
Generation of Flow-Preserving Orocos Implementations of
Simulink/Scicos Models

M. Morelli1 and M. Di Natale1

Models are used in control domains such as automotive
and avionics for early validation of system properties,
using simulation or formal verification (model-checking),
and for the automatic generation of control software.
Model-Based Design (MBD) tools such as Simulink [1]
and Scicos [2], [3], based on a synchronous-reactive (SR)
execution semantics, allow the modeling and simulation
of hybrid systems, in which functionality is represented
using an extended finite-state machine formalism. Early
verification of the system functionality by simulation
or model-checking is highly valuable in many modern
robotics systems, which perform complex actions demand-
ing a timely, predictable and certifiably safe behaviour
in many applications (e.g., disaster recovery and space
exploration).

MBD modeling tools represent the control functionality
in abstract terms, that is, executing according to a
set of events in logical time. When the functionality is
implemented on a computing platform that executes the
controls as a set of software tasks and network messages,
the synchronous assumption (conformance with respect
to the model execution semantics) must be preserved
despite computation and communication delays [4].
In most cases, designers are interested in a looser

property, called flow preservation, consisting of the guar-
antee that the signal data in the implementation are
the same as in the model. However, checking whether a
platform allows for a flow-preserving implementation (or
possibly synthesizing one), or evaluating the consequences
of additional delays in case an implementation without
delays is not feasible, requires a detailed model of the
control implementations and the execution hardware and
software [5].
We propose an approach in which a functional model

of the controls is matched to a purposely constructed
model of the execution platform through an intermediate
mapping model, that represents the software tasks and
messages (local or on the network) that realize the
functions on the given platform.
For the model of the execution platform, there are

several possible options. Our objective is to be able
to represent the common execution hardware in use
in robotics systems and, on top of it, the Orocos-RTT
framework [6], which encapsulates communication and
RTOS services and acts as a middleware.

1TECIP Institute, Scuola Superiore S. Anna, Pisa, Italy
matteo.morelli, marco.dinatale at sssup.it

We defined our model according to a custom metamodel
in the Ecore/Eclipse framework, although our future work
includes the definition of a profile for robotics applications
on top of the standard UML/SysML MARTE profile [7].
Our metamodel not only provides the concepts to

define the platform, the mapping and evaluate the
computation and communication delays, but can also be
used for the automatic generation of a robotics controls
implementation on top of Orocos.
This is done using the standard (and open source)

Model-to-Code transformation tool Acceleo.
Our approach consists of the following steps. A func-

tional model of the controls is developed in Simulink or
Scicos and code is generated for each subsystem (with the
restriction that subsystems must be single-rate). Next,
an abstract view of the functional model is generated and
imported in the Ecore framework. Using Ecore, a model
of the execution platform is created, using our custom
metamodel, and an implementation of the subsystems
as a set of tasks, executing on the platform nodes and
exchanging messages is defined.

The task model may be constrained in such a way that
only flow-preserving implementation of the functional
model are allowed. Next, the Acceleo tool processes the
mapping model and generates the Orocos description
of the tasks and the inter-task communication accord-
ing to the specification. The Orocos tasks execute the
C/C++ functions, generated from Simulink or Scicos and
implementing the control subsystems.

In the development of our flow, we highlighted several
limitation of the Orocos framework and we outline the
desirable traits of a modeling language and a middleware
support for producing a correct flow-preserving implemen-
tation of a model as a multi-task application running on
a possibly distributed system.
A simple use case is discussed to illustrate the appli-

cability of the proposed approach: the reconstruction of
the joint-position profile of a Kuka LWR arm, given a
desired end-effector pose Td (constant).
This task consists in solving the inverse kinematics

problem at the first-order differential level. We compute
the joint-velocity profile according to the Jacobian trans-
pose algorithm as q̇ = JT (q)Ke, and adopt the Forward
Euler numerical integration scheme with an integration
time of ∆t = 1ms. We also use a post-processing block
(currently a simple undersampling block) that adapts the
output rate of the computed set-points to the dynamics
of the robot arm.

Fig. 1: Scicos model of the Jacobian transpose inverse
kinematics algorithm.

The inverse kinematics scheme is modeled in Scicos
and validated by simulation (Figure 1). Scicos blocks
implementing robot-specific functionalities (e.g., forward
kinematics, Jacobian computation) are provided by the
RTSS library [8].
The designer partitions the multi-rate control model

in a set of superblocks. For each superblock, the execu-
tion is controlled by a single discrete-time clock. Once
the simulation results are satisfactory, the behavioral
code is automatically generated for each superblock by
E4Coder [9] (Figure 2), and the Scicos model is translated
into the XML format that is used to import functional
model descriptions in the Ecore framework.
Next, the designer defines an Ecore model of the

execution platform, with the available hardware and
software resources. In our example, the execution platform
is modeled as a single-CPU computation node running
Orocos-RTT on top of Real-Time Linux [10]. Finally, the
mapping model is defined, describing the implementation
of functional superblocks inside two software tasks. Su-
perblocks executing at 1ms are mapped into Task1 and
the remaining superblock into Task2 (Figure 2). Task1
executes before Task2 to preserve the order of execution.
From the models above, Acceleo scripts generate two

RTT::TaskContext objects executed by non-periodic
activities. The RTT::TaskContext Task1 is given a pri-
ority of 25, whereas Task2 is given a priority of 1. To
guarantee the execution order among tasks, one additional
RTT::TaskContext instance is generated as a dispatcher
task, which runs periodically at the base period (1ms), and
with highest priority (49). Then, Task1 and Task2 are
added as peer components to the dispatcher, which is also
provided with a scheduling table specifying which tasks
must be activated, and in which order, in the hyperperiod
(Figures 2 and 3).

The platform and mapping models are used also to
generate the code implementing the flow-preserving com-
munication between the functional subsystems mapped
into the RTT components. Intra-task communications are
resolved simply accessing global data variables, whereas

Task1

Activity
period: 0
priority: 25

runs

E.E.

peer

runs

Dispatcher

E.E.

Activity
period: 0.001
priority: 49

calls

outPort1

peer

Task2

E.E.

Activity
period: 0
priority: 1

runs

inPort1

cp_12

void updateHook()
{
 //trigger peers according
 //to the scheduling table
 ...
}

Task2

1ms

30ms

Task1

t=1ms

t=2ms

....

t=29ms

t=0 Task1, Task2

Task1

activationtime

Task1

Task1

Task1

Fig. 3: Deployment of subsystems and threads in a single
core.

the communication between Task1 and Task2 is realized
by lock-free, thread-safe write and read accesses to the
ports of the components.

References
[1] The MathWorks, Inc. Simulink: Simulation and Model-Based

Design. [Online]. Available: http://www.mathworks.com/
products/simulink/

[2] INRIA. Scicos: Block diagram modeler and simulator. [Online].
Available: http://www.scicos.org/

[3] S. L. Campbell, J.-P. Chancelier, and R. Nikoukhah, Modeling
and Simulation in Scilab/Scicos with ScicosLab 4.4, 2nd ed.
Springer Publishing Company, Incorporated, 2009.

[4] M. Di Natale, L. Guo, H. Zeng, and A. Sangiovanni-Vincentelli,
“Synthesis of multi-task implementations of simulink models
with minimum delays,” vol. 6 No 4, 2010.

[5] A. Sindico, M. Di Natale, and A. Sangiovanni-Vincentelli,
“An industrial application of a system engineering process
integrating model-driven architecture and model based design,”
Sept. 30th - Oct. 5th 2012.

[6] H. Bruyninckx. Open RObot COntrol Software. [Online].
Available: http://www.orocos.org/

[7] OMG: Object Management Group. Modeling analysis of real
time embedded systems (marte) profile. [Online]. Available:
http://www.omg.org/spec/MARTE

[8] M. Morelli and A. Bicchi. RTSS – the Robotics Toolbox for
Scilab/Scicos. [Online]. Available: http://rtss.sourceforge.net

[9] Evidence Srl. E4Coder: The toolset for simulation and
code generation for embedded devices. [Online]. Available:
http://www.e4coder.com/

[10] Real-Time Linux. [Online]. Available: https://rt.wiki.kernel.
org/index.php/Main_Page

/*
* Superblock that reconstruct the joint - position profile from the joint - velocity profile :
* Computes : q(k) = 0.001 * (J ’(q(k -1))*K*e(k -1)) + q(k -1)
*/

void Superblock_32_step (void)
{

/* ******* Output Updates ******* */
delayTD_block_32_82_out [0] = delayTD_32_82_dstate [0];
...
delayTD_block_32_82_out [5] = delayTD_32_82_dstate [5];
/* Read Input : J’ */
CG_read (Superblock_32 , 1, cg_read_block_32_9_out);
/* Read Input : K*e */
CG_read (Superblock_32 , 2, cg_read_block_32_11_out);
/* J ’*K*e */
math_dgemm_OutputUpdate (cg_read_block_32_9_out , cg_read_block_32_11_out , cg_dgemm_block_32_14_out);
/* Gain Block : 0.001 * (J ’*K*e) */
gain_block_32_83_out [0] = 0.001 * cg_custom_block_32_14_out [0];
...
gain_block_32_83_out [5] = 0.001 * cg_custom_block_32_14_out [5];
/* Summation Block : Gain Block + q */
sum_block_32_85_out [0] = gain_block_32_83_out [0] + delayTD_block_32_82_out [0];
...
sum_block_32_85_out [5] = gain_block_32_83_out [5] + delayTD_block_32_82_out [5];
/* Write Output : q(k) = 0.001 * (J ’(q(k -1))*K*e(k -1)) + q(k -1) */
CG_write (Superblock_32 , 1, delayTD_block_32_82_out);

/* ******* State Updates ******* */
delayTD_32_82_dstate [0] = sum_block_32_85_out [0];
...
delayTD_32_82_dstate [5] = sum_block_32_85_out [5];

}

/* Task1 : {32 , 65, 31} */
class Task1 : public TaskContext
{

...
public : /* methods */
Task1 (std :: string const & name)

: TaskContext (name)
{

...
}
bool configureHook ()
{

Superblock_32_init ();
Superblock_65_init ();
Superblock_31_init ();
return true;

}
void updateHook ()
{

Superblock_32_step (); // q(k)
Superblock_65_step (); // K*e(k)
Superblock_31_step (); // J ’(q(k))

}
void cleanupHook ()
{

Superblock_32_end ();
Superblock_65_end ();
Superblock_31_end ();

}
};

...
Task1 * pTask1 ;
Task2 * pTask2 ;
...
int ORO_main (int argc , char ** argv)
{

...
// Create the tasks :
Task1 task1 (" Task1 ");
Task2 task2 (" Task2 ");
Dispatcher dispatcher (" Dispatcher ");

// Point the TaskContexts
// (These pointers are used by the code that implements the
// flow - preserving communication to access the components ’
// ports , when connected functional subsystems are mapped onto
// different RTT components)
pTask1 = & task1 ;
pTask2 = & task2 ;

// Create the activities which run the tasks ’ engines :
task1 . setActivity (new Activity (ORO_SCHED_RT , 25, 0));
task2 . setActivity (new Activity (ORO_SCHED_RT , 1, 0));
dispatcher . setActivity (new Activity (ORO_SCHED_RT , 49, 0.001));

// Assign peers
dispatcher . addPeer (& task1);
dispatcher . addPeer (& task2);

// Create data - flow connections
ConnPolicy cp_12 = ConnPolicy :: data(ConnPolicy :: LOCK_FREE , true);
task1 . outPort1 . connectTo (&(task2 . inPort1), cp_12);
...

}

Fig. 2: Behavioral code of the superblock that reconstructs the joint-position profile from the joint-velocity profile,
automatically generated by the E4Coder tool (top). Step functions of the superblocks mapped into Task1, serialized
according to the mapping order, consistent with the partial order of execution imposed by the model semantics
(bottom-left). Creation of components and activities in ORO_main() (bottom-right).

