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Compared with other embedded systems research commu-
nities, including electronic design automation (EDA), com-
pilers, or signal processing, the real-time systems (RTS) and
the more recent cyber-physical systems (CPS) communities
suffer from the lack of uniformly accepted benchmarks and
even models on which to evaluate algorithms and solutions.
Correspondingly, and not surprisingly, there is lack of con-
sensus on what is realistic or applicable.

The problem is not minor as most researchers in the area
continue to experience such a difficulty. It is also quite
fundamental, touching upon very well established results,
models, and techniques. We shortly review (and possibly
challenge) some methods, models, and tools, and then move
to a proposal for a shared (and public) repository of test
cases and benchmarks.

Of course it is not by chance that our community lacks
consensus on benchmarks or realistic system models. The
main reason is probably the need for high-level system
models, which are often application-specific (as opposed to
general-purpose and well established algorithms that make
up most of the benchmark libraries for other communities).
Any application-specific model is often considered as part
of the company IP (if industrial) and name masking is
typically not enough to remove concerns. Hence, the only
option is to patiently wait until the product (line) gets out
of the market. A secondary reason is that citation-oriented
metrics are inevitably leading to diminishing returns from
realistic system-level (applicable) research and possibly to
more limited interaction(s) with the industrial world.

Even if available, an industrial task model is probably
not the best benchmark. Industrial task models are often
the product of a designer’s interpretation of the code-level
solution to a functional problem. In many cases, the designer
will seek a simplified task model to reduce concurrency
and simplify its job (dealing with race conditions). The
task model should be considered as the product of a design
synthesis or optimization activity and the functional model,
when existing, should always be the preferrable input.

I. SYSTEM (TASK AND MESSAGE) MODELS

Several methods and algorithms that are developed in
literature are often validated against randomly generated task
sets, where the task set complies with a defined activation,
synchronization (dependency) and communication model.

Quite often task sets are treated as abstract entities and
uniform coverage of the space of attributes is sought. For
example, confuting the analysis in [6] that stated that the
average least upper bound for fixed-priority rate monotonic
scheduling is 89%, the UUniFast algorithm [1] was devel-
oped to randomly generate task sets with a more accurately
uniform distribution of task periods and utilizations. In
reality, task periods are not arbitrarily selected, but are often
the result of oversampling and undersampling at fixed ratios,
giving rise to (pseudo-)harmonic sets or constranied by the
processing rates of commercial off-the shelf smart sensors.

Also, the community has analyzed several task models
as logical evolution of existing ones or as a possible repre-
sentation of program-level constructs. Several of these did
not originate from an application problem defined as a set
of tasks but as a possible variation/extension of previous
models. The models took a life of their own and researchers
are often dealing with the backward work of finding a real-
world motivation or match to the task model (and scheduling
problem) they know how to solve.

In many real-world cases, the communication and syn-
chronization problems are either much simpler (simple
communication by sampling), or not easily represented by
using the existing models (such as the activation modes
in the Controller Area Network interaction layer, and the
scheduling problems defined by synchronous state machine
models [8]). As a further example, the model of linear
transactions (possibly with offsets) is much more studied
but much less common than a more general model of tasks
and messages interacting in a graph pattern.

A. Realism and Details

In general, any engineering model should be detailed
enough to capture the system attributes of interest to provide
an accurate analysis of selected properties. Although aspects
like the impact of cache, context switch, interrupt handling
delays, and other architectural aspects can play a significant
roles in some cases, they are often hidden by considering
them (usually after upper-bounding) as part of other system
parameters (such as the WCET of tasks) or neglected alto-
gether, under the assumption that their impact is negligible.

Common examples include the assumption that context
switch costs are much smaller than the execution times of
tasks. However, measures of typical context switch times



for real operating systems on real execution platforms are
not often readily available to validate this assumption and
experimental results on real OS are required.

Similarly, tradeoffs between policies should be defined
by the actual times that are used to perform operations.
One example is the comparison between locked-based multi-
processor synchronization protocols like MPCP and MSRP.
Unfortunately, a large body of study on this topic has
assumed that the critical sections can be larger than 500µs or
even 1ms, which is probably not realistic for critical sections
implementing access to shared memory buffers. Even with
a very large data buffer (around 1k byte), the access time
is measured to be in the range of 50µs on a 120MHz
embedded microprocessor. Examples of (possibly longer)
critical sections in (real-world) applications are required.

B. Random Task/System Generation

When a randomly generated system configuration is ac-
ceptable, standarized tools are needed to make experiments
repeatable. Among the available generators, TGFF (Task
Graph For Free) [2] and SMFF (System Model For Free) [7]
are the most popular.

TGFF [2] is widely used in research domains other than
real-time systems. It generates random task models, includ-
ing the task parameters (periods and WCETs), the commu-
nication topology, and application-level timing constraints
(end-to-end deadlines). However, TGFF does not represent
the execution platform and the mapping of tasks. To partially
address this issue, SMFF [7] covers the description of
the entire system, including the hardware architecture, the
software applications, and their mapping onto the platform
with the associated scheduling and timing parameters.

Of course, the relevance to reality of these random
task/system generation tools is largely decided by the pa-
rameter settings. It is also restricted by the underlying
assumption in the random generation algorithm. For exam-
ple, TGFF assumes that the task graph is directed acyclic
(which is not suitable for tasks captured by cyclic graphs
such as finite state machines), while SMFF assigns task
activation periods assuming a uniform distribution between
the specified minimum and maximum values.

C. Available Benchmarks

EEMBC [3] is one of the earliest efforts towards develop-
ing performance benchmarks for use in embedded systems.
It organizes the test suites by specific focus of embedded
systems hardware and software development, for application
domains including automotive, consumer electronics, and
telecommunications, or to address specific design concerns
such as energy and floating point performance.

MiBench [4], collected in the early 2000s, follows the
model of EEMBC by dividing a set of 35 applications
(available as C code) into 6 categories, including automotive

and industrial control, consumer devices, office automation,
networking, security, and telecommunications.

For a specific purpose of evaluating WCET analysis
methods and tools, the Mälardalen WCET research group
maintains a benchmark [5], containing 35 programs (pro-
vided in C source files) collected from several different
research groups and tool vendors around the world.

However, these benchmarks have their limitations.
EEMBC is not freely available, access requires a member-
ship with the associated cost. MiBench (besides its out-of-
date) and Mälardalen benchmark are collections of programs
rather than entire systems with a defined task structure.

II. A WEBSITE FOR BENCHMARK

Of course, this lack of benchmarks asks for concrete
action. We present our project for the construction of a web-
site [9] meant to store, classify, manage, and provide access
to tools, tests and examples constructed and accessible using
an open text-based format.

The website (or portal if preferred) is organized with
sections for tools (for random generation) and real-world
examples or case studies, classified in turn along two di-
mensions: type of models (Functional, describing functions
and signals; Task, with tasks and messages; and Platform
models, with physical architectures and possibly OS, device
driver or communication stack models), and according to the
execution platform (single-core, multicore, or distributed).

Examples are available and can be provided in an open
text format, according to the description provided in the
format section. We started collecting message sets and ap-
plication descriptions from automotive systems. The website
will be hosted at McGill University [9], with the collection
of the above mentioned tools and benchmarks. Please feel
invited to contribute with representative test cases and links.
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