
Multitask Implementation of Synchronous Reactive
Models with Earliest Deadline First Scheduling

Zaid Al-bayati and Haibo Zeng
McGill University, Canada

zaid.al-bayati@mail.mcgill.ca, haibo.zeng@mcgill.ca

Marco Di Natale
Scuola Superiore Sant’Anna, Italy

marco@sssup.it

Zonghua Gu
Zhejiang University, China

zgu@zju.edu.cn

Abstract—Model-based development of embedded systems en-
ables early verification of functionality. Software implementations
can be automatically generated from models, reducing the possi-
bility of injected errors upon condition that the generated code is
correct, efficient, and schedulable on the selected platform. When
multitask implementations are generated for multirate systems,
a time-feasible (schedulable) implementation may be possible
only with additional functional delays on selected communication
links. These delays may degrade the performance of feedback
controls and require additional memory for buffering the channel
state. In this paper, we present a branch-and-bound procedure
and a heuristic algorithm to minimize the use of functional delays
in the synthesis of model implementations on platforms scheduled
by EDF (Earliest Deadline First). The proposed heuristic is shown
to find close-to-optimal solutions, while executing much faster
than (possibly exhaustive) branch-and-bound.

I. INTRODUCTION

Model-based design is emerging as a solution for handling
the increasing complexity of embedded systems thanks to its
capability for advanced verification and validation. In model-
based design, the functionality is specified according to a
language based on a formal model of computation. Syn-
chronous Reactive (SR) models are widely used for control-
dominated applications. They have been developed since the
early 80s, including Esterel [4], Lustre [16], SIGNAL [17],
and the Simulink graphical language [1]. They are popular
today in many application domains, such as the avionics and
automotive industries.

After the functional model is validated/verified, a software
implementation on the selected platform is automatically gen-
erated using methods and tools that guarantee the preservation
of semantic properties of interest. This step is of high practical
relevance, since the best selection of the platform and model
implementation may bring significant cost savings.

Control systems are multi-rate (composed of cooperating
functions executing at different periods). In such cases, multi-
task implementations are preferable, because they allow higher
resource utilizations and improve schedulability, compared
to their single-task counterparts. However, most commercial
tools offer limited options and very little user control for
code generation. The development of functional SR models
and languages has not been matched by a similar effort on
languages, methods, and tools for the definition of the platform
and the selection of the best mapping and implementation as
a set of software tasks.

A. Related Work

Esterel or Lustre models are typically implemented as a
single executable that runs according to an event server model.
Reactions to events are decomposed into atomic actions that
are partially ordered by the causality analysis of the program.
The scheduling is generated at compile time trying to exploit
the partial causality order of functions and the generated code
executes without the need of an operating system [4], [14],
[25]. The main concern is to check that the synchronous
assumption holds. That is, ensuring the longest chain of
reactions to any event is completed within the system base
period (the greatest common divisor of all the periods in the
system). In the generation of code from Simulink models
two options are available: a single-task (executing at the base
period) or a fixed-priority multitask implementation, in which
one task is generated for each period in the model, and tasks
are scheduled by Rate Monotonic.

The general conditions for a semantics-preserving imple-
mentation of communications among synchronous nodes on a
single-core platform are discussed in [8], where a communica-
tion mechanism (a customized wait-free protocol) is proposed.
The optimization of the buffer size for flow-preserving com-
munications is discussed in [13], [21], [24]. The extension of
the communication mechanisms to model implementations on
multicore platforms is discussed in [26]. The implementation
of Esterel/Lustre on asynchronous and distributed architectures
has been discussed in a number of papers. Techniques for gen-
erating semantic-preserving implementations of synchronous
models on TTA are presented in [7]. Methods for desynchro-
nization in distributed implementations are discussed in [9],
[20]. A more general approach consists of an intermediate
mapping of synchronous models into Kahn Process Networks
[6], for which a correct implementation in an unsynchronized
architecture platform can be found more easily [22] (very
likely at the price of additional overhead and pessimism in
the time performance).

Recently, a new synchronous language, Prelude [15] [19],
has been proposed. Prelude is not only a functional modeling
language, but includes rules and operators for the selection of
a mapping onto platforms with Earliest Deadline First (EDF)
scheduling, including symmetric multicore architectures [11].
The enforcement of the partial order of execution that is
required by the SR model semantics is obtained in Prelude

by a deadline modification algorithm. Communication among
nodes executing at different rates is realized using the protocol
and data structures defined in [21] (an extension of [8] which
is optimal with respect to the number of required buffers for
a system containing only periodic nodes).

In general, in a correct task implementation, the execution
order of the code implementing the node/block reactions
must be consistent with their partial order in the model. In
addition, the signal values communicated among nodes in
the logical time execution must be preserved in the real-time
task execution, regardless of possible preemptions or variable
execution times.

In some cases, a correct task implementation is not schedu-
lable unless the designer modifies the model by adding commu-
nication delays on selected links with performance and mem-
ory costs. The issue can be formalized as a design optimization
problem: finding the schedulable implementation that requires
the addition of the minimum number of functional delays, or,
as better stated, the delays with minimum performance and
memory penalty.

The problem of finding such an optimal definition of
a multitask implementation for multirate Simulink models
(scheduled with fixed priority) is discussed in [12] where a
branch-and-bound algorithm is presented. Later in [13], an
MILP (Mixed Integer Linear Programming) formulation is
provided. A formulation for an MILP solution of an extended
version of the problem (including multiple delays) considering
both fixed priority and EDF mappings is presented in [18], but
the paper does not present any application for the proposed
formulation, which is not practical for problems of realistic
size. Besides, it imposes the same relative deadlines for all
instances of the same task, which can lead to sub-optimal
solutions.

B. Our Contributions

In this paper, we consider the problem of mapping a multi-
rate synchronous system onto a single-core platform scheduled
by EDF, showing how the definition of deadlines tighter than
periods and appropriate wait-free communication mechanisms
can be alternatively selected to preserve communications
flows. Deadline restrictions come at no memory price, but
may endanger system schedulability. Buffering using wait-
free communication mechanisms may allow looser deadlines
at the price of additional memory requirements and degraded
control performance. We propose an algorithm that searches
for efficient (and possibly optimal) feasible solutions, where
an efficient solution is one that minimize the weighted sum of
the functional delays. To evaluate our approach, we apply it
to randomly generated task sets as well as an industrial case
study.

The rest of the paper is organized as follows. Section
II provides an introduction to synchronous reactive models.
Section III discusses the options of implementing synchronous
reactive models and highlights the tradeoff between the system
schedulability and control algorithm performance. The algo-
rithms to minimize the functional delays in the implementation

are detailed in Section IV. In Section V, the experimental
results on random task sets and the industrial case study are
presented. The paper is concluded in Section VI.

II. DESCRIPTION OF THE FUNCTIONAL MODEL

A Synchronous Reactive model of computation is repre-
sented by a Directed Acyclic Graph (DAG) G = {N , E},
where N is the set of nodes (in the terminology of Lustre
and Prelude, or blocks in Simulink), and E is the set of edges
or links between the nodes. From the architecture point of
view, we assume implementation on a single processor where
concurrent tasks are scheduled by dynamic priority (EDF).

N = {N1, . . . , N|N |} is the set of functional nodes. Each
node can be a Moore or Mealy-type behavior. Nodes can be
arranged in a hierarchy in which a node consists of a network
of children nodes until a level of atomic or leaf nodes. In
this work, we restrict ourselves to nodes triggered by periodic
events, therefore each leaf (or atomic) node Ni is characterized
by a period Ti. Node Ni has one or more input ports and
output ports. Input ports carry a set of signals with the uniform
sampling period Ti. The signals are processed by the node and
the result of the computation is a set of signal with the same
rate, produced on the output ports.

E = {E1, . . . , E|E|} is the set of links. A link Ei =
(Nh, Nk) connects the output port of functional node Nh (the
source node) to an input port of node Nk (the sink).

In Prelude, an offset can be associated with the execution of
periodic nodes. Composition of atomic nodes can be obtained
by passing signals (signal values). The communication may be
associated with rate transition operators, such as the oversam-
pling, undersampling, and phase offset operators (the details
can be found in [15]). The definition of the communication
and the partial order of execution apply to the instances of the
node executed in the hyperperiod.

A fundamental part of the model semantics is the rules
dictating the evaluation order of the nodes. Any Mealy type
node for which the output update function is dependent on the
inputs (i.e., any node with direct feedthrough) cannot execute
until the node driving its input has executed. Other nodes (of
Moore type) set their outputs based on the node state only
(input values acquired in previous time steps and/or initial
conditions specified as a node parameter), and are not of type
feedthrough. The set of topological dependencies implied by
the direct feedthrough defines a partial order of execution
among nodes. The partial order must be accounted for in the
simulation and in the run-time execution of the model.

If two nodes Ni and Nj are in an input-output relationship
(the output of Nj depends on its input coming from one of
the outputs of Ni, and Nj is of type feedthrough), then the
communication link is associated with a precedence constraint
between them, denoted by Ni → Nj . In case Nj is not of
type feedthrough, then the link has a unit delay, as indicated
by Ni

−1→ Nj .
Let Ni(k) represent the k-th occurrence of node Ni, then a

sequence of activation times ri(k) is associated to Ni. Given

time t ≥ 0, we define ni(t) to be the number of times that Ni

has been activated before or at t.
In case of a link Ni → Nj , if ij(k) denotes the input of the

k-th occurrence of bj , then the SR semantics specify that this
input is equal to the output of the last occurrence of bi that is
no later than the k-th occurrence of bj , i.e.,

ij(k) = oi(m), where m = ni(rj(k)). (1)

The timeline on the bottom of Figure 1 illustrates the execution
of a pair of nodes with SR semantics. The horizontal axis
represents time. The vertical arrows capture the time instants
when the nodes are activated and compute their outputs from
the input values. In the figure, it is ij(k) = oi(m) and ij(k+
1) = oi(m+ 2).

(m+2)(k)r j (k+1)rr i (m−1)

o i (m)= j (k)i

iN
jN

r i (m) r i (m+1)

o i (m+2)= j (k+1)i

r ij

Fig. 1. Input/output relation with no delay on the communication link.

On the other hand, if Ni
−1→ Nj , then the previous output

value is read, that is,

ij(k) = oi(m− 1), where m = ni(rj(k)). (2)

Figure 2 shows the effect of the added delay on the in-
put/output relation.

(m+2)(k)r j (k+1)rr i (m−1) r i (m) r i (m+1)

o i (m−1)=
j (k)i

iN jN

o i (m+1)=
j (k+1)i

r ij

Fig. 2. Input/output relation with unit delay on the communication link.

A cyclic dependency among nodes where output values
are instantaneously produced based on the inputs (all nodes
in the cycle of type feedthrough) results in a fixed point
problem and possibly inconsistency (in general, a violation
of the SR functional behavior). In this research, we assume
that no cycles exist inside the structure of the graph. This is a
common restriction in SR models, since it largely reduces the
complexity of the analysis and avoids algebraic loops, while
still leaving enough expressive power to define the behavior
of most embedded systems [4].

We use the following example to illustrate the different
impact on the schedule of a feedthrough communication with
or without delay. In the multi-rate system shown on the left
side of Figure 3 (case (a)), characterized by communication
with oversampling, a possible order of execution of the nodes
at simulation time would be the one represented in the upper
timeline (bottom part of the figure, labeled as (a)). Node C

is executed at the base rate and, because of the feedthrough
dependencies, it must follow both A and B. Clearly, the
execution of C after A and B makes its schedulability within
its period (1 time unit) harder. The execution order in which
C executes first corresponds to the model on the right side,
labeled as (b), in which a delay of one time unit is added to
the communications from A and, respectively, B to C.

C

AT =4A

A B C A B CC C C

A

B
T =4B

A

B
T =4B

C
T =1C

C
T =1C

(a) (b)

(a)

(b) C C CBAC A B

T =4

Fig. 3. An example of execution order.

Such added delays change the behavior of the model, and
affect the performance of the control algorithm, but they can
relax the precedence constraints imposed on the scheduling
and improve schedulability. In such cases, if the control error
is the performance parameter of interest, it is possible to
associate to each delay value a performance cost.

We use a relatively complex example from the Simulink
library to illustrate the impact of added delays on control per-
formance. Figure 4 shows a Simulink model of a hydraulic ser-
vomechanism controlled by a pulse-width modulated (PWM)
solenoid. It is a representative of feedback control loops in
which there is a flow of data from the sensor to the control
and from the control back to the actuator (represented by the
red line over the communication links in the figure).

We change the model to add functional delays to the data
communications between the sensors, the actuators and the
control, to simulate the effect on the quality of control. Figure
5 shows the same hydraulic servo model, with additional
functional delays on the sensor and actuator paths.

Fig. 6. Actuator position and error for the hydraulic servo without (top) and
with (bottom) delays.

Figure 6 shows the results of the simulation of the example
model, in the top row without added delays, and in the bottom

Fig. 4. A Simulink example of an hydraulic servomechanism (representative of a suspension control).

Fig. 5. Hydraulic servo with additional communication delays.

row when a unit delay is added on the sensor path. The results
of the simulation show the displacement compared with the
reference signal (red line of the left graph), the output (blue
line of the left graph), and the error (right graph) in these
two cases. The control quality with a unit delay is somewhat
degraded, and the simulation results show that the error is now
about four times larger. For this control model, it is possible
to measure the control error (in millimeter, mm) on the given
reference signal for different delay values on the actuator and
sensor paths. The results are shown in Table I.

sensor delay actuator delay max error (mm)
0 0 0.75
1 0 1.1
0 1 1.6
1 1 1.6

TABLE I
MAX ERRORS FOR DELAYS ON THE SENSOR AND ACTUATOR PATHS

In this case, if the control error is the performance parameter
of interest, it is possible to associate to each delay value a
performance cost. If convex optimization is used to compute
an optimal design configuration, we need to approximate the
dependency of the performance from the number of delays
with a convex function. For example, we can find a convex
hull or linearize the function expressed by the table using a
least square approximation, or use continuous piecewise linear
function to approximate such curves (approximate formula-
tions for use in mixed integer linear programming (MILP) can
be found in [23]). In this paper, we assume that a function is
given which approximates the relationship between the delays
on the communication links and the control error.

III. IMPLEMENTATION OF SR MODELS

When implementing a synchronous model onto an execution
platform, a suitable set of mapping rules must be defined,
associating a task to each node and the appropriate scheduling
attributes to the tasks. The mapping of the nodes onto tasks
(static scheduling of the code sections implementing the output
and state update functions of the nodes inside the task) and
the scheduling policies must be defined in accordance with
the execution rate constraints and partial order of execution
defined for the nodes. Also, a mapping should include the
design of the communication mechanisms implementing links
between nodes. The communication mechanisms must pre-
serve the signal flows in the model for the selected scheduling
policy. Formally, every source node must be executed without
instance skips, and Equations (1) or (2) must hold for any
signal exchanged between two nodes.

For simplicity of presentation, in the mapping of functional
nodes onto EDF scheduled systems, we make the same as-
sumption as Prelude, that each node Ni is implemented by
a dedicated task τi. This is clearly impractical because of
context switch overheads and in reality multiple nodes are
implemented by the same task, but the essence of the problem
between communicating nodes belonging to different tasks
remains the same. In the following, we use the terms task
and node interchangeably. In the implementation, the node
executes (its state and output update functions) with a worst
case execution time Ci, a period equal to the node period Ti,
an initial phase Φi, and a relative deadline Di ≤ Ti which is
no larger than its period. Instances of a task are referred to as
jobs. The n-th job of a task τi, denoted by τi[n], is released
at time ri(n) = (n − 1)Ti + Φi with an absolute deadline

di(n) = ri(n) +Di.
A set of deadline adjustments can be used to enforce the

partial order of execution under EDF scheduling. In Prelude,
the absolute deadline of each job is adjusted as follows:

∀ij(k) = oi(m), d∗i (m) = min{di(m), d∗j (k)− Cj} (3)

As a consequence, the writer job is always given higher
priority than the reader job, thereby guaranteeing the correct
order of execution. The deadline assignment is done in reverse
topological order, starting from tasks implementing only nodes
without a successor (for which the deadlines are unchanged
d∗i (n) = ri(n) +Di).

When the communicating blocks are connected by a link
with delays, the flow constraints and the corresponding
scheduling conditions need to be updated. A general type
of precedence constraint with single or multiple delays is
defined in [18], where the schedulability analysis on EDF is
discussed and the authors show how to improve schedulability
by relaxing the precedence constraints (rather than enforcing
the correct execution order by changing the deadlines). When
a delay is added on the communication link Ni → Nj , it is
no longer required that ij(k) = oi(m) where m = ni(rj(k)).
The relaxed version requires that ij(k−d) = oi(m+e) where
d and e are non-negative integers (the communication delay
expressed as the sum of a number d of writer periods, plus
an integer number e of reader periods). This schedulability
improvement comes with a cost. The relaxation of precedence
constraints requires an increase in the size of communication
buffers, since the output results of the delayed instance will
have to be stored in memory. It also changes the behavior
of the model, and affects the performance of the control
algorithm, as discussed in the previous section.

A. Trading functional delays for schedulability

The two competing methods (deadline modification and
precedence relaxation by adding delays) can be used to
find the feasible (schedulable) solution with minimum per-
formance/memory cost. However, the task of finding optimal
values for deadline assignments and the integers d and e while
minimizing buffer sizes is a complex optimization problem.

As a special case of [18], we restrict the delay addition
to d = 1 and e = 0. This is sufficient to ease the system
schedulability in the case of deadlines lower than or equal to
periods (D ≤ T). For example, in Figure 2, the (m − 1)-th
instance of Ni generates data for the k-th instance of Nj , and
its absolute deadline is no larger than ri(m), and consequently,
rj(k). Thus, the flow preservation requirements do not impose
any additional constraints on the system schedulability, com-
pared to independent tasks.

The strategy in Prelude is to adjust the deadline of each
node, without additional communication delays. From the
standpoint of model-based design, this adheres to a strict
cascade flow: the functional model has been designed and
validated and should not be modified. However, the systems
with modified deadlines may simply be unschedulable, as
shown by the following simple example.

Example: Consider a system that consists of two tasks τ1 →
τ2 with τ1(T1 = 3, C1 = 1.5) and τ2(T2 = 2, C2 = 0.75).
Offsets are 0 for both tasks and deadlines are equal to their
periods. If we try to schedule the tasks with EDF, using the
deadline encoding technique of Prelude, then the system is not
schedulable because d1(0) = min(3, 2− 0.75) = 1.25 < C1.

In this case, if a unit delay is added on the link between
the two tasks, then the deadline constraint can be relaxed. The
system becomes schedulable with EDF, as the two tasks are
independent with a total utilization of 1.5/3+0.75/2 = 87.5%.

Once again, this example shows the possible tradeoff be-
tween functional delays and schedulability. In this work, we
propose a method for the optimal addition of unit delays
into dynamically (EDF) scheduled systems. Delays are added
minimally to the system to enhance schedulability without
incurring an excessive penalty in the overall response times.
Our work targets EDF scheduled systems and applies to any
pair of (reader/writer) task periods, as opposed to [13], in
which tasks are scheduled by fixed-priority, and every pair
of communicating blocks must have harmonic periods. .

As in (3), we allow the (independent) assignment of an
absolute deadline to each individual job. The example below
shows how a job-oriented deadline adjustment can avoid some
unnecessary delays as compared to the constraint relaxation
approach in [18] (which requires that the same relative dead-
lines is assigned to all instances of the same task).
Example: Consider a system that consists of 3 tasks: τA(TA =
3, CA = 0.5), τB(TB = 3, CB = 1) and τC(TC = 2, CC = 1)
such that τB → τC . Release offsets are assumed to be 0 for all
tasks and relative deadlines are initially equal to periods. If we
try to schedule the system using EDF, with a single relative
deadline per task and using the constraint relaxation approach,
the relative deadline of τB cannot exceed 1 as the latest start
time of the first instance of τC is 1. However, this will assign
an absolute deadline at t = 4 to the second instance of τB ,
which is violated. The only way to schedule this system is to
relax the constraint on the communication link τB → τC by
introducing a unit delay buffer on it.

If we can assign different relative deadlines for different
jobs of the same task, the second instance of τB will have
an absolute deadline at t = 5, and the system is schedulable.
A valid schedule is shown in Figure 7 (without additional
delays).

time

B C A C B A C

0 1 2 3 4 5 6

d∗B(1) d∗C(1) d∗A(1) d∗C(2) d∗B(2) d∗A(2)

d∗C(3)

Fig. 7. Benefits of allowing different relative deadlines for different instances
of the same task. Downwards arrows denote the absolute deadlines.

In practice, absolute deadline adjustment can be equivalently
achieved using an array of relative deadlines for each task.
Each entry in this array (referred to in Prelude as deadline
word) is the relative deadline for a single job of the task.
Because of the periodic pattern of task releases in the hyper-

period H (the least common multiple of the task periods), it
is sufficient to use an array D∗

i of size ni =
H
Ti

to store the
relative deadlines for each task τi. The k-th instance of τi
will take the relative deadline D∗

i (k mod ni), for which the
absolute deadline is d∗i (k) = D∗

i (k) + ri(k). For example,
the deadline array for task τB in Figure 7 is {1,2}. A
rolling counter ci is used to indicate the deadline index. ci is
incremented at each new activation of τi, and when ci = ni,
it is reset to zero.

IV. OPTIMIZATION ALGORITHM

In this section, we present our algorithm for finding the
schedulable system configuration with minimum weighted
sum of additional functional delays. The input is a graph
representing a system of nodes with feedthrough dependencies.
The weight of an edge represents the associated cost if a func-
tional delay is added to the communication link. These costs
depend on the control functionality defined by the model and
represent performance and/or memory penalties. We assume
such costs can be estimated by the control designer. Without
loss of generality, we assume that each link i is associated
with a cost (costi) in the range [0, 1], such that

∑n
i=1 costi =

1. Moreover, we assume that the system is EDF schedulable
when all feedthrough dependencies are removed. This implies
that the overall utilization U ≤ 1.

We develop two algorithms to insert functional delays in
the communication links to relax feedthrough dependencies. A
branch-and-bound procedure for finding a schedulable system
configuration is presented in Section IV-A. This procedure
always finds the configuration with the minimal weighted sum
of additional delays. However, it takes a long time to execute
even for small systems and is unscalable to large systems.
We present a faster and more scalable heuristic approach in
Section IV-B.

A. Branch-and-Bound Algorithm

The branch-and-bound algorithm guarantees to find a con-
figuration of added delays that has the minimal cost of any
feasible (schedulable) configuration. It sets two endpoints:
a (possibly infeasible) solution with no added delays (the
starting point). For our problem, we also identify an initial
feasible solution (the initial bound) that adds delays to all
the communication links. The algorithm begins at the starting
point, exhaustively enumerates all candidate solutions in a
tree-like structure and prunes non-promising branches, until
a feasible solution of minimal cost is found.

Each vertex in the branch-and-bound tree presents a dis-
tinct solution (configuration of added delays). The vertex
is characterized by: delay configuration, cost, bound, and
schedulability. The cost of a vertex is the sum of the costs of its
delays. The bound of a vertex is simply the best solution that
can be obtained if this vertex is further expanded (its children
are generated). The schedulability of a vertex is the state of
the system (schedulable or not) when its delay configuration is
enacted. An active vertex has a bound lower than the current
best solution. A priority queue (PQ in Algorithm 1) is used

to store active vertices that have not been expanded yet. The
vertex with the lowest bound is given the highest priority. In
this way, the most promising solutions are explored first and
vertices can be pruned faster. An example of a branch-and-
bound tree is shown in Figure 8. In this example it is assumed
that the system has 3 delays and that their costs are 1, 2, and
3 respectively.

Delays={}

Cost=0

Bound=1

Delays={1}

Cost=1

Bound=3

Delays={2}

Cost=2

Bound=5

Delays={3}

Cost=3

Bound=6

Delays={2,3}

Cost=5

Bound=6

Delays={1,2}

Cost=3

Bound=6

Delays={1,3}

Cost=4

Bound=6

Delays={1,2,

3}

Cost=6

Bound=6

Level 0

Level 1

Level 2

Level 3

Fig. 8. Example of a branch-and-bound tree.

The proposed branch-and-bound is shown in Algorithm 1
below. A branch-and-bound algorithm typically consists of the
following parts: initialization, branching, evaluation, update,
and pruning. For the proposed algorithm, the initialization
phase assigns values to the endpoints (line 1 of Algorithm 1).
The root is the search tree starting point and represents the
(possibly infeasible) solution with minimum cost (no delays
added). The current best solution optimalsol is initialized
to the other endpoint. This solution can simply be achieved
by removing all feedthrough dependencies (adding delays to
all links). This solution is schedulable as required by our
assumptions and has a cost of 1.

After the endpoints are defined, iterative branching (the
while loop in lines 4-21) is used to explore the possible delay
configurations. Starting from the root which has no delays,
functional delays are added incrementally. The level of a vertex
in the branch-and-bound tree (the distance of the vertex to the
root) is defined as the number of added delays. If a parent has
x delays (of level x), then its children will each have x + 1
delays. Each child inherits the same x delays from the parent
plus a single additional delay which is distinct for each child
as shown in Figure 8.

In order to avoid redundant delay additions, an order is
enforced on the links. The list of communication links in
the system, Links is sorted by increasing cost (line 3 of
Algorithm 1). To prevent the creation of redundant vertices,
the distinct delay of each child must have a higher cost (higher
index in Links) than all of the x delays of the parent.
If we denote the highest index (cost) link of the parent by

Algorithm 1: Branch-and-Bound Algorithm for Minimiz-
ing the Weighted Sum of Functional Delays

1: root,optimalsol= initialize()
2: PQ.push(root)
3: Links.sortLow2High()
4: while PQ not empty do
5: parent = PQ.pop()
6: startIndex = getLinksIndex(parent)+1
7: for i = startIndex→ Links.size() do
8: createChild(i)
9: checkSchedulability(child)

10: if system is schedulable then
11: if child.cost < optimalsol.cost then
12: optimalsol=child
13: prune(PQ,optimalsol.cost)
14: end if
15: else
16: if child.bound < optimalsol.cost then
17: PQ.push(child)
18: end if
19: end if
20: end for
21: end while

j, then its first child will have the same x delays of the
parent plus a delay on the link identified by Links[j+1].
The second child will have the same x delays and a delay
on Links[j+2] and so on. This operation is in lines 6-8.
The function getLinksIndex() returns the index j of the
parent delay with highest cost. createChild(i) is then
called n − j times, where n is the number of links in the
system. Each time, createChild(i) copies the delays of
the parent into the child c and then adds a delay on the
link Links[i] where i ∈ [j + 1, n]. The other attributes
of the child c are calculated by createChild(i). The
schedulability of the system is checked (with the improved
necessary-and-sufficient test in [27]) assuming the vertex de-
lays are assigned to the system links. The cost of c is the
sum of the costs of its delays, and its lower cost bound is
c.bound=c.cost+cost(Links[i+1]).

Once a vertex is created, it is immediately visited and
evaluated. If the system is schedulable, the cost of the vertex is
compared against the cost of the current best solution. If it is
lower, the best solution optimalsol is updated. The queue
of active vertices is also updated (line 13), by pruning all the
vertices with lower bounds higher than the new best solution.
If the system is not schedulable, then we check if the vertex is
active (line 16). This is done by checking whether its bound
is lower than the current best solution. If so, the children of
the vertex can still potentially provide a better solution, and
the vertex is added to PQ.

While the branch-and-bound algorithm guarantees optimal-
ity, it is very time consuming. Experimental results (in Section
V) show that this algorithm takes a long time to execute even
for relatively small systems. To overcome the scalability issue,
we present a scalable heuristic algorithm.

B. Heuristic algorithm

The heuristic algorithm provides a scalable solution which
is capable of handling complex systems with a large number
of nodes/tasks. Unlike the branch-and-bound, it does not
guarantee optimality. However, as shown in Section V, for
most systems, it computes the optimal solution and is orders
of magnitude faster than the branch-and-bound. The heuristic
is summarized in Algorithm 2. It operates in two phases:

• Phase 1: Find an initial feasible solution;
• Phase 2: Improve on the solution by removing unneces-

sary delays.
In Phase 1, an initial schedulable solution is found. The

deadline modification algorithm is first applied to the sys-
tem (possibly making it not schedulable). Then, we create
a list AffectedNodes of tasks that have modified dead-
lines because of feedthrough communications. In the next
step, delays are selectively added to the links between those
nodes and their successors to relax feedthrough constraints.
The function critSucc(τi) returns the critical successor
of a task τi (the successor with the earliest deadline). If
τi has no critical successor (τi does not have a successor
with feedthrough constraints and its deadline is its origi-
nal deadline), then the function returns -1. For each task
τi in AffectedNodes, a delays is added to the link
(τi, critSucc(τi)). The list AffectedNodes is updated
after the addition of functional delays because some tasks may
have more than one receivers that may affect their deadlines.
In this case, adding a delay on the link (τi, critSucc(τi))
will simply change, not eliminate, the critical successor of τi.
The function updateAffectedNodes() identifies the new
set of critical successors based on the new delay assignment.
This operation continues until the list AffectedNodes
becomes empty after calling updateAffectedNodes(),
which means that there are no modified deadlines due to
feedthrough dependencies and the system is schedulable.

Algorithm 2: Heuristic Algorithm for Minimizing the
Weighted Sum of Functional Delays

1: Phase 1:
2: AffectedNodes = List of tasks τi with critSucc(τi) != -1
3: while AffectedNodes not empty do
4: τi ←AffectedNodes.head
5: addDelay(τi, critSucc(τi))
6: updateAffectedNodes()
7: end while
8:
9: Phase 2:

10: ∆ = List of added delays δi = (si, ri)
11: ∆.sort()
12: for all delays δi = (si, ri) in ∆ do
13: removeDelay(si, ri)
14: updataDeadlines()
15: schedAnalysis()
16: if system is not schedulable then
17: addDelay(si, ri)
18: end if
19: end for

The solution obtained at the end of Phase 1 is schedulable,
but typically has a very high cost. Phase 2 is an optimization
procedure that takes the solution obtained in the previous
phase and improves it by removing redundant delays. The
delays added in Phase 1 are placed in a list ∆ and sorted by
decreasing cost. Then, they are tentatively removed one-by-
one, starting with those with highest cost. After the removal
of each delay, the schedulability of the system is analyzed
(schedAnalysis()) using the procedure in [27]. After
each removal of a delay, the function updateDeadlines()
is called to recalculate the deadlines of all the tasks affected
by the change.

If the system becomes unschedulable after removing a delay,
the delay is restored. Sorting and trying to remove delays by
cost plays an important role in reducing the overall cost of the
final solution. Several alternatives exist for adding a delay to
relax the deadline of a given task. If the low cost alternatives
are removed first, the system may become unschedulable when
the high cost alternatives are removed.

In some applications, delays on several communication links
may have the same impact on the system performance (in
terms of the control quality or memory overhead). To break
these ties, we add a second sorting criterion to the function
sort(). Added delays are sorted (in order) by

• decreasing cost of their link;
• increasing worst case execution time of the sender, if the

costs of the links are the same.
We tried other policies for selecting the task link from the list
∆. In our experiments they were less effective than the simple
heuristic based on the worst case execution time values, and
are discussed as alternative approaches in Section V-A1.

V. EXPERIMENTAL RESULTS

In this section, we used randomly generated systems and
an automotive case study to evaluate the performance of the
proposed algorithms. The experiments are performed on a
system with 2.8 GHz CPU and 8 GB of memory.

A. Random Systems

In the first set of experiments, we use TGFF [3] to generate
random task graphs. Each task has a maximum fan-out of 3
and a maximum fan-in of 2. For comparison purposes, the av-
erage number of tasks generated for each system configuration
in this experiment is first kept at 15, as the runtime for branch-
and-bound becomes very high for larger systems. After the
generation of the system, the system parameters (utilizations,
periods, execution times, deadlines) are generated as follows.
The total utilization (U) of the system is between 0.5 and 0.99.
We use the UUniFast algorithm [5] to assign to each tasks a

uniformly distributed utilization ui such that
n∑

i=1

ui = U. The

period of each task is randomly selected from the set {5, 10,
20, 40, 50, 100, 200, 400, 500, 1000}ms. The execution time
Ci for each task was derived from its period Ti and utilization
ui. The deadline of each task is initially set equal to its period.
For each total utilization U , we generate 1000 random systems.

In order to show the improvement obtained using job-
level deadlines as opposed to a single deadline for each
task (as proposed in [18]), another version of the heuristic
algorithm using a single deadline per task is implemented.
Experimental results for the three algorithms (branch-and-
bound as in Algorithm 1, heuristic with job-level deadline as
in Algorithm 2, heuristic with task-level deadline) are shown
in Figures 9 and 10.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

C
os

t D
iff

er
en

ce
 (

%
)

Utilization (%)

Heuristic with job−level deadline
Heuristic with task−level deadline

 0

 100

 200

 300

 400

 500

 600

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

 10

 20

 30

 40

 50

 60

B
ra

nc
h−

an
d−

bo
un

d
R

un
tim

e
(s

)

H
eu

ris
tic

 R
un

tim
e

(m
s)

Utilization (%)

Branch−and−bound
Heuristic with job−level deadline

Fig. 9. Comparison among algorithms for random weights.

Figure 9 shows the experimental results obtained when
random costs are assigned to delays. The bottom graph shows
the additional cost of the solution found by the two heuristics,
compared to the branch-and-bound solution. The top graph
shows the runtime of the branch-and-bound algorithm (using
left y-axis) and the heuristic with job-level deadline (using
right y-axis). The heuristic with job-level deadline provides
a reasonable solution both in terms of runtime and accuracy.
Its cost is in average only 1.1% higher than the branch-and-
bound algorithm (the optimum solution). However, its average
runtime is 32.8ms, or about 4400 time faster. The figure also
shows the performance cost of imposing a single relative
deadline for each task as compared to having one deadline
assigned to each job. The additional cost is 3.25% compared
to the optimum.

In the case in which weights are all identical (the optimiza-
tion objective is to minimize the number of added delays), the
heuristic algorithm depends on the secondary sorting criterion
(to sort the list ∆ in Phase 2 of Algorithm 2). As shown in
Figure 10, the results are similar to the case of random weights.
The heuristic with job-level deadline adds 4.36% more delays
on average compared to the optimal solution provided by the
branch-and-bound algorithm, and the runtime is 2 to 3 orders
of magnitude smaller. When all jobs have the same relative
deadline was imposed, the results are 8.14% worse than the
optimum.

To study the scalability of the heuristic algorithm, we
generated systems containing up to 150 tasks. Figure 11 shows
the average runtime for the heuristic algorithm as a function

 3

 4

 5

 6

 7

 8

 9

 10

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

C
os

t D
iff

er
en

ce
 (

%
)

Utilization (%)

Heuristic with job−level deadline
Heuristic with task−level deadline

 0

 10

 20

 30

 40

 50

 60

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

 10

 20

 30

 40

 50

 60

B
ra

nc
h−

an
d−

bo
un

d
R

un
tim

e
(s

)

H
eu

ris
tic

 R
un

tim
e

(m
s)

Utilization (%)

Branch−and−bound
Heuristic with job−level deadline

Fig. 10. Comparison among algorithms for minimizing number of added
delays.

Fig. 11. Runtime of heuristic vs. system size at different utilizations.

of the number of tasks in the system for different utilizations.
As shown in the figure, the runtime increases with the system
utilization. However, the runtime increases with the number
of tasks in the range [10, 100] and decreases afterwards. This
is largely due to the fact that when the task number increases,
individual task utilizations become smaller and a schedulable
solution can be easier to find. The longest runtime for the
heuristic is for systems with 100 tasks and a total utilization of
99%, where it takes about 2.15 seconds per system on average.

1) Algorithm Design Alternatives: The heuristic algorithm
presented in this paper is the result of a selection process
in which several alternative options have been tried and
evaluated, before the final algorithm presented in Section IV
is selected as the best one.

When trying to improve the schedulability of a system, the
most direct way is to detect the tasks that cause schedulability
failures and add a functional delays to its outgoing links. As
mentioned earlier, we use the schedulability analysis method
in [27], where a number of endpoints t of time intervals
belonging to a finite set and upper bounded by tf are checked
for a possible violation of a schedulability condition. The algo-
rithm starts from the maximum value tf and goes backwards
in time to 0 to check whether ∀t < tf , h(t) ≤ t (h(t) is the

requested load with deadline less than t). In case this condition
fails, we try to detect the violating link (the one that causes
an increase in the function h(t)) and add a delay onto it. Our
experiments with this approach showed that in many cases
there are many links that contribute to the failure. In general, it
is very difficult to find the best link on which the delay should
be added. The approach of starting with a feasible solution and
then removing unnecessary delays, starting with the ones with
higher cost performs better.

C D U D − C ρ
Delays 24108 24226 24681 24297 24674

Runtime (s) 408.34 630.51 366.26 631.48 480.51

TABLE II
VARIATIONS OF THE SECOND SORTING CRITERION IN ALGORITHM 2

The sorting criterion used to select the order in which delays
are tentatively removed (Phase 2 of the heuristic) is critical
for obtaining good solutions. Experiments showed that if the
sorting step (line 11 of Algorithm 2) is removed, the cost of
the solution increases by about 35% for the case of random
weights. For applications where the weights of the links are
all equal (thus the objective is to minimize the number of
delays), the second sorting criterion is critical, and sorting by
execution time (C) proves to be the best option. We have tried
several other metrics, as shown in Table II. The first alternative
was sorting by relative deadlines (D). Since each job has its
deadline, to rank tasks we used the average of all the relative
deadlines (D) of their jobs in the time interval covered by the
schedulability analysis. Other variants we tried are: utilization
(U), laxity (D − C), and the average density which is given
by:

ρi =

∑ni

k=1
Ci

D∗
i (k)

ni
(4)

where D∗
i (k) is the relative deadline of the k-th instance of

task τi. Table II reports the total number of added delays and
the runtime for the 11000 random systems. All the alternative
sorting metrics computed solutions with higher cost (than the
proposed algorithm) in approximately the same time.

B. An Automotive Case Study

We apply the optimization algorithm to an automotive case
study (available in [13]). The experiments are performed on an
industrial case study consisting of a fuel injection embedded
controller. The case study is a simplified version of the full
control system with 90 function blocks (out of 200 in the real
system), executed with 7 different periods (in ms): 4, 5, 8, 12,
50, 100, and 1000. The execution times of some functions are
provided as part of the case study. The others are assigned
to achieve a system utilization of 94.1%, which is close to
the values found in real systems of this type. The function
blocks are communicating through 106 links. Among them,
37 are from high-rate to low-rate nodes, and 31 are for low to
high communications. The details of the communication graph
(including the size of the communication links) and the time

parameters of the function blocks (including their periods and
WCETs) can be found in [13].

The case study is unschedulable with Prelude because of
the imposed feedthrough dependencies. However, our heuristic
algorithm was able to find a feasible solution while minimizing
the memory requirements of the added functional delays to
1050 bytes, which is about 16.0% of the memory cost (6578
bytes) if a delay is added to all the communication links. The
solution was reached in 0.28 seconds.

VI. CONCLUSIONS

In this paper, we consider the optimization of the multitask
implementation for synchronous reactive models scheduled
with dynamic priority (EDF). We show that there is oppor-
tunity for improving the conservative behavior of previous
work by reducing the need for additional latency and memory
buffers when implementing the functional model. We present
an algorithm to minimize the weighted sum of the additional
functional delays and demonstrate that the proposed heuristic
yields a solution with close-to-optimal solution compared to
exhaustive search.

REFERENCES

[1] MathWorks. The Mathworks Simulink and StateFlow User’s Manuals.
web page: http://www.mathworks.com.

[2] Esterel Technologies. SCADE Suite. web page: www.esterel-
technologies.com.

[3] Task Graphs For Free. [Online] Available at
http://ziyang.eecs.umich.edu/ dickrp/tgff

[4] G. Berry and G. Gonthier. “The Esterel synchronous programming
language: Design, semantics, implementation.” Sci. Comput. Program,
19(2):87–152, Nov. 1992.

[5] E. Bini and G. Buttazzo. “Measuring the Performance of Schedulability
Tests.” Real-Time Systems, 30(1-2):129–154, May 2005.

[6] P. Caspi and M. Pouzet. “Synchronous kahn networks.” In Proc. ACM
SIGPLAN Conference on Functional Programming, 1996.

[7] P. Caspi, A. Curic, A.Maignan, C. Sofronis, S. Tripakis, and P. Niebert.
“From Simulink to SCADE/Lustre to TTA: a layered approach for
distributed embedded applications.” In Proc. ACM SIGPLAN conference
on Language, compiler, and tool for embedded systems, 2003.

[8] P. Caspi, N. Scaife, C. Sofronis, and S. Tripakis. “Semantics-preserving
multitask implementation of synchronous programs.” ACM Trans. Embed.
Comput. Syst., 7(2):1–40, Jan. 2008.

[9] P. Caspi and A. Benveniste. “Time-robust discrete control over networked
loosely time-triggered architectures.” In Proc. IEEE Control and Decision
Conference, 2008.

[10] H. Chetto, M. Silly, and T. Bouchentouf. “Dynamic scheduling of real-
time tasks under precedence constraints.” Real-Time Systems, 2(3):181–
194, Sept. 1990.

[11] M. Cordovilla, F., J. Forget, E. Noulard, and C. Pagetti. “Develop-
ing critical embedded systems on multicore architectures: the Prelude-
SchedMCore toolset.” In Proc. 19th International Conference on Real-
Time and Network Systems, 2011.

[12] M. Di Natale and V. Pappalardo. Buffer optimization in multitask
implementations of simulink models. ACM Trans. Embed. Comput. Syst.,
7(3):1–32, 2008.

[13] M. Di Natale, L. Guo, H. Zeng, and A. Sangiovanni-Vincentelli. “Syn-
thesis of Multi-task Implementations of Simulink Models with Minimum
Delays.” IEEE Transactions on Industrial Informatics, 6(4):637–651,
Nov. 2010.

[14] S. A. Edwards. “An Esterel compiler for large control-dominated sys-
tems.” IEEE Trans. Computer-Aided Design, 21(2):169–183, Feb. 2002.

[15] J. Forget, F. Boniol, D. Lesens, and C. Pagetti. “A multi-periodic
synchronous data-flow language.” In Proc. 11th IEEE High Assurance
Systems Engineering Symposium, 2008.

[16] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. “The synchronous
data flow programming language LUSTRE.” Proceedings of the IEEE,
79(9):1305–1320, Sept. 1991.

[17] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. “Program-
ming real-time applications with SIGNAL.” Proceedings of the IEEE,
79(9):1321-1336, Sept. 1991.

[18] L. Mangeruca, M. Baleani, A. Ferrari, and A. Sangiovanni-Vincentelli.
“Uniprocessor scheduling under precedence constraints for embedded
systems design.” ACM Transactions on Embedded Computing Systems,
7(1), Dec. 2007.

[19] C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and D. Lesens. “Multi-
task Implementation of Multi-periodic Synchronous Programs.” Discrete
Event Dynamic Systems, 21(3):307–338, Sept. 2011.

[20] D. Potop-Butucaru, B. Caillaud, and A. Benveniste. “Concurrency in
synchronous systems.” Formal Methods in System Design, 28(2):111-130,
March 2006.

[21] C. Sofronis, S. Tripakis, and P. Caspi. “A memory-optimal buffering
protocol for preservation of synchronous semantics under preemptive
scheduling.” In Proc. 6th ACM International Conference on Embedded
Software, 2006.

[22] S. Tripakis, C. Pinello, A. Benveniste, A. Sangiovanni-Vincentelli,
P. Caspi and M. Di Natale. “Implementing Synchronous models on
Loosely Time-Triggered Architectures.” IEEE Transactions on Comput-
ers, 57(10):1300–1314, Oct. 2008.

[23] J. P. Vielma, S. Ahmed and G. Nemhauser. “Mixed-integer models
for non-separable piecewise linear optimization: unifying framework and
extensions.” Operations Research, 58:303-315, 2010.

[24] G. Wang, M. Di Natale, and A. Sangiovanni-Vincentelli. “Improving
the size of communication buffers in synchronous models with time
constraints.” IEEE Transactions on Industrial Informatics, 5(3):229–240,
Aug. 2009.

[25] D. Weil, V. Berlin, E. Closse, M. Poize, P. Venier, and J. Pulou. “Efficient
compilation of Esterel for real-time embedded systems.” In Proc. Int.
Conf. Compilers, Architecture, and Synthesis for Embedded Syst., 2000

[26] H. Zeng and M. Di Natale. “Mechanisms for Guaranteeing Data
Consistency and Time Determinism in AUTOSAR Software on Multi-
core Platforms.” In Proc. 6th IEEE Symposium on Industrial Embedded
Systems, 2011.

[27] F. Zhang and A. Burns. “Schedulability Analysis for Real-Time Systems
with EDF Scheduling.” IEEE Transactions on Computers, 58(9):1250–
1258, Sept. 2009.

