. dpi,j = 1 :
∑
k∈T

Aj,k · πk ≤
∑
k∈T

Ai,k · πk

Response time constraints are common to the placement, par-
titioning and scheduling sub-problems. Each transaction Γi ∈ ζ
has a latency Li equal to the worst-case response time (WCRT)
Rfk of its last function fk and the latency of each transaction
should not exceeds its deadline (Li ≤ Di). To compute the WCRT
of functions, we adapt the response time analysis with jitter propa-
gation (as applied to tasks) given in [28] and [21].

The WCRT Rfi of a function fi is computed by considering all
the q function instances (distinct executions of fi after activation)
in the busy period, as follows:

Rfi = max
q=1,2,...

[W
(q)
fi
− (q − 1)Pfi + Jfi] (1)

Since fi is executed by a task, its release jitter Jfi is the task
release jitter, that is, the largest among all the latest release times
for the functions in the same task, which is zero if the function
has no predecessor (or a predecessor within the same task), or the
worst case response time of the signal it receives from a remote
predecessor function (si is the signal received by fi.)

Jfi = max
τfi

=τfj
,∀fj∈F

{0, Rsi} (2)

W
(q)
fi

is the completion time of the qth instance of function fi

W
(q)
fi

= q · (ωfi,ck +
∑

fj :τfi
=τfj

ωfj ,ck) +
∑

fj∈hp(fi)

⌈
Wfi

(q) + Jfj

Pfj

⌉
ωfj ,ck

(3)
where hp(fi) refers to the set of higher priority functions than

fi executing on the same node and within different tasks. The last
term represents the preemption time from functions belonging to
hp(fi). The completion time is computed for q = 1, 2, · · · until
the busy period ends, that is, an instance completes at or before the
activation of the next instance.

When a (higher priority) task contains functions with different
periods, its interference is computed as the sum of the interferences
of its functions, as shown in Figure 2, in which a task consists of
two functions f1, activated once every two task executions, and f2

executed every time. The exact response time formula (3) is not

i 1f 1f

f2

1f 1f

f2 f2

f2 f2 f2τ

Figure 2. Interference of a task with functions with different har-
monic periods as the sum of the function interferences

suitable for an MILP formulation. It depends on the number of
function activations q in the busy period, which is not known a-
priori. Hence, we use a necessary-only (optimistic) conditions for
feasibility that only considers the response time of the first instance
(q = 1). The MILP formulation of (3) with q = 1 becomes (the
integer variables Ij,i represent the number of times fj may interfere
with fi in the worst case)

Wfi = ωfi,ck +
∑

fj :τi=τj

ωfj ,ck +
∑

fj∈hp(i)

Ij,i · ωfj ,ck

Ij,i · Pfj − Pfj < Wfi + Jfj ≤ Ij,i · Pfj
(4)

The function response time is equal to its first instance (as
computed by the above formula) in case of restricted deadline
Li ≤ Di ≤ Pi. When end-to-end deadlines may be larger than
the periods or the interarrival times of activation events, the for-
mulation using the constraint (4) may compute an optimal solution
that is not feasible. This is why all the solutions obtained from the
MILP solver must be verified afterwards using the exact response
time formula.

The WCRT Rsi of a signal si is computed only for signals
representing remote communications (otherwise it is equal to zero),
using a similar formula as the WCRT of functions, except for an
additional term Bsi that represents the blocking time due to the
impossibility of preempting messages. The release jitter of a remote
signal is the worst-case response time of its sender function.

Constraint (5) represents the computation of Bsi which is the
largest WCTT of any message that shares the same communication
bus [12] (or even simpler, the transmission time of the largest CAN
message). Note that si, sj and sl are all transmitted on the bus bk
and msi represents the message on which si is partitioned.

∀sj ∈ Φ : msi 6= msj , Bsi ≥ ωsj ,bk +
∑

sl:msl=msj
msl

6=msi

ωsl,bk (5)

Optimization metrics can be defined based on the system require-
ments. In this work we tried two formulations: (i) the minimization
of the sum of all (or some) transactions latencies, which is a loose
indication of the system performance, and (ii) the maximization
of the minimum transactional slack time. A slack time for a given
transaction is defined as the difference between the deadline and
latency of the transaction. Maximizing the minimal transactional
slack time (over all transactional slack times) means maximizing
the minimum distance between the latency and deadline of the se-
lected transaction (MinSlack = minΓi∈ζ [Di−Li]). This latter met-
ric can be easily related to the concept of robustness (or extensibil-
ity) of the system against changes in the time parameters of some
functions.

4. Two-step optimization for PPS
The (one-step) MILP formulation of the PPS problem can only
be solved for small systems. To handle industry-size systems, the
problem is divided in two smaller (sub)problems and solved in
cascade. Two MILP formulations are then provided, one for each
sub-problem. A GA counterpart for each sub-problem is also given.

4.1 Overview
Our heuristic (algorithm in Figure 3) combines two classical opti-
mization strategies: divide-and-conquer and iterative improvement.

Divide-and-conquer consists in dividing the PPS problem
in two sub-problems solved in cascade, in which placement is
solved first (placement problem or PP), and then partitioning and
scheduling (PS).

Iterative improvement is used to move towards the optimum.
Our algorithm considers an iterative improvement at two levels: in-
ner and outer loops. The inner loop tries to find an optimal system

configuration by applying iteratively an optimization sequence un-
til convergence (two successive solutions are the same). The inner
loop consists of the two stages of placement optimization (PP), fol-
lowed by partitioning and scheduling optimization (PS). In both
sub-problems, we aim at optimizing the latency- or slack-based
metric. Each iteration starts from a PP step with an initial PS
configuration. The PP step provides a new placement of func-
tions/signals to nodes/buses. During this stage, tasks and messages
are placed on nodes/buses and so are the functions mapped onto
them. Next, thePS step tries to find a new partitioning and schedul-
ing solution that improves the solution found in the PP stage. De-
pending on the selection of the initial configuration, the PP+PS so-
lution may be a local optimum. To move away from local minima,
the outer loop selects set of random initial configurations for parti-
tioning and scheduling as possible starting points.

Provide an initial configuration for PPS

Optimize placement for a given

partitioning and scheduling (PP)

Optimize partitioning and scheduling for

given placement (PS)

Found

 convergence?

YES

Store the obtained PPS solution

YES
Return the optimum

among stored solutions

Evaluate the PPS solution

Close to estimated

optimum or timeout?

NO

NO

Inner loop

outer loop

Step 1

Step 2

Figure 3. Overview of the Two-step optimization approach

4.2 The MILP formulation for the PP and PS stages
This section outlines the MILP formulation for each sub-problem
in the two-step approach.

The two-step formulation uses the same optmization metric for
the one-step formulation (Section 3.2).

4.2.1 MILP formulation of the Placement Problem
The objective of this step is optimizing the placement of either an
initial configuration or the output of the previous iteration. The pa-
rameters are the partitioning of functions (signals) on tasks (mes-
sages) and the priorities assigned to tasks and messages. This ob-
jective is the optimal placement of tasks/messages and the func-
tion/signals in them.
Placement constraints: as mentioned before, they concern alloca-
tion and resource utilization constraints. C[i] in (6) is the set of
nodes on which ti is allowed to execute (this includes the case of
fixed allocation). Ati,c is a binary variable set to 1 if a ti is placed
on node c. Each task must be placed on one node.

Σc∈C[i]Ati,c = 1 (6)

The binary variable Hi,j,c based on Ati,c. Hi,j,c denotes whether
ti and tj are placed on the same node.

0 ≤ Ati,c +Atj,c − 2 ·Hi,j,c ≤ 1 (7)

Messages placement is based on the placement of tasks. A message
can be placed on one bus or to no bus (in case of local communi-
cation). The binary variable gi indicates if mi is placed on a bus
(gi = 1) or is local (gi = 0). The binary variable Ami,j is 1 if mi

is transmitted on bus bj , 0 otherwise.
Σbj∈βAmi,j = gi (8)

mi is placed on a bus (gi = 1) iff its sender (sen[i]) and receiver
(rec[i]) tasks are on different nodes.

∀(ti ∈ sen[i], tj ∈ rec[i]) : 1− Σc∈CHi,j,c = gi (9)

Since all communicating tasks residing on different nodes must
have a connecting bus, the placement of messages must also take
into account the network topology. The parameter NB[j] is the
set of nodes communicating through the bus bj . A message mi is
placed on bj iff the execution nodes of its sender and receiver tasks
communicate through bj .

∀(ti ∈ sen[i], tj ∈ rec[i]) :

0 ≤ gi + Σc∈NB[j]Ati,c + Σc∈NB[j]Atj,c − 3 ·Ami,j ≤ 2
(10)

Hi,j,k indicates if mi and mj are transmitted on the same bus bk.
The maximum utilization of nodes is enforced by constraint (11).
The utilization of buses is constrained in a similar way.

∀cj ∈ C : ΣiAi,j ·
(
ωi,cj /Pi

)
≤ µj (11)

Latency constraints
The task WCRT is the sum of its completion time and jitter.

Ri = Wi + Ji (12)

The Big M method is used in (15) and (16) to linearize the com-
putation of Ii,j,c, the maximum number of times that tj preempts
ti as Ii,j,c = Hi,j,c ∗ σi,j , where σi,j =

⌈
Wi+Jj
Pj

⌉
. The binary

parameter gpi,j denotes whether πj is higher than πi.

Wi =
∑
cp∈C

Ati,p · ωi,p +
∑
j∈T

∑
cp∈C

Ii,j,p · ωj,p · gpi,j (13)

0 ≤ σi,j −
(
Wi + Jj

Pj

)
< 1 (14)

σi,j −M ∗ (1−Hi,j,c) ≤ Ii,j,c (15)

Ii,j,c ≤ σi,j ; Ii,j,c ≤M ∗Hi,j,c (16)

The jitter of a task is 0 if all its functions are initial and otherwise
is equal to the largest WCRT of the received messages (17).

∀mi ∈ ψ s.t ti ∈ rec[mi] : Ji ≥ Rmi (17)

The constraints computing the WCRT of messages are similar
to (12), (13), (14), (15), and (16) except for the addition of the
blocking time Bmi to the formula (13)

∀mj ∈ ψ : Bmi ≥ Σb∈βHmi,mj ,b · ωmj ,b (18)

Note that the WCRT of a message transmitted inside a node returns
only its jitter as its completion time is zero. Thus the task jitter in
this case is simply the WCRT of its predecessor.

The result of this MILP formulation consists in a placement of
tasks and messages and the input for the next stage is the placement
of functions and signals as partitioned in the tasks and messages.

4.2.2 MILP formulation for the Partitioning and Scheduling
At this stage, the placement of functions and signals is given and
the following MILP formulation aims at improving (if possible)
the partitioning and priority assignment. The MILP formulation as-
signs priorities to functions and signals within each node and bus,
then tasks and messages are constructed based on priorities, i.e. a
task (message) is the set of functions (signals) with the same prior-
ity order residing on the same node (bus).
Partitioning and scheduling constraints: most constraints are ex-
pressed in the same way for functions and signals. In the follow-
ing, we address only functions and discuss the differences for sig-
nals. The binary variable χi,j indicates whether fi has higher pri-
ority than fj . If χi,j = 0 and χj,i = 0 then fi and fj have the

same priority order, otherwise, either fi has higher priority than fj
(χi,j = 1) or fj has higher priority than fi (χj,i = 1).

χi,j + χj,i ≤ 1 (19)

A set of constraints is used to enforce the symmetric, transitive
and inversion properties of the priority order relation and to ensure
that each function is partitioned on exactly one task (omitted for
space constraints).

A binary variable SPfi,fj denotes whether fi and fj have the
same priority order i.e. they are on the same task.

1 = SPfi,fj + χj,i + χi,j (20)

Any pair of functions with non-harmonic rates must be assigned to
different tasks (have different priorities).

∀fi, fj ∈ F s.t. fi 6= fj : 1 = χi,j + χj,i

if Pfi ≥ Pfj and Pfimodulo Pfj 6= 0
(21)

The second part of run-time constraints applies only to signals: si
and sj cannot be partitioned on the same task if they belong to the
same transaction (Γ[si] = Γ[sj]).

SPsj ,si 6= 0 if Γ[si]
= Γ[sj]

(22)

In constraint (23) the parameter dpfi,fj = 1 indicates that the
execution of fi depends on fj in the functional graph. In this case,
fi cannot be placed on a task with priority higher than the task on
which fj is placed.

χi,j = 0 if dpfi,fj = 1 (23)

Latency constraints: constraints on latency are similar to the
previous ones, except that, since tasks are variables in this stage,
we compute the WCRT on functions while considering their parti-
tioning. The WCRT of a function fi is the WCRT of the task con-
taining fi. Constraint (24) expresses the computation of functions
WCRT. Signals WCRT are computed in the same way.

Rfi = Wfi + Jfi (24)

The first term of the functions completion time (25) represents the
WCET of the task containing fi, as the sum of the WCET of its
functions. The binary parameter SNfi,fj indicates whether fi and
fj are placed on the same node. The second term refers to the
interferences from higher priority functions fk that are on the same
node as fi. Ifi,fk=χk,i · σfi,fk is a real variable representing the
maximum number of times that fk preempts fi. σfi,fk is computed
as in (14) and Ifi,fk is linearized using the Big M method.

Wfi = Σfj∈FSPfi,fj · ωfj ,c · SNfi,fj
+Σfk∈F Ifi,fk · ωfk,c · SNfi,fk

(25)

The response time of signals is computed similarly, adding a term
corresponding to the blocking time Bsi as in (26), where SBsi,sj
is a binary parameter indicating whether si and sj are transmitted
over the same bus. Wsi is 0 if si is local.

∀sj ∈ Φ : Bsi ≥ ωsj ,b · (1− SPsi,sj) · SBsi,sj
+Σsk∈Φ:k 6=jωsk,b · SPsj ,sk · SBsj ,sk

(26)

To compute functions jitter we need to define a real variable Vfi ,
which is 0 if fi is the first function in its transaction, otherwise, it
is the WCRT of the signal it receives.

Vfi =

{
0 fi is triggered by an external event
Rsi si is the signal received by fi

(27)

Jfi is computed as the largest Vfj value among all functions
with the same priority and belonging to the same node. As above,
the Big M method is used to linearize Vfj · SPfi,fj .

∀fj ∈ F s.t SNfi,fj = 1 : Jfi ≥ Vfj · SPfi,fj (28)

Similarly, we use an auxiliary real variable (Xsi) to compute the
jitter of signals, which depends on the placement and partitioning
of its sender and receiver functions. In (29), the real variables Yfi,fj
and Zfi,fj are equal respectively to Jfi · SPfi,fj and Rfi · (1 −
SPfi,fj). These latter variables are also linearized using the Big
M method. According to (29) and the above definition of Yfi,fj
and Zfi,fj , Xsi may have two values depending on the variable
SPfi,fj and the parameter SNfi,fj . When the sender (sensi) and
receiver (recsi) functions of si are on different nodes, or on the
same node but different tasks,Xsi=Rfi .Xsi=Jfi if the sender and
receiver functions are on the same task.
Xsi = (Yfi,fj + Zfi,fj) · SNfi,fj +Rfi · (1− SNfi,fj)

s.t sensi = fi and recsi = fj
(29)

Since a message may transmit multiple signals, the jitter of a signal
should take into account the jitter of all signals transmitted on the
same message. Constraint (30) defines Jsi as the largest value of
Xsj among all signals belonging to the same message. If si is local,
then its jitter is simply equal to Xsi .

∀sj ∈ Φ s.t SBsi,sj = 1 : Jsi ≥ Xsj · SPsi,sj (30)

This MILP formulation returns as output a set of functions (sig-
nal) partitions as well as a priority order for each partition (task or
message) on each node (bus). As priority orders are given locally to
a node (bus), a post-processing, which consists in defining a global
priority order, is required before the next iteration. The global pri-
ority order is simply defined based on the order considered as input
in the previous step of the same iteration.

4.3 The GA formulation for the two-step approach
Genetic Algorithm (GA) is an optimization technique patterned af-
ter natural selection in biological evolution (Algorithm 4.3.1). In a
GA, the space of all possible solutions (feasible and not feasible)
to the optimization problem is encoded using a string of bits, called
chromosome. Each bit or group of bits in the sequence typically
encodes one parameter of the solution (such as the placement of
a function or the priority of a task). Several solutions are gener-
ated at each round (population), starting from an initial set and then
obtaining new solutions by a composition function (or crossover)
that applies to two chromosomes and produces a new one or by a
mutation operator that changes the bit string of a chromosome to
generate a new one. Each new generation (or offspring) is evalu-
ated. Some bit strings correspond to non-feasible solutions, or dead
individuals and are discarded. A set of the most promising ones is
retained and used for computing the next generation.

In the context of our problem, we implement two GA algorithms
for the PP and PS stages respectively. GA is used because of its
better scalability, in comparison to MILP. Let us note that the qual-
ity of the solutions obtained from GA is difficult to evaluate and
guarantee, since it is based on many factors, such as the choice of
the encoding, crossover and mutation operators, the fitness function
and additional mechanisms that improve the search and guarantee
constraints.

4.3.1 A GA Solution to the Placement Problem
The Encoding definition translates a solution configuration in a
string of bits. In the placement problem, a specific solution, i.e.
single chromosome, represents the allocation of tasks onto the pro-
cessing units, and messages on buses. We used the value encoding,
in which each gene (subset of bits) in a chromosome contains a spe-
cific value. In our case, a gene relates either to a task or a message.
The value held by a gene represents an execution node or a com-
munication bus. Although formally PP stage refers to the func-
tions and signals placement here we are encoding tasks and mes-
sages. This is due to the knowledge about the functions and signals

partitioning during the PP stage. Therefore the placement of func-
tions and signals can be directly inferred from the tasks/messages
allocation. There are two advantages of this encoding. First, the
number of tasks/messages is never greater than the number of func-
tions/signals. Hence the size of a chromosome will not be greater if
functions/signals were encoded. This can significantly save mem-
ory which is an issue especially if large initial populations are con-
sidered. Secondly, in case of functions/signals encoding, additional
mechanism to preserve the correctness of the chromosome in re-
gards to the allocation constraints would be required. Namely, all
the functions/signals of the same task/message have to be allocated
on the same processor/bus.

Algorithm 1 General form of a GA Algorithm
1: // Define encoding, crossover and mutation operator, fitness
2: // Specify the size of an initial population - Psize
3:

4: Generate initial population
5: while termination condition is not met do
6: Evaluate each solution from the population P
7: Generate new population P by applying the crossover and mutation operators
8: end while
9: return the best solution from P

Figure 4 shows an example of a chromosome that corresponds
to the specific configuration for placement. Gene t1 holds a value
equal to 1, which is the index of the node on which t1 and all its
functions, i.e. f1 and f2 will run. The value of the genem1 is 0, in-
dicating that message m1 in this placement configuration is locally
transmitted. The selection of the Crossover operator is very impor-

f1 f2 f3 f4 f5 f6

f7 f8 f9

t1 t2 t3

t4 t5

Node 1 Node 2

s1 s2 s3 s4 s5

BUS 1

t1 m1 t2 m2 t3 t4 m3 t5

1 0 1 1 2 1 1 2

CHROMOSOME

m1

s7

m2

m3

s6

Figure 4. Chromosome for the specific placement configuration

tant for the quality of the GA solution. The operator combines in-
formation from two parent chromosomes to create a new child. The
choice of the parent chromosomes can be done in many ways, but
it is always highly dependent on a chromosome fitness rate. For our
implementation we selected the OX3 crossover operator [11] with
a tournament selector [19] (with size equal to 5). The OX3 creates
two child chromosomes from two parents. It selects two random
positions in a chromosome. The values between these points are
copied from the first/second parent to the second/first child in the
same absolute position. The remaining values are copied from the
first/second parent to the first/second child. A simple result of the
application of this operator on two chromosomes is shown on the
Figure 5. The Mutation operator chooses a random point in a chro-

Random cut points

1 0 1 1 1 20 2

2 2 2

2 0 2 01 20 2

0 011 1

1 11 0 1 1 1 2

t4t1 t2 t3 t5m3m2m1

Figure 5. Example application of the crossover

mosome and changes the value of the gene at the selected point to
a new random value. If the randomly selected gene corresponds to
a task, the new value is chosen from the list of available execution
nodes. If it relates to a message, the new value is chosen from the
list of available buses.

The Fitness function defines how much the solution optimizes
the performance criteria. Chromosomes are ranked according to
this function and, the higher the rank, the higher the probability that
the chromosome is selected as a parent for a crossover or the target
of a mutation. Our fitness function corresponds to the optimization
metrics, that is, in the case of the minimum transactional slack
time, it computes minΓi∈ζ(Di − Li) where Li is the latency of
the transaction Γi and Di its deadline.

The Initial population is generated randomly, i.e. for each task
gene, a random number representing its execution node is assigned.
However, the initial population does not contain solutions which
violate the utilization constraints. Therefore if a generated chro-
mosome leads to the violation of a utilization constraint, we call a
correction procedure.

Correction mechanisms are used to avoid the generation of non-
feasible solutions in the initial population or after the crossover and
mutation. In the case of the violation of utilization constraint, the
chromosome is modified by lowering the load of the node(s) with
excessive utilization. The procedure randomly selects a task from
one of these nodes and then moves it to a destination node, ran-
domly selected among those that can accommodate the additional
load. Tasks are moved until a feasible load distribution is found.
Incorrect definitions of the communication are also fixed. If two
communicating tasks are placed on different nodes, the gene in a
chromosome that relates to the message exchanged between the
tasks must have a number associated with one of the buses that
connect the two nodes. Our correction mechanism checks all mes-
sage values. Each time an incorrect bus is found, the procedure
randomly generates a new bus identifier among those that are valid
with respect to the tasks placement.

4.3.2 The GA Formulation for Partitioning and Scheduling
After the definition of the function and signal placement (implicitly
by the placement of tasks and messages), the maximum number
of new possible tasks and messages for each node and bus can
be computed as the number of functions or signals allocated on
the resource. Also, signals that result in local communications
are not represented in chromosomes. For the PS stage, we only
describe the encoding, the generation of the initial population, and
the correction mechanism. The crossover mutation operators follow
the same logic as in the placement stage. The fitness function is the
same.

In the PS Encoding each gene represents a function or a signal
exchanged among CPUs. The value of the gene is the index of the
task or message executing the function or transmitting the signal.
The index of a task or message also represents its priority, and its
period is the gcd of the functions/signals mapped onto it. In the case
of Figure 4, the system partitioning and scheduling is represented
by the chromosome shown in Figure 6, where f1 is executed by t1
(with priority 1), together with function f2.

f1 f2 f3 f4

1 1 2 3

f5 f6 f7 s6 f8 f9

3 3 4 3 5 5

CHROMOSOME

s3

2

Figure 6. Chromosome for the partitioning and scheduling config-
uration

The Initial population is randomly generated by assigning a task
or message index to each function and signal.

The Correction function, called when a new chromosome is
generated as part of the initial population or after the crossover and

mutation enforces the order of execution constraints. The range of
values for a gene is constrained by the values assigned to other
genes. If function f1 precedes f2, and the gene representing f1 is
assigned to a task with priority πi, then f2 should be partitioned on
the same task or a task with priority lower than πi.

5. Experiments
The objective of the following experiments is to assess (i) the
quality of solutions obtained with the two-step technique (MILP
and GA) against optimal solutions given by the one-step MILP, (ii)
comparison of the two-step MILP versus the two-step GA when
applied to an industry-size system and (iii) scalability and runtime
evaluation of all the techniques.

5.1 Quality evaluation of two-step techniques against
one-step MILP

This section presents a first set of small-size tests with the same
initial configuration. Results show the convergence of the inner
loop and the impact of the initial configuration on the quality of
results. The second experiment applies the two-step and the one-
step techniques to an automotive case-study. For this case three
different initial configurations are tested.

5.1.1 Small-size tests
To evaluate the quality of solutions given by the two-step tech-
niques, we choose six randomly generated systems with functional
graphs as in Figure 7). In all these systems, the WCETs of functions
and the WCTTs of signals are the same for all nodes and buses,
and the network topology consists of two nodes and a single bus.
The maximal capacity utilization is set to 1 for the bus and both
nodes. The initial configuration for partitioning and scheduling is
as follows: (i) each function executes in one task and each signal
is transmitted by one message; (ii) priorities are assigned to tasks
as follows: (1) if they belong to the same transaction, if the func-
tion fj depends on the function fi then ti is higher priority than tj ,
(2) between transactions, we follow the deadline-monotonic (DM)
approach [5]. Messages inherit the priority of the sending task.
Figure 8 shows the comparison of the optimal solutions with the

f1 f2 f3 f4

P=D=30

f5

ωf1=1 ωf2=2 ωf3=3 ωf4=8 ωf5=5

ωs1=

0.5

ωs2=

0.5

ωs3=

0.5

ωs4=

0.5

P=D=25

f1 f2 f3 f4

P=D=20

f5

ωf1=2 ωf2=8 ωf4=15 ωf5=10

P=D=45 P=D=40

ωf3=6

P=D=25

f1 f2 f3 f4

P=D=20

f5

ωf1=2 ωf2=8 ωf4=15 ωf5=10

P=D=30 P=D=45 P=D=40

ωf3=6

f6

ωf6=12

P=D=50

f1 f2 f3 f4

P=D=40

f5

ωf1=1 ωf2=2 ωf3=3 ωf4=8 ωf5=5

ωs1=

4

ωs2=

4

ωs3=

4

ωs4=

4

f1 f2 f3 f4

P=D=50

f5

ωf1=1 ωf2=2 ωf3=3 ωf4=8 ωf5=5

ωs1=

15

ωs2=

15

ωs3=

15

ωs4=

15

f1 f2 f3

P=D=30

ωf1=2 ωf2=3 ωf3=10

ωs1=

0.5

ωs2=

0.5
f4 f5 f6

P=D=40

ωf4=1 ωf5=3 ωf6=5

ωs3=

0.5

ωs4=

0.5

Test 1

Test 2

Test 3

Test 4

Test 5

Test 6

P=D=30

Figure 7. Tests for evaluating solutions quality

solutions provided by the two-step techniques (placement is repre-
sented by full lines, partitions are represented by dashed lines and
the higher index of tasks represents the higher priority). For these
tests the two-step techniques for both MILP and GA computed the
same results. For tests 3, 4 and 5 the two-step techniques (MILP

and GA) computes the optimal solution Figure 8(b). For tests 1, 2
and 6 they compute a local optimum Figure 8(a). In the three last
cases, the selected initial configuration prevents finding the opti-
mum. The two-step techniques return the solutions for which inter-
ferences between tasks are minimal. This results in splitting func-
tions between nodes, which in next iterations prevents finding the
solution in which all functions are on the same task and node. This
situation does not occur for the test 3 where WCTTs are very large
with respect to tasks interferences.

Test 1

c1

f2f1

f3

f4f5

t1

minSlack = 11

Test 2

c1

f2f1

f3

f4f5

t1

minSlack = 21

minSlack = 10.5

Test 1

minSlack = 17

Test 2

c1

f3f2

f4

f5

f1

c2

t1

t1

c1

f3f2

f4

f5

f1

c2

t1

t1

f3f2

f6

f4

f5

t1

f1

t1

Test 6

c1

c2

minSlack = 14.5

t4

t2

t3

c1

f2f1

f6 f4
f5

c2

t1

f3

t1

Test 6

minSlack= 15

True optimum

Two-step solutions

(a) Different solutions

Test 4

c1

f2f1

f5

f4f3

t2 c2

t3
t2

t1

t1

t3

t1

t3t1

Test 5

c1

f5
f2

f4

f1

f3 t2

c2

t2

f6

Test 3

c1

f2f1

f3

f4f5

t1

minSlack = 31 minSlack= 18 minSlack= 17

(b) Identical solutions

Figure 8. Comparison results between two-step and optimal solu-
tions for tests 1-6

Table 1 shows partial results obtained at each step of the inner
loop. For these tests, two-step MILP and GA computed the same
results at each step of all iterations. The values in the cells represent
the maximum of the minimum transactional slack time (Os) and
the minimum sum of latencies (Ol). At each step a better or equal
solution is found. Convergence is obtained in the worst case at the
third iteration.

5.1.2 Automotive case study
We consider an automotive system composed of the CCS and ABS
sub-systems [4][20]. Figure 9 represents the functional graph of
this automotive system. Each function (signal) has the same WCET
(WCTT) for all nodes (buses). The network topology for this test
is composed of four nodes and a single bus. The maximal capacity
utilization is 1 for the bus and all nodes. For this system, we de-
fine three initial configurations for partitioning and scheduling as
shown in Figure 10. Partitions are represented by dashed lines and

Table 1. Intermediate results for two-step solutions
Test Steps Iter 1 Iter 2 Iter 3 Test Steps Iter 1 Iter 2

Os/Ol Os/Ol Os/Ol Os/Ol Os/Ol

1 PP 1.5/28 7.5/22.5 10.5/19.5 4 PP 18/59 18/59
PS 5.5/24 10.5/19.5 10.5/19.5 PS 18/59 18/59

2 PP 7/33 17/23 -/- 5 PP 17/91 17/91
PS 17/23 17/23 -/- PS 17/91 17/91

3 PP 7/43 31/19 -/- 6 PP 11.5/36 14.5/24
PS 31/19 31/19 -/- PS 14.5/24 14.5/24

f1 f2 f3 f4

P=D=40

f5 f6

f7 f8 f9 f10 f11 f12

P=D=10 P=D=60 P=D=100

ωf1=2.5 ωf3=3.5

 ωs1

=1

 ωf4=3.92 ωf5=2.08 ωf6=1.4

 ωf7=1.52 ωf8=1.03 ωf9=10 ωf11=10 ωf10=15 ωf12=15

 ωs2

=1

 ωs3

=1

 ωs4

=1

 ωs5

=1

 ωs6

=1

 ωs7

=1

 ωs8

=1

 ωf2=2.32

Figure 9. CCS and ABS sub-systems

the index of the partition defines its priority (higher index means
higher priority). The optimal solution given by the one-step MILP

f2

f9f3

f7

f6

f4

f11

f8

f10

f5

f1

f12

f2

f9f3

f7

f6

f4

f11

f8

f10

f5

f1

f12

f2

f9f3

f7

f6

f4

f11

f8

f10

f5

f1

f12

Initial config. 1 Initial config. 2 Initial config. 3

t12 t11 t6 t5 t9 t8 t3

t2

t1

t4 t3

t2

t1

t7 t6

t5 t4

t4

t2

t10 t9

t8 t7 t1

t3

Figure 10. Initial configurations for partitioning and scheduling

is shown in Figure 11 (right-most solution). The values for the min-
imal slack and latency are respectively 7.45 and 68.27. Table 2
provides the results obtained with the two-step MILP at each iter-
ation of the inner loop for the three selected initial configurations.
Cell values refer to the maximum of the minimum transaction slack
time (Os) and the minimum sum of latencies (Ol). The obtained
configurations are shown in Figure 11 for the MILP and in Fig-
ure 12 for the GA. GA computed different solutions with the same
metric value and number of iterations for the first and second con-
figurations. For the third configuration, the same solution was com-
puted by MILP and GA. The optimal solution for this system is the
one obtained with the two-step starting with the third configuration.
Let us remark that considering different initial configurations in the
outer loop allows moving towards better solutions. Other existing
optimization heuristics [31] [22] consider only one random initial
configuration.

Initial config. 2 Initial config. 3

t1

c4

f12f11

t1

c3

f8f7

t1

c2

f6

f2

t2

f10f9

t1

c1

f3f1 f5f4

t1

c4

f12f11

t1

c3

f10f9

c2

f1 f6

f8f7

t1

c1

f3f2 f5f4

t1

t2

Initial config. 1

t1

c4

f10f9

t1

c3

f8f7

t1

c2

f12

f3f2

t2

c1

f4f11 f6f5

t1

f1

True optimum

Figure 11. Solutions for all configurations - MILP

Table 2. Intermediate results for each initial configuration
Initial configs Steps Metrics Iter 1 Iter 2 Iter 3 Iter 4 Iter 5

1 PP
Os 5.93 7.45 7.45 7.45 7.45
Ol 112.69 96.67 78.85 72.75 71.82

PS
Os 7.45 7.45 7.45 7.45 7.45
Ol 103.09 81.85 76.23 71.82 71.82

2 PP
Os 7.45 7.45 7.45 7.45 -
Ol 89.47 74.32 71.82 - -

PS
Os 7.45 7.45 7.45 7.45 -
Ol 78.32 71.82 71.82 - -

3 PP
Os 7.45 - - - -
Ol 68.27 - - - -

PS
Os 7.45 - - - -
Ol 68.27 - - - -

t1

c1

f8

f7

t2

f11

c2
f4

f3

t2

f12

c3
f1

f2 f9

c4

f6

f5

f10

t1

t2 t1 t1 t2

Initial config. 2

c1

f10f9

c2

f8f7

c4

f2f1 f12f11

t1

c3

f4f3 f6f5

Initial config. 1

t1

t1

t2 t1

Figure 12. Solutions for configuration 1 and 2 - GA

5.2 Two-step techniques evaluation on an industrial-size
system

The objective of the following experiment is to study the behavior
of the two-step MILP and GA in the case of a large, distributed
industrial-size system as in [6], but where the partitioning is not
fixed. Figure 14 shows the functional graph of the system. The
system has 9 nodes communicating through a single bus. The
maximum capacity utilization is 1 for the bus and nodes. Nodes are
heterogeneous and have different computation speeds. The WCETs
and nodes allocation constraints for this system are given in Table 3.
The WCTT for all signals is 10. In the initial configuration each
function is partitioned in one task and the task priority is inversely
proportional to the index of the function in it (i.e. the highest
priority task contains the function with the smallest index).

The solution obtained with the two-step MILP for the first
iteration is shown in Figure 13. The minimal slack for the two-step
MILP is 2396 for the PP step and 3269 after the PS step (for the
first iteration). The two-step GA computes slightly worse results,
i.e. a minimum slack of 2387 for the PP step and 3262 for the PS
step. Latency (in the first iteration) is the same for both methods,
9981 for the PP , and 6251 for the PS step.

5.3 Runtime and scalability evaluation
In this section we show respectively (i) runtime evaluation of all
the techniques, pointing out the limits of one-step MILP when the
size of the system grows and (ii) runtime evaluation of the two-step
techniques for large systems, showing their scalability.

5.3.1 Runtime evaluation
In the first experiment, we are interested in showing the limits of the
one-step MILP. We generate systems of 5,10,15 and 20 functions,
by combining the transactions of Figure 7. The network topology
is composed of four nodes communicating by two buses, the first
bus connects nodes 1, 2 and 3 and the second nodes 3 and 4. The
maximal capacity utilization is 1 for all nodes and buses. We run
two outer loops for two-step techniques. We compare the quality

c9

f5049

c8

f39

f41

c1

f31f30

c3

f24f18

f9

f10

f11f3

f1

f2

c2

f45f28

f46

f48f47

c6

f22f6

f23

f15

f29
f25

f26

c5

f5f36

f12

f27

f32f33

f35

f34

c4

f13
f4

f19

f17

f20
f21

f40

c7

f8f7

f14

f42
f43

f44

t1 t1

t1

t1

t6

t4

t3

t2

t7

t6

t5

t8t2

t3

t5t4

t2

t1

t3

t2

t1
t2

t1

t4

t5

t2

t3

f16

f37

38

t4

t1

t3

t3

t4

t2

t9

t10

t1t8

t11

t5

t6

t7

Figure 13. Deployment solution for the large case

f1 f2 f3 f4

P=D=4000

f5
s1 s2 s3 s4

f6
s5

f7 f8
s6 s7

f9 f10 f11 f12

P=D=5000

f13
s8 s9 s10 s11

f14
s12

f15 f16
s13 s14

f17 f18 f19 f20

P=D=7000

f21
s15 s16 s17 s18

f22
s19

f23 f24
s20 s21

f25 f26 f27 f28

P=D=4500

f29
s22 s23 s24 s25

f30
s26

f31 f32
s27 s28

f33 f34 f35 f36

P=D=5500

f37
s29 s30 s31 s32

f38
s33

f39 f40
s34 s35

f41 f42 f43 f44

P=D=3500

f45
s36 s37 s38 s39

f46 f47 f48 f49

P=D=5000

f50
s40 s41 s42 s43

Figure 14. Functional graph of the large case

of solutions returned by one-step and two-step techniques, then we
study the time required to compute the solution.

�

Ol=43

Ol=68

Ol=95

Ol=124

Ol=43
Ol=68

Ol=95

Ol=124

Ol=43

Ol=68

Ol=95

Ol=126
(OOM)

���

�

��

���

����

�����

������

� �� �� ��

�
��

�
��
��
�	

����
�������������

��	
��
������ ��	
��
���� ��

��
������

Figure 15. Performance of the two-step optimization technique vs
the one-step approach

The results of the runtime comparison are shown in Figure 15:
the runtime of all techniques increases according to the number of

Table 3. Vectors of WCETs
c1 c2 c3 c4 c5 c6 c7 c8 c9 c1 c2 c3 c4 c5 c6 c7 c8 c9

f1 48 26 35 50 36 40 45 27 28 f26 48 36
f2 36 52 59 34 26 43 50 48 49 f27 26 50
f3 49 f28 51 30
f4 50 f29 32 39
f5 46 f30 50 48 36 26 35 26 35 50 51
f6 50 f31 31 39 44
f7 51 f32 52 27
f8 26 35 29 42 50 37 20 52 53 f33 44 26 35 26 35 30 28 49 50
f9 50 40 31 29 33 46 37 29 30 f34 30 40 50
f10 52 f35 49 39 29
f11 40 39 50 33 36 39 43 41 42 f36 53 25 40
f12 50 f37 32 40 48
f13 39 f38 30 50 45
f14 38 f39 54 28 36
f15 52 f40 50 28 39 47 44 35 26 35 36
f16 33 46 37 29 35 29 42 50 51 f41 52 28 35 26 35 50 45 33 34
f17 32 55 29 f42 48 38 28
f18 51 26 f43 30 50 40
f19 51 42 26 35 50 36 33 29 30 f44 26 38 48
f20 50 28 36 f45 51 30 42
f21 35 29 42 42 26 35 50 54 55 f46 34 49 30
f22 29 50 f47 28 39 47 50 26 35 50 51 52
f23 48 32 f48 36 29 53
f24 31 45 f49 51 44 33 28 50 26 39 33 34
f25 53 26 35 50 36 26 35 50 51 f50 37 50 52 32 29 27 36 40 41

functions. The runtime of the two-step techniques (for two outer
loops) is very small compared to the one-step MILP runtime, and
the one-step MILP runs out of memory (OOM) for systems with 20
functions, while the two-step MILP computes a solution in 1375
seconds. Let us note that in all the cases the one-step MILP returns
without error, the obtained values of latency are the same for all
algorithms.

5.3.2 Scalability evaluation of two-step techniques
To study the scalability of the two-step techniques, we generated
systems of different sizes by combining the transactions shown
in Figure 14. We consider only the inner loop iteration for two-
step techniques (one initial configuration). The obtained results are
shown in Table 4, where n/a means that there is no solution from
the MILP solver, (*) that the solver runs out of memory, (#) that
the a solution is obtained after the PP stage, but the solver runs
out of memory in the PS stage. The table shows that the two-step
MILP (2-MILP) is more scalable (up to 80 functions) than the one-
step MILP (1-MILP, up to 40 functions), but the 2-GA is the most
scalable approach.

Table 4. Results on systems with different sizes
Maximal MinSlack (Os) Runtime (seconds)

Nb functions 1-MILP 2-MILP 2-GA 1-MILP 2-MILP 2-GA
32 3500 3430 3490 10278 65.07 553.12
40 3388∗ 3462 3490 21533∗ 81.5 830.52
50 n/a 3269 3262 n/a 1744 1345

60 n/a 2347# 3131 n/a 732# 1862
80 n/a 926# 3180 n/a 1260# 2667.95
100 n/a n/a 3017 n/a n/a 5316.11
200 n/a n/a 2039 n/a n/a 16705.21

Please note that other approaches solving task placement and
scheduling [6] [30] [25] do not deal with more than 50 tasks and 9
nodes.

6. Conclusions
We presented two approaches to optimize the deployment of (hard)
real-time distributed systems w.r.t end-to-end latency metrics. We
consider an event-triggered activation model and define the place-
ment, partitioning and scheduling of functions and signals. We pro-
vided an MILP integral formulation for the problem, which can
compute the optimal solution for small size systems and a dual for-
mulation, based on MILP and Genetic algorithm (GA) for a parti-
tioned, two-stage iterative approach. We evaluated the performance
of the two-step approach by comparing the results against the op-
tima for some small systems and then applied to larger case studies,
including an automotive system. Future work includes an improve-
ment of the MILP formulation for application to larger systems, an
extension to more complex functional graphs, in which transactions
are non-linear, and finally, the consideration of other optimization
metrics.

References
[1] http://www.omg.org/.

[2] Autosar 4.0 specifications. http://www.autosar.org/.

[3] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya.
Software architecture optimization methods: A systematic literature
review. IEEE Transactions on Software Engineering, To appear.

[4] S. Anssi, S. Tucci-Piergiovanni, S. Kuntz, S. Gerard, and F. Terrier.
Enabling scheduling analysis for autosar systems. Object-Oriented
Real-Time Distributed Computing, IEEE International Symposium on,
0:152–159, 2011.

[5] N. Audsley, A. Burns, M. Richardson, and A. Wellings. Hard real-
time scheduling: The deadline monotonic approach. In Proceedings
8th IEEE Workshop on Real-Time Operating Systems and Software,
pages 127–132, 1991.

[6] E. Azketa, J. Uribe, J. Gutiérrez, M. Marcos, and L. Almeida. Permu-
tational genetic algorithm for the optimized assignment of priorities
to tasks and messages in distributed real-time systems. In Proceed-
ings of the 10th IEEE International Conference on Trust, Security and
Privacy in Computing and Communications, pages 958–965, 2011.

[7] C. Bartolini, G. Lipari, and M. Di Natale. From functional blocks
to the synthesis of the architectural model in embedded real-time
applications. In Proc. 11th IEEE Real Time and Embedded Technology
and Applications Symposium, pages 458–467, 2005.

[8] I. Bate and P. Emberson. Incorporating scenarios and heuristics to
improve flexibility in real-time embedded systems. In Proceedings of
the 12th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 221–230, 2006.

[9] E. Bini, M. D. Natale, and G. Buttazzo. Sensitivity analysis for fixed-
priority real-time systems. In Euromicro Conference on Real-Time
Systems, Dresden, Germany, June 2006.

[10] R. Bosch. CAN specification, version 2.0. Stuttgart, 1991.

[11] L. Davis, editor. Handbook of Genetic Algorithms. Van Nostrand
Reinhold, 1991.

[12] R. Davis, A. Burns, R. Bril, and J. Lukkien. Controller area network
(can) schedulability analysis: Refuted, revisited and revised. Real-
Time Systems, 35(3):239–272, 2007.

[13] A. Hamann, R. Racu, and R. Ernst. Multi-dimensional robustness op-
timization in heterogeneous distributed embedded systems. In Pro-
ceedings of the 13th IEEE Real Time and Embedded Technology and
Applications Symposium, April 2007.

[14] X. He, Z. Gu, and Y. Zhu. Task allocation and optimization of
distributed embedded systems with simulated annealing and geometric
programming. The Computer Journal, 53(7):1071–1091, 2010.

[15] B. Kienhuis, E. Deprettere, P. Van Der Wolf, and K. Vissers. A
methodology to design programmable embedded systems. In Embed-
ded processor design challenges, pages 321–324. Springer, 2002.

[16] S. Kodase, S. Wang, and K. Shin. Transforming structural model
to runtime model of embedded software with real-time constraints.
In Proceedings of the conference on Design, Automation and Test in
Europe, pages 170–175, 2003.

[17] S. Kugele, W. Haberl, M. Tautschnig, and M. Wechs. Optimizing
automatic deployment using non-functional requirement annotations.
Leveraging Applications of Formal Methods, Verification and Valida-
tion, pages 400–414, 2009.

[18] A. Mehiaoui. A mixed integer linear programming formulations for
optimizing timing performance during the deployment phase in real-
time systems design. Technical Report CEA, http://hal-cea.archives-
ouvertes.fr/cea-00811359, 2012.

[19] B. L. Miller, B. L. Miller, D. E. Goldberg, and D. E. Goldberg. Genetic
algorithms, tournament selection, and the effects of noise. Complex
Systems, 9:193–212, 1995.

[20] C. Mraidha, S. Tucci-Piergiovanni, and S. Gerard. Optimum: a marte-
based methodology for schedulability analysis at early design stages.
ACM SIGSOFT Software Engineering Notes, 36(1):1–8, 2011.

[21] J. C. Palencia and M. G. Harbour. Exploiting precedence relations
in the schedulability analysis of distributed real-time systems. In
Proceedings of the 20th IEEE Real-Time Systems Symposium, 1999.

[22] P. Pop, P. Eles, Z. Peng, and T. Pop. Analysis and optimization of
distributed real-time embedded systems. ACM Transactions on Design
Automation of Electronic Systems, 11(3):593–625, 2006.

[23] T. Pop, P. Eles, and Z. Peng. Design optimization of mixed time/event-
triggered distributed embedded systems. In Proc. of the First
IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, 2003.

[24] R. Racu, M. Jersak, and R. Ernst. Applying sensitivity analysis in
real-time distributed systems. In Proceedings of the 11th IEEE Real
Time on Embedded Technology and Applications Symposium, pages
160–169, 2005.

[25] M. Richard, P. Richard, and F. Cottet. Allocating and scheduling tasks
in multiple fieldbus real-time systems. In Proceedings of the IEEE
Conference on Emerging Technologies and Factory Automation, 2003.

[26] M. Saksena, P. Karvelas, and Y. Wang. Automatic synthesis of
multi-tasking implementations from real-time object-oriented mod-
els. In Proceedings of 3rd IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, pages 360–367, 2000.

[27] A. Sangiovanni-Vincentelli and G. Martin. Platform-based design and
software design methodology for embedded systems. IEEE Design
and Test of Computers, 18(6):23–33, 2001.

[28] K. Tindell and J. Clark. Holistic schedulability analysis for distributed
hard real-time systems. Microprocessing and microprogramming,
40(2-3):117–134, 1994.

[29] W. Zheng, M. Di Natale, C. Pinello, P. Giusto, and A. Vincentelli. Syn-
thesis of task and message activation models in real-time distributed
automotive systems. In Proceedings of the conference on Design, au-
tomation and test in Europe, pages 93–98, 2007.

[30] Q. Zhu, Y. Yang, M. Di Natale, E. Scholte, and A. Sangiovanni-
Vincentelli. Optimizing the software architecture for extensibility in
hard real-time distributed systems. IEEE Transactions on Industrial
Informatics, 6(4):621–636, 2010.

[31] Q. Zhu, Y. Yang, E. Scholte, M. Di Natale, and A. Sangiovanni-
Vincentelli. Optimizing extensibility in hard real-time distributed
systems. In Proceedings of the 15th IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 275–284, 2009.

[32] Q. Zhu, H. Zeng, W. Zheng, M. Di Natale, and A. Sangiovanni-
Vincentelli. Optimization of task allocation and priority assignment in
hard real-time distributed systems. ACM Transactions on Embedded
Computing Systems, 11(4):85:1–85:30, 2012.

