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Abstract Tasks are units of sequential code implementing the system actions and
executed concurrently by an operating system. Techniques have been developed to
determine, at design time, whether a set of tasks can safely complete before their
deadlines. Several models have been proposed to represent conditional executions
and dependencies among concurrent tasks for the purpose of schedulability analysis.
Among them, task graphs with cyclic recurrent behavior (i.e., those modeled with a
single source vertex and a period parameter specifying the minimum amount of time
that must elapse between successive activations of the source job) allow for efficient
schedulability analysis based on the periodicity of the request and demand bound
functions (rbf and dbf). In this paper, we leverage results from max-plus algebra to
identify a recurrent term in rbf and dbf of general task graph models, even when
the execution is neither recurrent nor controlled by a period parameter. As such, the
asymptotic complexity of calculating rbf and dbf is independent from the length of
the time interval. Experimental results demonstrate significant improvements on the
runtime for system schedulability analysis.
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1 Introduction

Tasks are units of sequential code implementing the system actions and executed con-
currently by an operating system. Techniques have been developed to determine, at
design time, whether a set of tasks can safely complete before their deadlines. Several
abstract models have been proposed to represent conditional executions and depen-
dencies among real-time concurrent tasks for the purpose of schedulability analysis.
The available models can be classified based on the concept of task graph, as in Fig. 1.
In the graph, vertices represent different kinds of jobs, and edges represent the pos-
sible flows of control. Each vertex (job) is characterized by its worst-case execution
time requirement and relative deadline. Each graph edge is labeled with the minimum
separation time between the release of the two vertices (jobs) it connects.

The schedulability analysis of the task models requires the calculation of the request
and demand bound functions. In this paper, we leverage results from max-plus algebra
to identify a recurrent term in rbf and dbf of general task graph models, even when
the execution is neither recurrent nor controlled by a period parameter. This greatly
improves the efficiency of rbf and dbf calculation, and consequently schedulability
analysis. In the following, we first introduce the task graph models and the concepts
of rbf and dbf functions, before explain the contribution of the paper.

1.1 Task graph models

The list of proposed task graph models are summarized in Fig. 1. A single vertex
task graph (Fig. 1a) corresponds to the simplest model of independent tasks Liu and
Layland (1973) activated by periodic or sporadic events.

The multiframe Mok and Chen (1996) and generalized multiframe (GMF) task
models Baruah et al. (1999) (Fig. 1b) assume that worst-case execution times are not
constant, but are defined according to a cyclic pattern. The corresponding task graph
is therefore a chain of vertices. A number of papers has analyzed the schedulability
of the GMF task model, including Zuhily and Burns (2009).

The recurring branching task model Baruah (1998) (Fig. 1c) allows selection points
to determine the behavior for a given task instance, in statements such as “if-then-else”
and “switch-case”. Hence, it models conditional branches and optional (OR-type)
executions. The corresponding task graph is a directed tree.

The recurring real-time task model Baruah (2003), as illustrated in Fig. 1(d), allows
the task graph to be any directed acyclic graph (DAG).

All the above four models (as in the top row of Fig. 1) satisfy the property of cyclic
recurrent behavior:

– recurrent: the graph has a unique source vertex. The completion of a sink vertex
automatically releases the source job. This execution pattern may be implicit, or
it can be modeled by explicitly adding back edges from the sink vertices to the
unique source (as in Fig. 1).

– cyclic: a period parameter defines the minimum time interval that must elapse
between two consecutive releases of the source vertex job.
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(a) (b)independent [21] multiframe [23]
& GMF [5]

(c) (d)recurring branching [4] recurring [6]

(e) non-cyclic
GMF [26]

(f) (g)non-cyclic recurring [7] digraph [28] (h) digraph with interframe
separation [29]

Fig. 1 A summary of the existing task models

In these cyclic recurrent models, the unique source vertex is represented in the
figure by a shadowed node, with the periodicity constraint represented by a dotted
line as a self loop on it. A solid line indicates a precedence constraint associated with
minimum inter-release time.

The non-cyclic generalized multiframe model Moyo (2010) (Fig. 1e) removes the
periodicity in the activation pattern of the jobs. More specifically, it is possible to
activate any job as long as the minimum separation time with respect to its predecessor
has passed. Without considering the (implicit) back edges from the sink vertices to
the source vertex, the task graph is still a directed tree.

The next task graph model is the one proposed by Anand et al. (2008) (called
Recurring Task Model with Branching and Control variables), or in a similar form
by Baruah (2010) (as the non-cyclic recurring real-time task model). As in Fig. 1f, it
is a generalization of both the recurring real-time Baruah (2003) and the non-cyclic
GMF Moyo et al. (2010) models. Such a graph model allows for branches of different
length (anisochronicity), thus there is no single period parameter characterizes the
cyclic behavior of the task graph. The analysis is done by approximating the non-
cyclic task with a cyclic (called isochronous) one.

These three models (Moyo et al. (2010) Anand et al. (2008) Baruah (2010)) relax the
constraint of cyclic execution of the graph, but still assume a recurrent activation model
of a source job. In addition, they typically satisfy the frame separation property,
where the deadline of a job is constrained to be no larger than the inter-release times
of its outgoing edges.
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The digraph model Stigge et al. (2011) removes the restriction of recurrence by
allowing arbitrary cycles and therefore arbitrary directed graphs (Fig. 1g). This allows
to represent arbitrary release structure of jobs, which significantly increases the expres-
siveness. Another generalization is to relax the frame separation property to allow
arbitrary job deadlines. The digraph model is used for the analysis of implementations
of synchronous finite state machines Zeng and Di Natale (2012). The schedulabil-
ity analysis of digraph tasks under static priority schedulers is shown to be strongly
coNP-hard Stigge and Yi (2012). Also, the technique of combinatorial abstraction
refinement Stigge and Yi (2013) is introduced to cope with the combinatorial explo-
sion in the schedulability analysis under static priorities.

Stigge et al. (2011) further extend the digraph model by allowing global inter-
release separation constraints between non-adjacent job release (denoted by dashed
lines in Fig. 1h). The analysis on the resulting task model is tractable, i.e., no worse
than pseudo-polynomial time for bounded utilization systems. The model of timed
automata with tasks Norström et al. (1999) is a generalization of all the above models,
which allows complex dependencies between job release times and task synchro-
nization. However, schedulability analysis is shown to be very expensive and even
undecidable in certain variants of the model Fersman et al. (2007). A discussion on
the expressiveness and complexity of schedulability analysis for task graph models
can be found in Stigge et al. (2011).

A special subset of task digraphs consists of strongly connected graphs, where
every node is reachable from any other node.1 We expect many applications of practical
interests to be represented by such graphs, because of the need to bring back the
system to a (possibly initial) controlled state, which could be a safe state in case of
safety-critical systems. For all graphs where there is a unique initial action, a strongly
connected graph simply requires that all the actions are reachable (which is intuitively
satisfied) and that the initial action is reachable again from any other action. This
is the case in most systems, either because of the structure of the code in normal
execution (the initial action is, for example, reading a set of sensors that need always
be considered), or because of exception handling code. In the latter case, typically a
recovery action or state restore action is performed and then execution restarts from
the initial default action. All examples in Fig. 1 are strongly connected graphs.

There is also a large body of research that deals with the task graph on multi-
core architectures, to explore the parallelism provided by such hardware platforms. It
includes the fork-join task graph Saifullah et al. (2011) and its schedulability analysis
(e.g., Axer et al. (2013)), the generalized parallel task model Baruah et al. (2012) and
its schedulability analysis under multi-task environment Bonifaci et al. (2013). The
later represents each task a directed acyclic graph (thus more general than the fork-join
task graph). However, these papers have a few differences compared to our work:

– They allow the explicit modeling of possible parallel execution of jobs in a task,
while our work only considers sequential execution for jobs of the same task.

– They assume deadline is a task-level parameter, while in the digraph model (our
focus) it is job specific.

1 Tarjan’s algorithm Tarjan (1972) can decide in linear time whether a digraph is strongly connected.
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– They only have a task-level period parameter to separate the releases of the task
instances, while our paper has more complicated mechanisms including inter-
release time denoted with the edge between two jobs.

1.2 Request/Demand bound functions

The concepts of request bound function (or rbf) and demand bound function (or
dbf) have been introduced Baruah (2003) for the analysis of task graphs.

Definition 1 For a task τ , the maximum cumulative execution times by its jobs that
have their release times within any time interval of length t is defined as its request
bound function τ.rb f (t).

Definition 2 For a task τ , the maximum cumulative execution times by its jobs that
have their release times and deadlines within any time interval of length t is defined
as its demand bound function τ.db f (t).

Intuitively, rbf can be used to compute the maximum amount of execution time that
can interfere with a task (by adding the rbfs of higher priority tasks). dbf quantifies
the amount of execution time from jobs that are released and must be completed
within a given time interval. Schedulability analysis based on these two functions has
been proposed for systems with static and dynamic priority scheduling. The analysis is
tractable, i.e., no worse than pseudo-polynomial time for bounded utilization systems.

With the exception of timed automata, in all the task models, edges are labeled with
a minimum inter-release time. This can be restrictive if job releases are determined
by run-time events. For example, it is not straightforward to capture the periodicity
of trigger events for multi-rate synchronous finite state machines Zeng and Di Natale
(2012).

The periodicity of the request and demand bound functions for the task graph
models is of special interest in this paper. For task models with a cyclic recurrent
behavior, a repeating pattern of the functions rbf(t) and dbf(t) allows to compute them
for large t based on the values of small t . This makes the complexity of computing
rb f (t) and db f (t) independent from t . However, such a periodicity is only studied
for task models with a cyclic recurrent behavior.

1.3 Our contributions

In this paper, we study the periodicity of the request and demand bound functions for
non-cyclic task models, including the non-cyclic generalized multiframe model Moyo
et al. (2010), the non-cyclic recurring task model Baruah (2010), the digraph real-time
task model Stigge et al. (2011) and its extension Stigge et al. (2011). We present our
results using the digraph real-time task model Stigge et al. (2011), since it is a strict
generalization of the models in Moyo et al. (2010) Baruah (2010), and an extended
digraph task can be transformed into a plain digraph task with the same rbf and dbf
functions Stigge et al. (2011).
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– We make a key connection of rbf and dbf to the matrix power in max-plus alge-
bra Baccelli et al. (1992), and leverage the related research results (e.g. Molnárová
(2005)) to prove their linear periodicity Baccelli et al. (1992), i.e., they can be rep-
resented by a finite aperiodic part and a periodic part repeated infinitely often. The
required proof technique is significantly different from the previous work Zeng
and Di Natale (2012) (which provides initial results on the periodicity of execu-
tion matrix for synchronous state machines), including the consideration of the
sequence of maximum elements of matrix power and the required task graph
transformation.

– We develop efficient algorithms to calculate the periodicity parameters for strongly
connected task graphs.

– The task graph transformation is then used to derive a tight upper bound on rbf
and dbf functions, and consequently the time interval on which to check feasibility
conditions, which improves upon Stigge et al. (2011).

– We prove that the linear periodicity also holds for task graphs with arbitrary
deadlines, by considering the periodicity of multi-dimensional arrays (instead of
matrices).

Many schedulability techniques rely on such a linear periodicity to provide an
efficient representation and computation of the system timing behavior. For example,
the Modular Performance Analysis (MPA) toolbox Wandeler and Thiele (2006) based
on Real-Time Calculus Thiele et al. (2000) (and in turn, on the min-plus/max-plus
algebra) only supports infinite curves with linear periodicity property Künzli et al.
(2007). Also, as described in the paper Künzli et al. (2007), linear periodic curves
can be safely approximated by the standard event model, the one used to describe
input/output event streams in SymTA/S Henia et al. (2005). Our paper, for the first
time, demonstrates the linear periodicity of non-cyclic task models. Thus, it opens the
possibility of using these task models to represent application structures within
these schedulability analysis frameworks.

The rest of the paper is organized as follows. We first introduce in Sect. 2 the context
of our research, including the digraph task model and its schedulability analysis. In
Sect. 3 we briefly introduce the background on max-plus algebra and the matrix power
sequence under it. In Sect. 4 we prove the main theorem of the paper on the periodicity
of the rbf and dbf functions for digraph real-time tasks. In Sect. 5 we present methods
for computing the attributes of periodic rbf and dbf. In Sect. 6 we provide an improved
upper bound on the time interval on which to check feasibility conditions. In Sect. 7
we discuss the case of arbitrary deadlines. Section 8 shows the experimental results
demonstrating the significant improvements of our analysis over existing methods.
Finally, we conclude the paper in Sect. 9.

2 Digraph task model and schedulability analysis

2.1 Digraph task model and its extension

A digraph real-time task (DRT) τ is characterized by a directed graph D(τ ) = (V, E)

where the set of n vertices V = {v1, v2, . . . , vn} represents the types of jobs that can

123



Real-Time Syst

Fig. 2 An example of digraph
real-time task
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be released for task τ . Each vertex vi ∈ V (or type of job) is characterized by an
ordered pair 〈 e(vi ), d(vi ) 〉, where e(vi ) and d(vi ) denote its worst-case execution
time (WCET) and relative deadline, respectively. Edges represent possible flows of
control, i.e., the release order of the jobs of τ . An edge (vi , v j ) ∈ E is labeled with a
parameter p(vi , v j ) that denotes the minimum separation time between the releases
of vi and v j . We assume that relative deadlines and minimum inter-release times are
in N

+ (i.e., they are positive integers).
An event δ of τ is a pair (t, v) which denotes the release of a job v ∈ V at time t . An

event sequence � is a (possibly unbounded) sequence of job release events. A legal
event sequence � = [(t1, v1), (t2, v2), . . .] corresponds to a (potentially infinite) path
(v1, v2, . . .) in D(τ ), in which ∀i ≥ 1, (vi , vi+1) ∈ E, and the release times satisfy
ti+1 ≥ ti + p(vi , vi+1). A legal event sequence � = [(ti , vi )] is called urgent if each
ti is the minimum for � to be legal, i.e., for an arbitrarily small ε > 0 and any i ,
�′ = [(t1, v1), . . . , (ti − ε, vi ), . . .] is illegal.

We assume that the tasks satisfy the l-MAD property Baruah et al. (1999):

∀(vi , v j ) ∈ E, d(vi ) ≤ d(v j ) + p(vi , v j ) (1)

That is, for each edge, the deadline of the sink job is no smaller than the source job.
This constraint is less restrictive than the frame separation property, but is sufficient
to guarantee that the absolute deadline of the last job is the largest among all jobs in
any legal event sequence. In Sect. 7, we relax this constraint and consider the case of
arbitrary deadlines.

Example 1 Figure 2 shows an example of a digraph real-time task with 3 vertices
(types of jobs), which satisfies the l-MAD property. The node v1 is associated with
a pair 〈0.1, 1〉, which indicates that v1 has a WCET of 0.1 and a deadline of 1. The
edge (v1, v2) has a weight of 2, meaning the release times of v1 and v2 is separated by
at least 2 time units. For all the vertices, Eq. (1) is satisfied, thus the task satisfies the
l-MAD property. The event sequence � = [(5, v1), (7, v2), (9, v3)] is legal but not
urgent, as the third job (associated with v3) could be released at time 8.

The extended digraph real-time task model (EDRT) generalizes the digraph
task model by allowing a set of additional constraints H(τ ) to express a minimum
separation time between any two jobs. Each constraint h = (v f , vt , γ (v f , vt )) ∈
H(τ ) specifies that a minimum time interval γ (v f , vt ) must occur between the releases
of v f and vt . Each γ (v f , vt ) is assumed to be a positive integer. An EDRT can be
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transformed into an equivalent plain digraph task (with the same rbf and dbf) Stigge
et al. (2011). The transformation procedure iteratively replaces global inter-release
constraints from the EDRT with additional vertices and adjusts the edge weights.

A task system � consists of a set of independent real-time tasks τ1, τ2, . . . , τm . We
assume that tasks are scheduled on a uni-processor with preemptive scheduling.

2.2 Schedulability analysis

We review the schedulability analysis techniques developed for systems scheduled
with dynamic or static priority. For dynamic priority scheduling, Earliest Deadline
First (EDF) is optimal for independent tasks on a preemptive uni-processor Liu and
Layland (1973).

Theorem 1 (Stigge et al. (2011)) A task system � is schedulable by dynamic priority
(EDF) if and only if the sum of the demand bound functions for all tasks over any time
interval does not exceed the length of the interval, that is,

∀t ≥ 0,
∑

τ∈�

τ.db f (t) ≤ t (2)

For a task system scheduled with static priority, schedulability is guaranteed if, for
each task, the available cpu time is no smaller than the total execution time required
by the task itself and all the higher priority tasks.

Theorem 2 (Baruah (2003)) For a task system � with static priorities, task τi ∈ � is
schedulable if and only if

∀t ≥ 0, ∃t ′ ≤ t such that τi .db f (t) +
∑

τ j ∈hp(i)

τ j .rb f (t ′) ≤ t ′ (3)

where hp(i) is the set of tasks with priority higher than τi .

The above theorem can be derived from the one in Baruah (2003) (originally for
the analysis on recurring real-time tasks), as the proof also applies to the extended
digraph task model.

In practice, the schedulability of dynamic priority systems is analyzed by checking
whether there exists a counterexample to Theorem 1:

∃t ≥ 0 such that
∑

τ∈�

τ.db f (t) > t

A similar approach can be derived for static priority systems. Thus, schedulability
analysis requires the efficient computation of the rbf and dbf functions of a task τ

over a time interval of given length t . Also, since it is practically impossible to check
the schedulability condition for all (integer) t ≥ 0, an upper bound t f on such a
counterexample is defined in Sect. 6, which improves upon Stigge et al. (2011).
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For the periodic task model Liu and Layland (1973), the rbf and dbf functions of
task τ with period p and WCET e are

τ.rb f (t) =
⌈

t

p

⌉
e, τ.db f (t) =

⌊
t

p

⌋
e

For other cyclic recurrent task graphs, such as the most generic one (the recurring
task model Baruah (2003)), every cycle in the graph contains the unique source node for
which two consecutive releases are separated by the period parameter. Such properties
lead to a regular repeating pattern of rbf and dbf. For a recurring task with period p,
the maximum execution request for any path from the unique source node to a sink
node is denoted as e. Its rbf and dbf satisfy the following equations for sufficiently
large r (where q = e

p ) Baruah (2003)

∀ j ∈ N
+,

{
τ.rb f (r + j · p) = τ.rb f (r) + j · p · q
τ.db f (r + j · p) = τ.db f (r) + j · p · q

(4)

This allows the calculation of rbf and dbf functions with a complexity that is asymp-
totically independent from the time interval. However, such a property has not been
demonstrated for tasks without cyclic recurrent properties.

3 Max-plus algebra

In this section, we introduce the necessary background on max-plus algebra and the
periodicity of matrix power. The max-plus algebra Baccelli et al. (1992) is defined over
R

∗ = R
⋃{−∞} where the addition (denoted by ⊕) and multiplication (denoted by

⊗) operations are defined as

a ⊕ b = max(a, b), a ⊗ b = a + b

Note that the element −∞ is neutral with respect to ⊕, i.e.,

∀a ∈ R
∗, a ⊕ (−∞) = a

Likewise, 0 is neutral with respect to ⊗, i.e.,

∀a ∈ R
∗, a ⊗ 0 = a

Example 2 As an example of the max-pus operators,

5 ⊕ 8 = max(5, 8) = 8, 5 ⊗ 8 = 5 + 8 = 13
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3.1 Matrix and its power sequence

The matrix operations over R
∗ are defined in the same way as the matrix operation

over any field. For example, for matrix A and B with the same dimension, C = A ⊕ B
is defined by taking the maximum between the corresponding elements of A and B,
i.e., ci, j = ai, j ⊕ bi, j , ∀i, j .

For two matrices A ∈ R
∗(m, k) and B ∈ R

∗(k, n), the result of the multiplication
is a matrix C ∈ R

∗(m, n), where

ci, j =
k⊕

l=1

(
ai,l ⊗ bl, j

)
= k

max
l=1

(
ai,l + bl, j

)

The k-th power of a square matrix A ∈ R
∗(n, n), denoted as A(k), is recursively

defined as the multiplication of A(k−1) and A(1) = A.

a(k)
i, j = n

max
l=1

(
a(k−1)

i,l + al, j

)

The properties of A are assessed through its graph G(A).

Definition 3 The graph G(A) of a square matrix A ∈ R
∗(n, n) is a weighted digraph

(V, E, w) with nodes V = {1, . . . , n}. Every finite ai, j defines an edge (i, j) ∈ E

weighted by its value ai, j . If ai, j = −∞, there is no edge from i to j . A path � in
G is a sequence of nodes (i1, i2, . . . , it+1) where each (ik, ik+1) is an edge in E. The
length |�| of � is t , the number of edges in the path. If i1 = it+1, � is called a cycle.
The weight of a path �, w(�), is the sum of the weights of its edges. For a cycle c
with length |c| > 0, its cycle mean w̄(c) is the ratio between its weight and length,
i.e., w̄(c) = w(c)/|c|. The maximum mean of any cycle in G(A) is denoted as λ(A).

G(A) is strongly connected if all its nodes are contained in a common cycle. In
this case, A is defined as irreducible.

Definition 4 Given a subset of the vertexes K ⊆ V defining a strongly connected
component K = (K, E

⋂
(K×K)) of G(A), its maximum cycle mean λ(K) is defined

as the maximum of w̄(c) where c ⊆ K. K is called a highly connected component of
G(A) if λ(K) = λ(A). HCC∗(G(A)) denotes the set of highly connected components
with a cycle. The high period of K ∈ HCC∗(G(A)) is defined as

hper(K) = gcd
{
|c| : c is a cycle in K, w̄(c) = λ(A)

}

Definition 5 An elementary path is a path with no cycle. The operation of cycle
deletion replaces a cycle (i1, i2, . . . , i1) with a single node i1. Given two paths � and
�′, �′ is a cycle extension of �, denoted as � ⊆c �′, if � can be created from �′
by a finite number of cycle-deletions.

The set of paths of G(A) from node i to j is denoted as PG(A)(i, j). The set of
elementary paths is denoted as P

∗
G(A)

(i, j). The subset of the paths of length t is

P
t
G(A)

(i, j). The power sequence for an elementary path � ∈ P
∗
G(A)

(i, j) is the
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Fig. 3 The digraph
corresponding to the matrix
of Eq. (6)
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sequence of the maximum weights among all the cycle extensions of �. Each term in
the sequence is

a(t)
� = max

{
w(�′) : �′ ∈ P

t
G(A)

(i, j),� ⊆c �′
}

Intuitively, each element a(t)
i, j of A(t) defines the path of length t with the maximum

weight in G(A) from node i to j . The following fundamental theorem in max-plus
algebra defines the relationship between the power of a matrix A and the maximum
weights of the paths in G(A), and consequently, the power of elementary paths.

Theorem 3 (Baccelli et al. (1992)) The power sequence of A ∈ R
∗(n, n), for all

t ∈ N
+ and all i, j ∈ {1, . . . , n} can be computed as

a(t)
i, j = max

{
w(�′) : �′ ∈ P

t
G(A)

(i, j)
}

= max
{

a(t)
� : � ∈ P

∗
G(A)

(i, j)
} (5)

Example 3 Consider the square matrix A in (6) and its digraph G(A) in Fig. 3.

A =

⎡

⎢⎢⎢⎢⎣

0.1 −∞ −∞ 0.1 −∞
−∞ 0 0.2 −∞ −∞
0.1 −∞ 0 −∞ 0.1
−∞ 0 −∞ −∞ −∞
−∞ 0 −∞ −∞ −∞

⎤

⎥⎥⎥⎥⎦
(6)

The set of elementary paths from node 3 to node 2 is

P
∗
G(A)(3, 2) =

{
(3, 5, 2), (3, 1, 4, 2)

}
,

and every other path in PG(A)(3, 2) is a cycle extension to either (3, 5, 2) or (3, 1, 4, 2).
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Fig. 4 An example of almost
linear periodic sequence
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3.2 Linear periodicity and general periodicity

We now review the results on linear periodicity and general periodicity in max-plus
algebra. We first introduce the notion of linear periodicity of a sequence or of a matrix,
respectively.

Definition 6 A sequence a∗ = {a(t)}, t ∈ N
+ is almost linear periodic, if there exist

a real number q ∈ R and a pair of positive integers r and p such that

∀t > r, a(t+p) = a(t) + p · q (7)

The smallest p with the above property is the linear period of a∗, denoted as p =
lper(a∗). q is the linear factor of a∗, or q = lfac(a∗). Finally, the smallest r with the
above property is the linear defect, or r = ldef(a∗).

Definition 7 The matrix A = (ai, j ) is defined as almost linear periodic if the power
sequence a∗

i, j of each element ai, j in A∗ = {A(t)}, t ∈ N
+ is almost linear periodic.

The matrix lfac(A∗) = (lfac(a∗
i, j )) is the linear factor matrix of A, the number

ldef(A) = max{ldef(a∗
i, j )} is the linear defect of A, and lper(A) = lcm{lper(a∗

i, j )} is
the linear period of A.

Example 4 Figure 4 provides an example of almost linear periodic sequence. In reality,
the power values of the sequence are discrete (the graph shows them as continuous to
highlight the periodic recurrence). Intuitively speaking, the linear defect of an almost
linear periodic sequence is the length of its transient (non-periodic) part, while its
linear factor is the rate at which the sequence increases in the periodic part.

A matrix is almost linear periodic if it is irreducible (as demonstrated in Baccelli
et al. (1992)). Gavalec (2000) proposed an O(n3) algorithm for computing the linear
period and factor of an irreducible matrix based on the following theorem:
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Theorem 4 (Gavalec (2000)) An irreducible matrix A ∈ R
∗(n, n) is almost linear

periodic, its linear factor is lfac(A) = Q, with qi, j = λ(A) for all i , j ; its linear
period is

lper(A) = lcm
{

hper(K) : K ∈ HCC∗(G(A))
}
. (8)

Example 5 For the square matrix A in (6) and its digraph G(A) in Fig. 3, we can calcu-
late the power sequence of a1,1 as 0.2, 0.2, 0.2, 0.5, 0.6, 0.7, 0.8, . . ., which exhibits
a steady increase of 0.1 per step after the initial transient phase.

In fact, since G(A) is strongly connected, A is irreducible. There are three cycles
(1, 1), (2, 3, 5, 2), and (1, 4, 2, 3, 1) with a length of 1, 2, and 3 respectively, and
each with a cycle mean of 0.1. Since there is no other cycle with a larger cycle mean,
λ(A) = 0.1, and the high period of G(A) (which is a highly connected component
itself) is gcd{1, 2, 3} = 1. By Theorem 4, A is almost linear periodic with a linear
factor 0.1 and linear period 1. Equation (9) shows how to apply the linear periodicity
of A to compute its power sequence with its linear defect equal to 6.

∀t ≥ 6, A(t) =

⎡

⎢⎢⎢⎢⎣

0 −0.1 0 0 0
0.1 0 0.1 0.1 0.1
0 −0.1 0 0 0
0 −0.1 0 0 0
0 −0.1 0 0 0

⎤

⎥⎥⎥⎥⎦
+ 0.1 × t (9)

When the matrix is reducible, it can still be almost linear periodic, but deciding
whether this is the case has been demonstrated to be an NP-complete problem Gavalec
(2000). However, even when the matrix is not linear periodic, it is still possible to
avoid computing the rbf function over a long time interval by leveraging the concept
of general periodicity (Molnárová (2005)), a generalization of linear periodicity.

Definition 8 A sequence a∗ = (a(t)), t ∈ N
+ is defined as almost generally peri-

odic, if there exist a pair of integers r and p and a vector Q(i) ∈ R
∗(i = 1, . . . , p)

such that

∀i = 1, . . . , p,∀t > r, t ≡ i (mod p), a(t+p) = a(t) + p · Q(i) (10)

The smallest p with the above property is the general period of a∗, or p = gper(a∗).
Q is the general factor of a∗, or Q = gfac(a∗). Finally, the smallest r with the above
property is the general defect, or r = gdef(a∗).

Definition 9 Matrix A is almost generally periodic if the power sequence a∗
i, j of each

element in A∗ = {A(t)}, t ∈ N
+ is almost generally periodic. gfac(A∗) = (gfac(a∗

i, j ))

is the general factor matrix of A, gdef(A) = max
i, j

{gdef(a∗
i, j )} is its general defect,

and gper(A) = lcm{gper(a∗
i, j )} is its general period.

Example 6 Figure 5 provides a representation of the power values for a generic ai, j

of an almost generally periodic matrix with period p and general factor Q. After the
defect, the values of the subset of points a(t) with t modulo p = i are placed on a line
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Fig. 5 An example of almost
generally periodic sequence

(t)

a
(t)

r

defect

t

0 1 2 3

period
p

a
(t+p)

Q(3)

Q(1)

Q(2)

a

Q(0)

with slope Q(i) (the graph shows the values as joined by a continuous line for clarity).
The figure only illustrates the concept of general periodicity. To emphasize the subsets
of points belonging to a linear progression, it is not monotonic and therefore is not
meant to represent an rbf or dbf function.

The following theorem states the applicability of the periodicity property to all
matrices.

Theorem 5 (Molnárová (2005)) Every matrix is almost generally periodic over the
max-plus algebra.

Theorem 5 is based on lemmas that show how the power sequence of every element
in the matrix is almost generally periodic, and the maximum of two almost generally
periodic sequences is almost generally periodic.

The problem of computing the general period gper(A) or general factor matrix
gfac(A) for a given square matrix A is shown to be NP-hard Molnárová (2005), where
the complexity is expressed in terms of the size of the matrix (or the corresponding
graph). However, it is asymptotically independent from the power of the matrix (or
the time interval for the rbf and dbf functions), which is not part of the input to the
algorithm.

In the following, we prove that the dbf and rbf functions are long-term peri-
odic for task graphs without cyclic recurrent properties, including the non-cyclic
GMF model Moyo et al. (2010), the non-cyclic recurring task model Baruah (2010),
the digraph real-time task (DRT) model Stigge et al. (2011), and its extension
(EDRT) Stigge et al. (2011). We present our results using the digraph task model,
since it is a strict generalization of the non-cyclic GMF and non-cyclic recurring task
models, and an EDRT can be transformed into an equivalent plain digraph task with
the same rbf and dbf Stigge et al. (2011).
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4 Demonstrating the periodicity of the rbf and dbf

In this section, we prove the linear periodicity of the rbf and dbf for a generic digraph
task. The proof is built on the following two ideas:

– As the graph edge weight is a representation of the computing load in a given
time interval (and the elements of the matrix power represent the processor loads
requested in the time interval), demonstrating the periodicity of the rbf and dbf
requires that the sequence of the maximum elements of the matrix powers is also
periodic (the periodicity of each element is not enough).

– We provide a task graph transformation to a unit digraph task (UDRT). In UDRT,
the total execution time request in a given time interval is encoded as the elements of
a max-plus matrix power sequence. This allows to leverage results from max-plus
algebra and formally demonstrate the periodicity of rbf and dbf for non-recurrent
graphs.

We first recapture several definitions and lemmas that are useful for our extension
to max-plus algebra (Sect. 4.1).

Definition 10 Given an elementary path �, the set of strongly connected components
that includes at least one node of � is SCC∗

�(G(A)) = {K : K ⋂
� �= ∅}. The maxi-

mum mean λ(�) of � is the maximum cycle mean of any element K in SCC∗
�(G(A)),

and its period lper(�) is defined as the least common multiple of the high periods of
highly connected components of K.

λ(�) = max
{
λ(K) : K ∈ SCC∗

�(G(A))
}

lper(�) = lcm
{

hper(K′) : K′ ∈ HCC∗(K), λ(K) = λ(�)
}

If � does not share any node with any strongly connected component, then λ(�) =
−∞.

Lemma 6 (Gavalec (2000) Molnárová (2005)) For an elementary path �, if its maxi-
mum cycle mean λ(�) > −∞, then a∗

� is almost linear periodic with period lper(�)

(or its integer divisor) and factor λ(�); otherwise, it is almost generally periodic with
a general factor of −∞.

Two other lemmas in Molnárová (2005) provide sufficient conditions for the max-
imum of two almost linear periodic sequences to be linear periodic.

Lemma 7 (Molnárová (2005)) Consider two almost linear periodic sequences a∗ and
b∗, where a∗ has period pa and factor q, and b∗ has period pb and the same factor q.
Then the sequence max(a∗, b∗) is almost linear periodic with period p as an integer
divisor of lcm(pa, pb), and factor q.

Lemma 8 (Molnárová (2005)) Consider two almost linear periodic sequences a∗ and
b∗. a∗ has period pa and factor qa. The elements of b∗ are all finite, with period pb and
factor qb > qa. Then the maximum sequence max(a∗, b∗) is almost linear periodic
with period pb and factor qb.
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As a special case of Lemma 7, if the two almost linear periodic sequences a∗ and b∗
have the same period and factor, the maximum sequence max(a∗, b∗) is almost linear
periodic with the same period and factor, and its defect is max{ldef(a∗), ldef(b∗)}.

The proof of the linear periodicity of an irreducible matrix (Theorem 4) derives
from these lemmas. By Lemma 6 and the fact that the matrix is irreducible (its graph
itself is a strongly connected component), for any elementary path �, a∗

� is almost
linear periodic with period lcm{hper(K) : K ∈ HCC∗(G(A))} and factor λ(A). By
Theorem 3 and Lemma 7, ∀i, j , a∗

i, j is almost linear periodic with the same period
and factor.

4.1 Periodicity of largest element sequence of matrix power

We now prove that the maximum element of a matrix power sequence is linear periodic.
We only consider non-trivial matrices (with at least one cycle in the associated graph).
The demonstration requires additional definitions and lemmas as intermediate steps.

Definition 11 The largest element sequence of A ∈ R
∗(n, n), denoted as a∗

max =
{a(t)

max},∀t ∈ N
+, is defined as the sequence of the largest element in the power

sequence of A, i.e., a(t)
max = max

i, j
a(t)

i, j ,∀t ∈ N
+.

Combining the definition and Theorem 3, the largest element sequence is the max-
imum among the power of all the elementary paths in the graph.

a(t)
max = max

i, j

{
a(t)
�′ : �′ ∈ P

t
G(A)(i, j)

}

= max
{

a(t)
� : � is an elementary path in G(A)

} (11)

Definition 12 A generally periodic sequence a∗ with factor Qa is dominated by a
linear periodic sequence b∗ with factor qb, if b∗ is eventually finite (∃r such that
∀t > r , b(t) is finite), and each element in Qa is less than or equal to qb.

The following lemma generalizes Lemmas 7 and 8, demonstrating the linear peri-
odicity of the maximum sequence of a generally periodic sequence and a dominating
linear periodic sequence.

Lemma 9 Consider a general periodic sequence a∗ (period pa and factor Qa)
and a dominating linear periodic sequence b∗ (period pb and factor qb). Then the
sequence max(a∗, b∗) is almost linear periodic with period as an integer divisor of
p = lcm(pa, pb) and factor qb.

Proof By the definitions of periodicity, there exists an integer r such that for any given
i ∈ {1, . . . , p}

∀ j ∈ N
+,

{
a(r+i+ j ·p) = a(r+i) + j · p · Qa(i)
b(r+i+ j ·p) = b(r+i) + j · p · qb > −∞
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We consider the maximum sequence of a(r+i+ j ·p) and b(r+i+ j ·p). There are two
cases.
Case 1: Qa(i) < qb. In this case, even if the sequence b∗ has a smaller initial
value, because of its dominating linear factor, there must exist an index r ′

i such that
the elements of b∗ with index ≥ r ′

i will eventually be larger than the corresponding
elements of a∗.

We define si = a(r+i) − b(r+i)

p(qb − Qa(i))
if a(r+i) > b(r+i); otherwise si = 0. By simple

arithmetics, we can prove that ∀ j ∈ N
+, max(a(r ′

i + j ·p), b(r ′
i + j ·p)) = b(r ′

i + j ·p) =
b(r ′

i ) + j · p · qb, where r ′
i = r + i +

⌈
si

p

⌉
p.

Case 2: Qa(i) = qb. The power sequence of a has the same factor as b. Thus,
∀ j ∈ N

+, max(a(r ′
i + j ·p), b(r ′

i + j ·p)) = max(a(r ′
i ), b(r ′

i )) + j · p · qb, where r ′
i = r + i .

Thus, as a generalization of the two cases, ∀i = 1, . . . , p, ∀ j ∈ N
+, there exists

an integer r ′ = maxi (r ′
i ) such that

max(a(r ′+ j ·p), b(r ′+ j ·p)) = max(a(r ′), b(r ′)) + j · p · qb

This means that the maximum sequence of a∗ and b∗ is linear periodic with period
lcm(pa, pb) (or an integer divisor of it), and factor qb. ��

We now prove the linear periodicity for the sequence of the largest matrix element.
It is done by constructing a subset of the elementary paths whose largest element
sequence dominates those of the other paths.

Theorem 10 The sequence of the largest element of any non-trivial square matrix is
almost linear periodic.

Proof For a non-trivial square matrix A, assume its maximum cycle mean λ(A) >

−∞. There must exist a cycle c such that w̄(c) = λ(A). Without loss of generality,
we denote c = (1, 2, . . . , |c|, 1). We consider a sequence that is the maximum of the
powers of the elementary paths in c: b(t) = max{a(t)

� : � ⊂ c}.
The power sequence of a generic elementary path � ⊂ c is almost linear periodic

with factor λ(A). By Lemma 7, b∗ is also almost linear periodic with the same factor.
Moreover, ∀t ∈ N

+, we can find a path �′ which is the concatenation of j repetitions
of (1, 2, . . . , |c|) and � = (1, 2, . . . , k + 1), where j = � t

|c| � and k = t − j · |c|.
�′ is a cycle extension of the elementary path � in c. As b(t) ≥ w(�′), we have
∀t ∈ N

+, b(t) is finite.
By Lemma 6, the power sequences of all other (finitely many) elementary paths

are generally periodic with a factor no larger than λ(A), thus dominated by b∗. By
Lemma 9, the sequence of the largest element (the maximum among b∗ and those of
the other elementary paths) is almost linear periodic.

Example 7 The sequence of the largest element of the irreducible matrix in Eq. (6)
can be derived as

∀t ≥ 6, a(t)
max = 0.1 + 0.1 × t (12)
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4.2 Task transformation

To apply the above extended results on max-plus algebra, a task transformation
and a refinement of the rbf and dbf functions are needed. We first present the
transformation of a task digraph into an equivalent digraph where all inter-release
times are equal to one.2 Such a digraph task with unit-weighted edges is defined as
a unit digraph task (UDRT). For D(τ ) = (V, E), we generate an equivalent UDRT
D′(τ ′) = (V′, E

′) by the following rules:

– Each vertex vi ∈ V corresponds to ki vertices νi,1, νi,2, . . . , νi,ki in V
′, where

ki = max
{

1, max
v j :(vi ,v j )∈E

p(vi , v j )
}
. (13)

– νi,1 is labeled with an execution time e(νi,1) = e(vi ), and all the other new vertices
have zero execution time. Deadlines can be assigned arbitrarily, as we are only
interested in the rbf function of the transformed graph. The calculation of the dbf
function does not use UDRT directly, but is done by leveraging its relationship
with rbf (Eq. (20)).

– For every k = 1, 2, . . . , ki − 1, an edge (νi,k, νi,k+1) ∈ E
′ is added to connect

these nodes in a chain topology.
– Each edge (vi , v j ) ∈ E corresponds to an edge (νi,k, ν j,1) in E

′ where k =
p(vi , v j ).

– All edges in E
′ are labeled as 1.

We now prove the following property of the transformation, which allows us to use
the transformed UDRT to study the rbf of a digraph task.

Lemma 11 The request bound functions of a digraph task D(τ ) and the transformed
UDRT D′(τ ′) are the same.

Proof Let l = |�| be the number of events in an arbitrary legal event sequence
� = [(ti , vi )] in D(τ ). We construct an event sequence �′ in D′(τ ′) by replacing
each event (ti , vi ) except the last one in � with a sequence of events (ti + k − 1, νi,k)

for k = 1, . . . , p(vi , vi+1). The last event (tl , vl) in � is replaced with (tl , νl,1). �′
is legal as the inter-release time between any two events is no smaller than 1. Thus
τ.rb f (t) ≤ τ ′.rb f (t). Similarly, we can prove τ ′.rb f (t) ≤ τ.rb f (t). ��

In unit digraph task models, in a legal event sequence (and the corresponding path)
containing n events (n nodes), the minimum separation time between the release times
of the last and first events is n − 1. Hence, the length of the path in τ ′ represents
the inter-release time of the first and last vertices for the corresponding urgent
event sequence.

Example 8 For the digraph task τ in Fig. 2, the transformed unit digraph task τ ′
is shown in Fig. 6. v1 in τ is transformed to two vertices ν1,1 and ν1,2 in τ ′, v2 is
transformed to ν2,1, and v3 to ν3,1 and ν3,2.

2 It is sufficient to transform the task into a digraph with inter-release times equal to gcd(p(e) : e ∈ E).
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Fig. 6 The unit digraph task
transformed from Fig. 2. The
minimum inter-release times are
all equal to 1. Deadlines are
omitted

v 2,1

v 3,2

v1,1

0

0.1 0.20

0.1 v 3,1

v 1,2

We extend the definition of rbf by adding the indication of the initial and final
jobs of the path on which it is computed. Also, the definition of the refined rbf is
slightly modified by removing the execution time (with its release time) of the last
job. Both are necessary to simplify the formulation of rbf in the max-plus algebra,
allowing a simple composition operation (as explained below).

Definition 13 Given a pair of vertices vi and v j , the request bound function of a
digraph task τ in the time interval t , denoted as τ.rb f (vi , v j , t), is defined as the
maximum sum of execution times of any legal event sequence [(tk, vk), k = 1, . . . , l]
of τ such that

– the vertex corresponding to the first event is v1 = vi ;
– the vertex corresponding to the last event is vl = v j ;
– tl−1 − t1 ≤ t ;

– τ.rb f (vi , v j , t) = max
l−1∑

k=1

e(vk).

If v j is not reachable from vi within any time interval of length t , then we define
τ.rb f (vi , v j , t) = −∞. With this definition, the domain for the possible rbf values is
R

∗ = R
⋃{−∞}.

According to the definition, the rbf function of the task is the maximum among all
the pairs vi and v j

τ.rb f (t) = max
i, j

{
τ.rb f (vi , v j , t)

}
(14)

For a UDRT τ , rb f (vi , v j , t) is additive, i.e., ∀i, j,∀t1, t2,

τ.rb f (vi , v j , t1 + t2 + 1) = max
m

{
τ.rb f (vi , vm, t1) + τ.rb f (vm, v j , t2)

}
(15)

Thus, rb f (vi , v j , t1 + t2 + 1) of a UDRT τ for a long interval of length t1 + t2 + 1
can be computed from its values for shorter intervals of length t1 and t2. The need
for this composition explains the omission of the execution time of the last job, and
the sum of the time intervals is incremented by one when concatenating two paths, as
the inter-release time of (vm−1, vm) is not included in the interval t1 or t2. Dynamic
programming techniques can be used for an efficient calculation of rb f (vi , v j , t). In
addition, the computation can be represented as a matrix power sequence in max-plus
algebra. Thus, we can leverage the related results to find its periodicity.
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For a generic digraph task, Eq. (15) does not apply since the inter-release times are
not uniformly one. Also, the general rbf function (without constraints on the source
and sink vertices) is not additive:

τ.rb f (t1) + τ.rb f (t2) = max
i,k

{
τ.rb f (vi , vk, t1)} + max

l, j
{τ.rb f (vl , v j , t2)

}

= max
i, j,k,l

{
τ.rb f (vi , vk, t1) + τ.rb f (vl , v j , t2)

}

≥ max
i, j,k=l

{
τ.rb f (vi , vk, t1) + τ.rb f (vl , v j , t2)

}

= τ.rb f (t1 + t2 + 1)

Thus, dynamic programming techniques and max-plus algebra cannot directly help
speedup the computations of the rbf functions. The transformation to a unit digraph
task and the refinement of its rbf function are necessary.

In the next subsection, we demonstrate the periodicity of the rbf function for a
UDRT. With this result, by Lemma 11, the original digraph also has an almost linear
periodic rbf. The periodicity of its dbf function is then proved by making a connection
to its rbf function.

4.3 Periodicity of rbf

For a UDRT τ with n vertices, we define the execution request matrix as A ∈
R

∗(n, n), with elements ai, j = τ.rb f (vi , v j , 0). Generalizing to any time interval

t , we denote a(t+1)
i, j = τ.rb f (vi , v j , t). Now Eq. (15) can be rewritten as (denoting

k = t1 + 1 and l = t2 + 1, then k + l = t1 + t2 + 2)

∀i, j, ∀k, l a(k+l)
i, j = max

m

(
a(k)

i,m + a(l)
m, j

)
(16)

This is exactly the definition of matrix power under the max-plus algebra. In other
words, the rbf function of a UDRT τ over a time interval of length t can be
expressed as the (t + 1)-th power of its execution request matrix A.

Informally, we can derive G(A) from D(τ ′) by:

– duplicating the topology of D(τ ′);
– adding a self-loop with an edge of weight 0 for each vertex νi,1. This is to allow

the possibility of untight event sequences. Thus, A is non-trivial.
– assigning the edge (u, v) in G(A) with the same weight as the source node u in

D(τ ′).

Example 9 Equation (6) computes the execution request matrix A for the UDRT D(τ ′)
in Fig. 6. D(τ ′) and G(A) (Fig. 3) are similar, with corresponding vertices: ν1,1 ⇔ 1,
ν2,1 ⇔ 2, ν3,1 ⇔ 3, ν1,2 ⇔ 4, and ν3,2 ⇔ 5.

For the example, the linear periodicity of matrix A and the rbf function is demon-
strated in Eqs. (9) and (12) respectively.
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We now prove the periodicity of rbf for a digraph task.

Theorem 12 The rbf function of a generic digraph task τ is almost linear periodic,
i.e., there exist a real number q and a pair of integers r and p such that

∀t > r, τ.rb f (t + p) = τ.rb f (t) + p · q (17)

Proof We consider the unit digraph task τ ′ obtained from τ and its execution request
matrix A. By Eq. (14),

τ.rb f (t) = τ ′.rb f (t) = max
i, j

a(t+1)
i, j = a(t+1)

max (18)

i.e., τ.rb f (t) is the maximum element of the (t + 1)-th power of its execution request
matrix. The linear periodicity of the rbf function of τ follows immediately from
Theorem 10. ��

4.4 Periodicity of dbf

We now prove the periodicity of the dbf function for a digraph task. The definition of
dbf is also extended to include a restriction to a given pair of start and end vertices.

Definition 14 Given a pair of vertices vi and v j , the demand bound function of a
digraph task τ during the time interval t , denoted as τ.db f (vi , v j , t), is defined as the
maximum sum of execution times of any legal event sequence [(tk, vk), k = 1, . . . , l]
of τ such that

– the vertex corresponding to the first event is v1 = vi ;
– the vertex corresponding to the last event is vl = v j ;
– ∀k = 1, . . . , l, dk + tk − t1 ≤ t ;

– τ.db fi, j (t) = max
l∑

k=1

e(vk).

Different from rbf, we define dbf to include the execution time and deadline
of the last job, since it is not computed by composition, but by starting from the
corresponding rbf.

Theorem 13 The dbf function of a generic digraph task D(τ ) = (V, E) is almost
linear periodic, i.e., there exist a real number q and a pair of integers r and p such
that

∀t > r, τ.db f (t + p) = τ.db f (t) + p · q (19)
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Proof By the l-MAD property, the last job in an event sequence always has the latest
deadline, thus the execution times of all nodes in the sequence should be included in the
dbf. For the consideration of τ.db f (vi , v j , t), the second to last node vk : (vk, v j ) ∈ E

has a release time of t − d(v j ) − p(vk, v j ). For sufficiently large t , it is

τ.db f (vi , v j , t) = max
vk :(vk ,v j )∈E

{
τ.rb f (vi , v j , t − d(v j ) − p(vk, v j ))

}
+ e(v j )

= τ.rb f (vi , v j , t − d(v j ) − min
vk :(vk ,v j )∈E

p(vk, v j )) + e(v j ) (20)

Thus, τ.db f (vi , v j , t) can be computed by simply shifting τ.rb f (vi , v j , t): to the
right by d(v j ) + min

vk :(vk ,v j )∈E

p(vk, v j ), and up by e(v j ). This of course does not affect

its periodicity. Thus τ.db f (t) is almost linear periodic with the same linear factor and
period as the corresponding rbf. ��
Example 10 For the digraph task τ in Fig. 2, we have

τ.db f (v1, v1, t) = τ.rb f (v1, v1, t − d(v1) − min
{

p(v3, v1), p(v1, v1)
}
) + e(v1)

= τ.rb f (v1, v1, t − 2) + 0.1

From Eq. (9), ∀t ≥ 6, τ.rb f (v1, v1, t − 1) = a(t)
1,1 = 0.1 × t . Thus for any t ≥ 7,

τ.db f (v1, v1, t) = 0.1 × t . Similarly, we can derive the dbf functions for other pairs
of source and sink vertices,

∀t ≥ 8, db f (t) =
⎡

⎣
0 −0.1 0

0.1 0 0.1
0 −0.1 0

⎤

⎦ + 0.1 × t (21)

and the dbf function is

∀t ≥ 8, τ.db f (t) = 0.1 + 0.1 × t.

Although we proved the linear periodicity of the rbf and dbf functions for any
digraph task, the result is of limited practical use when the execution request matrix is
reducible (the digraph task is not strongly connected). In this case, to the best of our
knowledge, there is no general procedure for computing the exact value (or an upper
bound) of the general defect.

5 Computing the periodicity parameters for strongly connected digraphs

In this section, we provide details on efficient algorithms to compute the exact value
or upper bounds for the periodicity parameters for strongly connected task digraphs.
We expect most applications of practical interests to be represented by such graphs,
especially for safety-critical systems, because of the need to bring back the system
to a safe state. In such a digraph task D(τ ), the execution request matrix A of the
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transformed UDRT D′(τ ′) is irreducible (the digraph G(A) is strongly connected). The
sequence of each element in A is almost linear periodic with period p = lcm{hper(K) :
K ∈ HCC∗(G(A))} and factor q = λ(A) (Theorem 4). By Lemma 7, the sequence of
the largest element is linear periodic with the same period and factor.

We are interested in efficient algorithms for computing the parameters p, q, and
r . The unit graph UDRT D′(τ ′), obtained by transformation from the original graph
D(τ ), is used to demonstrate the existence of these parameters (for a strongly con-
nected graph) and their relationship with the rbf and dbf. The computation of p,
q, and r can be performed on the unit graph or the original graph, as discussed
in the following sections. Since the transformed UDRT D′(τ ′) can have a much
larger size than the original graph D(τ ), in most cases, it is much simpler and
more efficient when operating on D(τ ) (or a more compact transformation than
D′(τ ′)).

5.1 Linear factor

The linear factor q = λ(A) is the maximum cycle mean inG(A). The value of q = λ(A)

is the worst-case utilization (the asymptotic maximum value of the ratio execution
request/demand rate) of the digraph task. This is the maximum cycle ratio (or cost
to time ratio) in the original digraph Dasdan (2004). Dasdan (2004) conducted a
comparative study on the six algorithms to compute the maximum cycle ratio, and
reported that the one in Young et al. (1991) is practically the fastest. It is a para-
metric shortest path algorithm with complexity O(|V||E| log(|V|)), where |V| and
|E| are the number of vertices and edges in the original digraph task, respectively.
It operates on a finite sequence of shortest paths trees, and tries to create a new one
by replacing the predecessor of a node v in the tree with another predecessor. The
algorithm stops when a cycle is detected, and the ratio of the cycle is the maximum
cost to time ratio. The pseudo-code of the algorithm is shown in Fig. 8 of Dasdan
(2004).

Alternatively, because of the correspondence between the paths in the digraph
task D(τ ) and its UDRT D′(τ ′), q can be computed on D′(τ ′) using the algorithm
in Karp (1978), with complexity O(|V′||E′|), where |V′| and |E′| are the number of
vertices and edges in D′(τ ′), respectively. The algorithm works on the digraph G(A)

corresponding to the execution request matrix of D′(τ ′). It is based on the Karp’s
theorem Karp (1978), which states that

q = max
v

min
0≤k≤n−1

Sn(v) − Sk(v)

n − k

where Sk(v) is the weight of the shortest path of length k from any source u to node
v, and n = |V′| is the number of nodes in the graph. Starting from k = 1, it iteratively
computes the values of Sk(v) for k = 1, . . . , n − 1 as follows

Sk(v) = max
(u,v)∈E′

{
Sk−1(u) + e(u)

}
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5.2 Linear period

The linear period p is computed using the algorithm in Theorem 3.6 of Gavalec (2000).
The algorithm operates through five steps:

– Step 1: compute the maximum cycle mean λ(A);
– Step 2: compute the metric matrix W (the matrix of all-pairs longest paths) of

A − λ(A);
– Step 3: find the highly connected components of the digraph G(W);
– Step 4: delete from G(W) the edges that are not contained in any zero-cycle. Note

that since W is obtained by removing λ(A) from all edges of A, the zero cycles
are the cycles with maximum mean;

– Step 5: compute the non-trivial highly connected components in the digraph G(W)

using Balcer-Veinott’s condensation algorithm Balcer and Veinott (1973).

When operating on the UDRT D′(τ ′), steps 3-5 are all of complexity O(|V′|2). The
matrix A−λ(A) has no positive cycles, hence Step 2 can be computed with the Floyd-
Warshall algorithm Floyd (1962). The complexity of the algorithm is cubic O(|V′|3)
with respect to the number of nodes. Therefore, Step 2 has the highest complexity and
determines the overall complexity of the procedure.

Step 2 can be improved by leveraging a special property of D′(τ ′). In D′(τ ′),
node νi,k with k ≥ 2 is derived from node vi in D(τ ) with inter-arrival time greater
than 1. Hence, every path to νi,k goes through νi,1 and its successor nodes νi, j ( j =
2, . . . , k), the latter all have an associated zero WCET. Correspondingly, in the digraph
of A−λ(A), the outgoing edge from the vertex νi, j ( j = 2, . . . , k) has weight −λ(A).
Thus, the weight w(νi,2, νm,1) of the longest path between two nodes νi,2 and νm,1 can
be computed iteratively by adding two contributions where νi, j is any intermediate
node with index j = 2, . . . , k

– the weight of the path w(νi, j , νm,1),
– ( j − 2) edges of weight −λ(A) from νi,2 to νi, j .

Hence,

w(νi,2, νm,1) = w(νi, j , νm,1) − ( j − 2)λ(A) ∀ j = 2, . . . , k

or equivalently,

w(νi, j , νm,1) = w(νi,2, νm,1) + ( j − 2)λ(A) ∀ j = 2, . . . , k

Generalizing, the largest weight of any path between a pair of nodes νi,k and ν j,m

of the graph from D′(τ ′) can be computed as:

w(νi, j , νk,m) =

⎧
⎪⎪⎨

⎪⎪⎩

w(νi,1, νk,1), if j = 1 and m = 1
w(νi,1, νk,2) − (m − 2)λ(A), if j = 1 and m ≥ 2
w(νi,2, νk,1) + ( j − 2)λ(A), if j ≥ 2 and m = 1
w(νi,2, νk,2) + ( j − m)λ(A), if j ≥ 2 and m ≥ 2

(22)
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Fig. 7 The original task (top)
and the transformed graph D◦
(bottom)
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Then, the problem reduces to computing the longest paths between the subset of nodes
νi, j and νk,m in the graph G(A − λ(A)), having values of j and m equal to either 1
or 2 and deriving all the other path weights by adding a proportional term as in (22).

Hence, instead of operating on the unit digraph D′, it is more convenient to operate
on a simplified digraph D◦, obtained from D′ by iteratively coalescing each node νi, j

with a single outgoing edge with its successor νi, j+1.
However, D◦ can also be constructed directly from the original task D(τ ) = (V, E)

as follows:

– For each vertex vi ∈ V, if the maximum inter-arrival time among all of its outgoing
edges ki ≥ 2 (as in (13)), then two vertices ν◦

i,1 and ν◦
i,2 are generated in D◦.

Otherwise, only one corresponding vertex ν◦
i,1 is created.

– An edge (ν◦
i,1, ν

◦
i,2) connects ν◦

i,1 and ν◦
i,2 with a weight equal to e(vi ) − λ(A).

– For each edge (vi , v j ) ∈ E, if p(vi , v j ) = 1, we add an edge (ν◦
i,1, ν

◦
j,1) with a

weight equal to e(vi ) − λ(A); otherwise, an edge (ν◦
i,2, ν

◦
j,1) is added with weight

(1 − p(vi , v j ))λ(A).

Example 11 Figure 7 shows a task graph (top of the figure, with linear factor λ(A) =
0.1) and its transformed digraph D◦ for a compact representation of A−λ(A) (bottom
of the figure). D◦ only has 5 nodes and 7 edges, as opposed to 104 nodes and 106
edges in the corresponding UDRT.

As there is no positive cycle in D◦, the Floyd–Warshall algorithm Floyd (1962)
can be applied to calculate the longest paths between any nodes νi,k and ν j,m , where
k and m are equal to either 1 or 2. This is done in O(|V|3) time as the digraph D◦ has
2 × |V| nodes. The other elements required in Step 2 can be derived using Eq. (22),
with linear complexity.
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5.3 Linear defect

Using the definition of the max-plus algebra, it is easy to verify that the maximum
element of each matrix in the power series of A can be computed as a(t)

max = 0T ⊗
A(t) ⊗ 0, where 0 = (0, 0, . . . , 0)T is the zero vector. The defect of such maximum
element is clearly lower than or equal to the defect for the vector of elements obtained
for the linear dynamical system A∗ ⊗ 0 (Hartmann and Arguelles (1999)). Hence, the
linear defect of A∗ ⊗ 0 is an upper bound to the defect of a∗

max.
The linear defect of a linear dynamical system can be computed with complexity

O(|V′|3(log r + log p)) Hartmann and Arguelles (1999) (where r and p are its linear
defect and period). This is done by iteratively computing the matrix power and finding
the first r that satisfies A(r+p) ⊗ 0 = A(r) ⊗ 0 + p × q. In addition, upper bounds on
r can be calculated more efficiently (Hartmann and Arguelles (1999) Charron-Bost et
al. (2011)) with complexity O(|V′|2) on top of the algorithms to compute p and q.

The alternative is to directly work on the original digraph task. The linear dynamical
system A(t) ⊗ 0 = (a(t)

j = max
i

{rb f (vi , v j , t − 1)}) is the vector of the rbf functions

ending in v j . Such rbf functions can be computed using a similar algorithm as proposed
in Stigge et al. (2011) (Fig. 5 in the paper), with complexity O((|V| + |E|) · t).
Starting from t = 1, the algorithm iteratively update the rbf function a(t)

j with dynamic
programming techniques.

5.4 Computing p, q, and r on the UDRT versus the original graph

The algorithms presented in the previous section avoid the need to construct and
operate on the possibly large UDRT graph, and allow the linear periodicity parameters
on the original graph to be computed (typically more efficiently). In our experiments,
we use them for the comparison with the state-of-the-art analysis Stigge et al. (2011).

However, in selected cases, the algorithms that operate on the UDRT may be faster.
In particular, the complexity of computing the linear factor on the transformed UDRT
is O(|V′||E′|), where |V′| and |E′| are the number of vertices and edges respectively.
This is not necessarily higher than the complexity O(|V||E| log(|V|)) of the algorithm
that operates on the original graph (as discussed in Sect. 5.1). We leave for future work
the study on the comparison and optimal selection of these algorithms.

6 An improved upper bound on t f

In this section, we compute tight linear upper bounds on the rbf and dbf functions,
which are used to derive an upper bound for t f , the time limit for checking the fea-
sibility conditions in (2) and (3). To do so, we use the previously developed task
transformation and the power sequence on its execution request matrix.

For the digraph task τ , the graph of its execution request matrix is G(A) =
(V, E, w). We consider G′(A) = G(A) − λ(A), i.e., G′(A) = (V, E, w′) where
w′(e) = w(e) − λ(A) for all e ∈ E. G′(A) shares the same topology as G(A), thus for
any path � in G(A), there exists the same path in G′(A), with weight
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w′(�) = w(�) − |�| · λ(A) (23)

Hence, the maximum cycle mean of G′(A) is zero, and the longest path in G′(A) is
well defined.

We now derive a linear upper bound on the rbf function.

Theorem 14 The rbf and dbf functions of a task digraph with matrix A are upper
bounded by linear functions of time with proportionality coefficient λ(A) and constant
terms Crbf and Cdbf .

∀t ≥ 0,

{
τ.rb f (t) ≤ Crbf + t · λ(A)

τ.db f (t) ≤ Cdbf + t · λ(A)
(24)

where the constant terms are

Crbf =max
{
w′(�)|� is a path in G′(A)

}
+λ(A)

Cdbf =Crbf +min{ max
(vk ,v j )∈D(τ )

{
e(v j )−(d(v j )+ p(vk, v j )) · λ(A)

}
,−λ(A) · dmin

}

and dmin is the smallest deadline of any node in the graph, dmin = min
v j ∈D(τ )

d(v j ).

Proof Combining Eqs. (18) and (11), and assuming the unit graph is used for the
purpose of this demonstration, we have

τ.rb f (t)
= max{w(�)|� is a path in G(A), |�| = t + 1}
= max{w′(�) + (t + 1)λ(A)|� is a path in G′(A), |�| = t + 1} − by (23)
≤ max{w′(�) + (t + 1)λ(A)|� is a path in G′(A)}
= Crbf + t · λ(A)

The bound on dbf is derived by combining the bound on rbf with (20) and the previously
demonstrated inequality db f (t) ≤ rb f (t − dmin). ��

Crbf can be computed in O(|V|3) time (V is the number of nodes in G′(A)) using
the Floyd–Warshall algorithm Floyd (1962).

We now prove that these linear bounds improve on the existing bounds available
from the literature.

Theorem 15 The linear bound (24) is tighter than the corresponding bound
provided in Stigge et al. (2011) for the dbf: τ.db f (t) ≤ S + t · λ(A) where
S =

∑

vi ∈D(τ )

e(vi ) is the sum of the WCETs of the vertexes in D(τ ).

Proof The two linear bounds have the same proportionality coefficient λ(A). Hence,
it is sufficient to show that Cdbf ≤ S.

Since there is no positive cycle in G′(A), there must exist a longest path � in G′(A)

which is also an elementary path. Thus, W is no greater than the maximum sum of
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the positive edge weights in the elementary path � (where each node vi appears at
most once). Also, the task transformation guarantees that the weight w(g) of an edge
g = (vi , v j ) in G(A) equals either zero or the WCET e(vi ) of the source node vi in
D(τ ).

Crbf ≤
∑

g=(i, j)∈�

max{w′(g), 0}

≤
∑

vk∈D(τ )

max{e(vk) − λ(A), 0}

≤
∑

vk∈D(τ )

e(vk) − λ(A)

= S − λ(A)

This implies that Cdbf ≤ Crbf + λ(A) = S. ��

Example 12 For the example digraph task in Fig. 2, the linear bound on the rbf is
0.2+0.1× t . For dbf, it is 0.1+0.1× t . As a comparison, the bound on dbf from Stigge
et al. (2011) is 0.4 + 0.1 × t .

The linear bounds on rbf and dbf in (24) can be used to derive the maximum length
t f of the time interval to be checked, where the utilization of task τi is the maximum
cycle mean λi (A) of its digraph.

Under the assumption that the total utilization is less than 1, i.e.,
∑

τ j ∈�

λ j (A) < 1,

a task τi ∈ �, scheduled with static priority, is not schedulable if (countering the
hypothesis of Theorem 2)

∃t0,∀t ′ ≤ t0, τi .db f (t0) +
∑

τ j ∈hp(i)

τ j .rb f (t ′) > t ′

�⇒ ∃t0, τi .db f (t0) +
∑

τ j ∈hp(i)

τ j .rb f (t0) > t0

�⇒ Cdbf
i + t0 · λi (A) +

∑

τ j ∈hp(i)

(
Crbf

j + λ j (A
)

+ t0 · λ j (A)) > t0

�⇒ t0 <
Cdbf

i + ∑
τ j ∈hp(i)(C

rbf
j + λ j (A))

1 − λi (A) − ∑
τ j ∈hp(i) λ j (A)

(25)

Thus, t f =
Cdbf

i + ∑
τ j ∈hp(i)(C

rbf
j + λ j (A))

1 − λi (A) − ∑
τ j ∈hp(i) λ j (A)

is a safe upper bound on the set of

time instants to check the schedulability condition in Eq. (3).
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For systems with dynamic priority (EDF), it is

∃t0,
∑

τi ∈�

τi .db f (t0) > t0

�⇒ ∃t0,
∑

τi ∈�

(
Cdbf

i + t0 · λi (A)
)

> t0

�⇒ ∃t0, t0 <

∑
τi ∈� Cdbf

i

1 − ∑
τi ∈� λi (A)

(26)

Hence, if (2) holds for all the time points t <

∑
τi ∈� Cdbf

i

1 − ∑
τi ∈� λi (A)

, then the system is

EDF schedulable.

7 Arbitrary deadlines

In this section, we prove the periodicity of the rbf and dbf functions even when the
l-MAD assumption is not valid, i.e., deadlines are arbitrary but bounded. Therefore,
it is possible that in an event sequence, some job other than the last one has the
latest deadline, and in general, Eq. (20) does not hold. This change does not affect
the periodicity of the rbf function, as it does not depend on the deadline of the jobs.
However, the linear relation between rbf and dbf, defined in Eq. (20) (and exploited
to demonstrate the periodicity of the dbf), needs to be redefined considering a larger
set of possible ending nodes.

First, we compute an upper bound on the distance between the starting and ending
nodes in a path where the starting node may have a deadline later than that of the
ending node.

lmax = max
{

l : (v1, . . . , vl) ∈ �D(τ ), d(v1) >

l−1∑

i=1

p(vi , vi+1) + d(vl)
}

Next, the definition of rbf is extended to include a set of possible max{1, lmax}
ending nodes in the path.

Definition 15 Given a set of k = lmax + 1 vertices ui1 , ui2 , . . . , uik , the request
bound function of a digraph task τ during any time interval of length t , denoted as
τ.rb f (ui1 , ui2 , . . . , uik , t), is defined as the maximum sum of execution times of any
legal event sequence [(tm, um), m = 1, . . . , l] of τ such that

– the vertex corresponding to the first event is u1 = ui1 ;
– the vertexes corresponding to the k − 1 possible last events are ul = uik , ul−1 =

uik−1 ,…, ul−k+2 = ui2 ;
– ∀ j = 1, . . . , l − 1, t j − t1 ≤ t ;

– τ.rb f (ui1 , ui2 , . . . , uik , t) = max
l−1∑

j=1

e(u j ).
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As in the case of l-MAD, this definition of rbf does not include any reference to the
release time or the execution time of the last job.

In the l-MAD case, A(t) is a two-dimensional array, where the indices i and j of the
elements a(t)

i, j define the starting and ending nodes in the path of G(A). For multiple
ending nodes, the previous definition needs to be extended to a multi-dimensional
array.

Definition 16 For any t and k ≥ 2, and for any i1, i2, . . . , ik ∈ {1, . . . , n}, we denote
by �t

G(A)
(i1, i2, . . . , ik) the set of all paths in G(A), of length t , where the first node

in the path is i1, and the last k − 1 nodes are i2, . . . , ik .

Definition 17 For a square matrix A ∈ R
∗(n, n) and its corresponding graph G(A),

the power sequence of the k-dimensional array for any integer k ≥ 2, denoted as
W∗ = (w

(t)
i1,i2,...,ik

), ∀t ∈ N
+, is defined as the maximum weight of all the paths in

�t
G(A)

(i1, i2, . . . , ik). The set of paths and elementary paths can be defined similarly.
We denote them as PG(A)(i1, i2, . . . , ik) and P

∗
G(A)

(i1, i2, . . . , ik) respectively.

Lemma 6 can be extended to multi-dimensional arrays, based on the same reasoning
in Molnárová (2005) (Lemma 5.1 in the paper, for the case of matrices).

Lemma 16 For an elementary path � ∈ P
∗
G(A)

(i1, i2, . . . , ik), if its maximum cycle
mean λ(�) > −∞, then a∗

� is almost linear periodic with a linear factor of λ(�);
otherwise, it is almost generally periodic with a general factor of −∞.

The following lemma extends Theorem 10 to a multi-dimensional array for the
linear periodicity of its maximum element.

Lemma 17 The sequence of the maximum element of the k-dimensional array for any
non-trivial square matrix is almost linear periodic.

The proof is similar to the one in Theorem 10, obtained by constructing a subset of
the elementary paths that dominate other paths, and have the same linear factor.

The definition of dbf function is also extended to a starting vertex and a set of ending
vertices.

Definition 18 Given a set of k vertices ui1 , ui2 , . . . , uik , the demand bound function
of a digraph task τ during the time interval t , denoted as τ.db f (ui1 , ui2 , . . . , uik , t),
is defined as the maximum sum of execution times from any legal event sequence
[(tm, um), m = 1, . . . , l] of τ such that

– the vertex corresponding to the first event is u1 = ui1 ;
– the vertexes corresponding to the k − 1 possible last events are ul = uik , ul−1 =

uik−1 ,…, ul−k+2 = ui2 ;
– ∀ j = 1, . . . , l, d j + t j − t1 ≤ t ;

– τ.db f (ui1 , ui2 , . . . , uik , t) = max
l∑

j=1

e(u j ).
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Given a set of k vertices ui1 , ui2 , . . . , uik , we denote the set of possible absolute
deadlines for the ending vertices as (assuming the release time of ui2 is zero)

D =
{

d(ui j ) +
j−1∑

m=2

p(uim , uim+1) | j = 2, . . . , k
}

For each d ∈ D, we denote as S(d) the set of vertices in the path with an absolute
deadline larger than d:

S(d) =
{

i j | d(ui j ) +
j−1∑

m=2

p(uim , uim+1) > d
}

With these notations and extensions, we derive the relationship between the rbf
and dbf functions. We note that the inter-release time between ui2 and uik−1 (the

last node included in τ.rb f (ui1 , ui2 , . . . , uik , t)) is
j−2∑

m=2

p(uim , uim+1). To compute

τ.db f (ui1 , ui2 , . . . , uik , t), the latest deadline may be one of those d ∈ D, and the

corresponding release time for uik−1 is t +
j−2∑

m=2

p(uim , uim+1) − d. Hence,

τ.db f (ui1 , ui2 , . . . , uik , t)

= max
d∈D

{
τ.rb f

(
ui1 , ui2 , . . . , uik , t+

j−2∑

m=2

p(uim , uim+1)−d
)
−

∑

j∈S(d)

e(u j )+e(uik )
}

(27)

We now prove the linear periodicity of the dbf function for digraph tasks with
arbitrary deadlines.

Theorem 18 The dbf function for a digraph task τ with arbitrary deadlines is almost
linear periodic.

Proof As in Eq. (27), τ.db f (ui1 , ui2 , . . . , uik , t) can be computed as the maximum
of a finite number of terms, each corresponding to a transformation (by moving along
the two axes) of a periodic dbf function τ.rb f (ui1 , ui2 , . . . , uik , t). By Lemma 17,
τ.db f (t) is almost linear periodic. ��

Example 13 For the digraph task in Fig. 2, suppose the deadline for vertex v2 is now
3, thus lmax = 2 and k = 3. Therefore, it is necessary to consider two ending vertices
and a three-dimensional array. We consider τ.db f (v1, v2, v3, t) as an example. In this
case, D = {3, 1 + 1} = {3, 2}, and S(2) = {v2}, S(3) = ∅. By Eq. (27),
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τ.db f (v1, v2, v3, t)

= max
{
τ.rb f (v1, v2, v3, t − 3) + e(v3), τ.rb f (v1, v2, v3, t − 2) − e(v2) + e(v3)

}

= max
{
τ.rb f (v1, v2, v3, t − 3) + 0.1, τ.rb f (v1, v2, v3, t − 2) − 0.1

}

8 Experimental results

In this section, we evaluate the improvements on the efficiency of schedulability analy-
sis compared to the state-of-the-art Stigge et al. (2011). We generate applications con-
sisting of random sets with n = 5 to 40 tasks. Each task is a random graph with 1–15
nodes. For each n, 1,000 sets are generated and then examined for schedulability. The
number of outgoing edges from a node is randomly distributed as: 40 % of the node
has one outgoing edge, 4 % with two, 10 % with three, and 10 % with four. These out-
going edges are randomly connected to any other node (including the source itself).
The average (in- and out-) degree of the nodes is 3.8, and 77.4 % of the task graphs are
strongly connected. The base period of each task is generated by the product of one to
three factors, each randomly drawn from the harmonic sets (2, 4), (6, 12), (5, 10). The
inter-release time is scaled by a factor randomly extracted from the set {1, 2, 4, 5, 10}.
The deadline of a node is the minimum inter-release time among those of its out-going
edges, thereby enforcing the frame separation property. The execution times of the
task are selected such that its utilization is uniformly distributed. For comparison, we
assume the system is scheduled using EDF, the only policy considered in the previous
analysis Stigge et al. (2011).

The schedulability analysis is performed in three sequential steps:

1. calculation of the linear periodicity parameters, which is only necessary for our
algorithm;

2. calculation of the dbf function within t f ;
3. check of schedulability conditions in (2) for t < t f in increasing order. If at any

point t , (2) is violated, then the system is deemed as unschedulable. Otherwise, it
is schedulable.

We compare the performance of our algorithms, applied to the original digraph
tasks, with the analysis in Stigge et al. (2011). Figure 8 shows the improvement for
systems with 20 tasks on t f , the runtime for calculating the dbf function, and the total
runtime. It also plots the percentage of strongly connected digraph tasks with r < t f

where t f is the improved bound computed in Eq. (26), i.e., the tasks for which we
explore the linear periodicity to calculate the dbf function.

As shown in Fig. 8, the computed t f is 3 times smaller for all utilizations (50–99 %).
The speedup on the total runtime and the portion for the calculation of dbf function is a
factor of around 1.8 at 60 % utilization and then increases even further, leveraging the
improvements in the computed t f value. For a very high (99 %) utilization, nearly 97 %
of the strongly connected digraph tasks have a linear defect smaller than t f .

Figure 9 plots the improvement on the total runtime versus n, the number of tasks in
the system. The speedup is almost independent from n, since t f is uniformly reduced
about 3 times for all tasks, and the linear periodicity of rbf and dbf only depends on
the graph structure.
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Fig. 8 The improvement compared to the analysis in Stigge et al. (2011) and the percentage of tasks with
r < t f (number of tasks n = 20)
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Fig. 9 The runtime improvement versus the number of tasks in the system

9 Conclusion

In this paper, for the first time, we demonstrate the linear periodicity of non-cyclic task
models. We leverage results from max-plus algebra, extend the concept of periodicity
of execution requests to task models without cyclic recurrent behavior, including the
digraph task model and its extension. This essentially makes the asymptotic complexity
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of calculating rbf and dbf functions independent from the time interval t . We provide
polynomial-time algorithms for the computation of the linear periodicity parameters
for strongly connected graphs. Experimental results demonstrate that such a property
can be used to improve the efficiency of schedulability analysis for real-time systems
captured by these task models.

The significance of our paper are multifold. It introduces max-plus algebra, a poten-
tially useful analysis tool for real-time systems. Our contribution can possibly lead to
more efficient analysis for other task models. It also opens the possibility of using non-
recurrent task models to represent application structures within the SymTA/S Henia et
al. (2005) and MPA Wandeler and Thiele (2006) schedulability analysis frameworks.
Besides providing a comparison of the algorithms to compute the linear periodicity
parameters, the future work also includes extending our results to other task models
with parallelism.
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