
Assigning Time Budgets to Component Functions in the
Design of Time-Critical Automotive Systems

Ernest Wozniak
CEA LIST, France and McGill

University, Canada
ernest.wozniak@cea.fr

Marco Di Natale
Scuola Superiore Sant’Anna,

Italy
marco@sssup.it

Haibo Zeng
McGill University, Canada
haibo.zeng@mcgill.ca

Chokri Mraidha
CEA LIST, France

chokri.mraidha@cea.fr

Sara Tucci-Piergiovanni
CEA LIST, France

sara.tucci@cea.fr

Sebastien Gerard
CEA LIST, France

sebastien.gerard@cea.fr

ABSTRACT
The adoption of AUTOSAR and Model Driven Engineering
(MDE) for the design of automotive software architectures
allows an early analysis of system properties and the auto-
matic synthesis of architecture and software implementation.
To select and configure the architecture with respect to tim-
ing constraints, knowledge about the worst case execution
times (WCET) of functions is required. An accurate eval-
uation of the WCET is only possible when reusing legacy
functionality or very late in the development and procure-
ment process. To drive the integration of SW components
belonging to systems with timing constraints, automotive
methodologies propose to assign WCET budgets to func-
tions. This paper presents two solutions to assign budgets,
while considering at the same time the problem of SW/HW
synthesis. The first solution is a one-step algorithm. The
second is an iterative improvement procedure with a staged
approach that scales better to very large size systems. Both
methods are evaluated on industrial systems to study their
effectiveness and scalability.

Keywords
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1. INTRODUCTION
Vehicles are today very complex high-technology products

with an increasing number of software features. This evo-
lution is not matched by quality and speed improvements
in the software development processes. The AUTOSAR [1]
automotive standard has been defined to improve the design
and integration of automotive SW components and the au-
tomatic generation of architecture features. The AUTOSAR
methodology [3] makes use of model-driven engineering prin-
ciples (MDE), i.e. the use of models as basic building blocks
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for software and hardware description in a top-down pro-
cess, in which the top-most level consists of the specification
of a platform-independent software architecture (application
components and their connections) and a separate hardware
model (defining the network of nodes and buses). In a refine-
ment process, the functional components are mapped to the
hardware nodes, generating the node configuration and the
definition of the OS tasks. The result of the mapping is the
application deployment, i.e., a set of communicating tasks
running on the nodes and communicating through messages
sent on buses.

The AUTOSAR methodology is defined according to the
typical automotive supply chain process. The integrator (car
maker) has control over the functional architecture design at
the system-level, and selects the execution platform, includ-
ing the (distributed) HW architecture and the basic SW
(RTOS, middleware, communication stack, drivers). The
integrator defines the SW components that are needed for
the implementation of the functionality and sends the AU-
TOSAR specifications of their interfaces and behaviors to
the suppliers. Starting from version 4.0, timing constraints
become part of the AUTOSAR standard [2]. This requires
the integrator to validate the correctness of the architecture
solution with respect to time constraints (end-to-end dead-
lines) and define the (partitioned) timing constraints that
apply to the component specifications for the suppliers.

The validation of timing properties during the develop-
ment is a continuous process. Since refinements are top-
down, deadlines can only be validated under assumptions
abstracting the lower-level details, such as the worst-case ex-
ecution times (WCETs) of functions. In AUTOSAR, func-
tions are called runnables and represent the atomic exe-
cutable entities defining the internal behavior of compo-
nents. An application deployment is valid if and only if
the set of tasks that execute the runnables is schedulable.
Unless the implementation of runnables is re-used from pre-
vious systems, precise knowledge of WCETs of runnables is
not available before code implementation in the design pro-
cess. To define a system architecture supporting functions
with time constraints and provide the specification of its
components to the suppliers, automotive developers and do-
main experts propose a time budgeting activity as part
of the development methodology. The system integrator
specifies and assigns time budgets. These time budgets
are constraints on worst-case execution time that must be
respected by the suppliers delivering the component imple-



mentation [4]. If all the delivered components fulfill their
local constraints, the end-to-end deadlines are satisfied. In
the meantime, based on the budget assumptions, the sys-
tem integrator can synthesize and optimize an architecture
configuration.

1.1 Related Work
The problem of defining time budgets for components and

runnables is affine to the issue of end-to-end deadline par-
titioning. Several research works have investigated the op-
tion of partitioning the end-to-end deadline into time win-
dows or intermediate deadlines, upon the assumption that
the interaction model allows the composition of the local
response times to compute end-to-end response times. A
graph-based algorithm for deadline partitioning to maximize
the minimum slack is presented in [10], and an approach for
periodic processes in [14]. More recently, deadline partition-
ing schemes for transaction chains scheduled under EDF or
fixed priority can be found in [24, 16, 17]. Other efforts have
been specifically tailored to automotive architectures. The
TIMMO-2-USE project [25] discusses the need for time bud-
geting in the context of the process stages dedicated to the
refinement of the system architecture. The project deliver-
ables discuss a set of guidelines for budgeting the worst-case
response times (WCRTs), based on the designer experience
and do not provide a specific algorithm. Scheickl et al. [23]
considers a similar process in which the definition of the
WCRT budgets is based on the experience of the designer.
Similarly, WCRTs are budgeted in [13], with a discussion
on how different activation patterns (event- or time-driven)
influence the specification of time budgets. Nevertheless, as
in the previous two works, the approach relies on the expe-
rience of the designer to specify the time budget values.

The methodology of partitioning deadlines on response
times is more suitable to the concept of federated automo-
tive architectures [9], when suppliers provide hardware units
or ECUs with operating systems and tasks, or at the very
least when the responsibility of the task design is delegated
to the suppliers. In the new concept of integrated archi-
tecture, enabled by AUTOSAR, the definition of the tasks
and the design of the hardware architecture pertains to the
integrator. Therefore, budgeting should be performed at the
level of the WCET of the runnables.

The concept of time budgeting in the integration of au-
tomotive systems is among the research topics of the ALL
TIMES project [4]. The approach proposed in the project
deliverables takes as an input an already deployed archi-
tecture, i.e. the software components are already assigned
to tasks and mapped onto the hardware platform. Since
WCETs are not known, the deployment choices (assumed
as predetermined and not subject to optimization) could
very well be suboptimal and affect the final result (the as-
signed budgets). In [12] the budgeting problem is formulated
and solved by applying Parametric Linear Temporal Logic
(PLTL). A method is presented to automatically decompose
end-to-end deadlines into a set of time budgets. The authors
automatically compute a set of linear constraints for which
they finally find a valuation (using a solver) that guarantees
all deadlines and maximizes the values of the time budgets.
The proposed solution also integrates the consideration of
non-functional properties related to the ECU utilization [11].
As in all previous works, the authors assume that the de-
ployment, i.e. the integration of the software architecture

with the hardware platform and the design of the task, is al-
ready known. In addition, the deployment choices could not
have been done in a qualitative way as WCETs for certain
runnables were missing.

1.2 Our Contributions
In this paper we incorporate the problem of budgeting

worst-case execution times in the design optimization. All
the other works budget the worst case response time which
does not fit well to the idea of the integrated architecture
as supported by the AUTOSAR. Different from previous
work [4] on WCET budgeting, we assume that the function
deployment is not known in advance. Accordingly our ob-
jective is to jointly find the deployment of functions and the
optimal assignment of time budgets given a functional (AU-
TOSAR) model with end-to-end timing constraints and an
execution (hardware+OS) platform. Since time budgeting
and deployment are both NP-hard problems, our solutions
consists of two heuristic approaches, based on evolutionary
algorithms. The first provides a holistic one-step solution
to the problem, whereas the second divides it into two sub-
problems solved one after the other. On the other hand,
as shown in the experiments, due to the scalability issues,
it is impractical to employ the time budgeting algorithm as
specified in [4] with our algorithm exploring the deployment.

The paper is organized as follows: section 2 formalizes the
model and problem considered by the approach; section 3 de-
tails the proposed technique for time budgeting and section
4 presents its improvement in a form of staged approach; sec-
tion 5 gives experimental evaluation results; finally, section
6 sketches some future work and concludes the paper.

2. SYSTEM MODEL
This section starts by introducing basic definitions and

assumptions on the system model. Then, the time budgeting
problem is formalized together with constraints on timing
and deployment.

2.1 System Model
The input system model matches the modeling abstrac-

tions in AUTOSAR. The AUTOSAR functional model
consists of a set of components. Each component has a set
of runnables defining its functional behavior and cooperating
by exchanging data and synchronization signals over ports.
Of the possible interaction models allowed by AUTOSAR,
we focus on a model of synchronous transactions, in which
runnables exchange activation signals in a linear sequence.
In addition, even if they are extremely important in the sup-
ply process and as an abstraction mechanism, in the context
of our analysis, components are only containers of runnables
and are therefore omitted.

We assume the runnable interaction model is represented
as a system-level graph. Ge = {Ve, Ee}, in which Ve =
{r1, r2, ..., rn} is the set of vertices representing the runnables
and Ee = {s1, s2, ..., sm} is the set of edges or links be-
tween them representing data signals. The length of a sig-
nal si is denoted as lsi (in number of bits). The set of
transactions is ξ = {Γ1,Γ2, ...,Γl}. Each transaction is
an ordered interleaving sequence of runnables and signals
Γi = [ri1 , si1 , ri2 , si2 , ..., sik−1 , rik ] (e.g. from the runnable
reading sensor data to the runnable communicating with
the actuator). src(Γi) = ri1 is the transaction source, and
snk(Γi) = rik its sink. The function Γ(ri) returns the trans-



action to which ri belongs. We assume that transactions are
linear and the activation pattern is event-triggered, i.e. each
transaction is triggered by a periodic event of period PΓi .
This event is then propagated by the runnables, starting
from the src(Γi) through their communication links (each
connection carries an activation event together with the as-
sociated data signal). The response time of the transaction
Γi is RΓi and its deadline DΓi . Figure 1 shows an example
model (based on the cruise control case study from [5]).
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Figure 1: An example of linear transactions for a Cruise
Control [5]

The execution platform is represented by an undirected
graph Gh = {Vh, Eh}. Nodes are computing resources or
(ECUs) Vh = {e1, e2, ..., es} and edges represent the com-
munication links (buses) between them Eh = {b1, b2, ..., bp}.
The function E(bi) returns the set of ECUs connected to bi.

Runnables are partitioned in two sets. RW is the set of
legacy runnables that are simply reused, and for which an
estimate of the WCETs on the available ECUs is known.
RB is the set of runnables under development, for which a
budget assignment must be provided.

The WCET of a generic runnable ri belonging to RW is
represented as a vector ~Cri = (Cri,1, Cri,2, ..., Cri,n), where
Cri,k is the WCET of ri when executed on ek. The (ex-
ecution) time budget of a runnable ri belonging to RB is
denoted as tbri .

In the deployed architecture, represented with Ψ, the
code of each runnable entity executes in a context of an
OS task. T = {τ1, τ2, ..., τt} is the set of tasks. Similarly,
the signal needs to be transmitted in one of the messages
M = {m1,m2, ...,mu}, if the communication is between
runnables mapped to different ECUs; otherwise, it is consid-
ered as local communication. The function τ(ri) returns the
task on which runnable ri is partitioned and m(si) the mes-
sage transmitting the signal si. The function e(ri) returns
the ECU on which ri is allocated whereas b(si) is the bus
through which si is sent. Tasks and messages are assumed
to be scheduled according to a fixed-priority mechanism or
transmitted in the order of their priority, respectively. The
automotive standards, e.g. AUTOSAR OS and Controller
Area Network (CAN), are significant examples of such poli-
cies. The priority of a task τi (message mi) is denoted as
πi (unless otherwise noted, it will also be assumed that they
are indexed according to their priority, where a lower in-
dex means a higher priority). Considering the possible bit-
stuffing of the CAN protocol, the worst-case transmission
time (WCTT) of a message mi is calculated as [8]

Cmi = (g + 8lmi + 13 +

⌊
g + 8lmi − 1

4

⌋
)τbit (1)

where g is the number of protocol bits subject to bit-stuffing

(g = 34 for standard format with 11-bit identifiers, or g = 54
for extended format with 29-bit identifiers), lmi is the data
length of the message (bytes unit), and τbit is the transmis-
sion time for a single bit. The data length of message mi

is the least integer number of bytes between 0 and 8 that is
greater than the sum of the data signals packed in mi,

lmi =



∑
sj :m(sj)=mi

lsi

8

 (2)

Figure 2 shows one possible partitioning of runnables into
tasks and assignment of tasks onto ECUs for the functional
model of Figure 1. In the figure, some signals exchanged
between runnables are mapped onto messages (e.g. the one
between “Speed setpoint” and “Application condition”).
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Figure 2: Example of a deployment configuration for a
Cruise Control

2.2 Problem Formulation
The problem tackled in this work consists of four sub-

problems. The first is the (1) placement of runnables on
execution nodes and signals on buses (assigning values to
e(i) and b(i)). The second sub-problem is the (2) parti-
tioning , i.e. the definition of the operating system tasks
(set T ) and messages (set M) and the mapping function
that assigns runnables and signals to them. The next sub-
problem is the (3) scheduling or assignment of priorities
to tasks and messages. Lastly, the fourth sub-problem is the
(4) time budgeting , which concerns the definition of the
time budget values, i.e. finding tbri for each ri ∈ RB.

These four problems have significant cross-dependencies.
Ideally, they should be solved as an integral problem, but
this could be very challenging in terms of the computational
effort that is required. Alternatively, the problem can be
solved in stages, with the possibility of early choices re-
stricting the set of available decisions for later stages. In
our work, we try to lessen this problem by wrapping the
staged solution in an iteration loop, in which the first stage
is performed several times trying to improve on the results
of the previous cycle.

In the remainder of the section, we define the set of con-
straints and the optimization objective.

2.3 Deployment Constraints
In order for the placement, partitioning and scheduling

to be correct several constraints need to be respected to
guarantee the functional correctness of the deployed archi-
tecture. We list them according to their purpose without a
formal description (which is straightforward for all of them).
Placement Constraints:



• resources utilization - defining a maximum capacity
utilization for all execution nodes and buses;

• each runnable/signal can be placed only on one ECU/bus;

• fixed placement - the placement of selected runnables
is constrained to a subset of all ECUs (e.g. a runnable
responsible for collecting sensor data must be placed
only on ECUs linked to that sensor);

• software components constraint - all the runnables of
the same atomic software component need to be placed
on the same ECU;

• each global signal (i.e. communicated between two
runnables mapped on different ECUs) must be trans-
mitted over a bus connecting the ECUs where its sender
and receiver runnables/tasks are allocated.

Partitioning Constraints:

• harmonic rate - two runnables/signals with non-harmonic
periods cannot be partitioned in the same task/message;

• functional partitioning - each runnable must be parti-
tioned exactly in one task. Likewise, each global signal
must be partitioned in one message.

Scheduling Constraints:

• local order - tasks/messages allocated on the same
ECU/bus must be assigned with unique priorities;

• runnables order - the priorities assigned to tasks must
be consistent with the order of execution of the runnables
partitioned on them. That is, if runnables ri and rj are
on the same ECU and runnable ri precedes runnable
rj then ri should be partitioned in a task with priority
higher than that of the task executing rj .

2.4 Timing Constraints
All transactions must complete within their end-to-end

deadlines

∀Γl RΓl ≤ DΓl (3)

The verification of this constraint requires the evaluation
of the end-to-end response time RΓl of each transaction
Γl, which equals the WCRT of its sink runnable ri, i.e.
RΓl = Rri . We use the response time analysis with jit-
ter propagation given in [26] and reformulate it to consider
runnables (see Equations (4)-(5)), where Jri is the release

jitter of the runnable, W
(q)
ri is the completion time of the qth

instance of runnable ri. The function hp(ri) returns the in-
dexes of all the runnables allocated on the same ECU with
a priority higher than that of ri. The completion time is
computed for q = 1, 2, ... until the busy period ends, that is,
an instance completes at or before the activation of the next
instance.

W (q)
ri = q(Cri +

∑
rj :τ(ri)=τ(rj)

Crj ) +
∑

rj∈hp(ri)

⌈
W

(q)
ri + Jri
Prj

⌉
Crj (4)

RΓl = Rri = max
q=1,2,...

[W q
ri − (q − 1)Pri + Jri ] (5)

The jitter of runnable ri inherits the response time of the
signal si−1 sent by its direct predecessor in the transaction

Jri = Rsi−1 (6)

If a signal sk is local, its response time is the same as its
sender runnable rk−1

Rsk = Rrk−1 (7)

Otherwise, the WCRT of sk is computed as the response
time of the message mp = m(sk) carrying this signal

Rsk = Rmp (8)

To calculate the response time of message mp, a set of
formulae similar to (4)-(5) is used, except for 1) an addi-
tional term Bmp that represents the blocking time caused
by the impossibility of preempting lower priority messages
(as in a CAN bus); 2) a reduction in the queuing delay
Wmp since mp cannot be preempted. We use the approxi-
mated sufficient formulation provided in [8], in which Bmp is
the longest transmission time (largest WCTT) of any mes-
sage that shares the same communication bus (or simply the

longest 64-bit message in the CAN bus). W
(q)
mp is the start

time of the q-th instance of message mp.

W (q)
mp

= Bmp + (q − 1)Cmp +
∑

mj∈hp(mp)

⌈
W

(q)
mp + Jmp

Pmj

⌉
Cmj

(9)

Rmp = max
q=1,2,...

[W q
mp
− (q − 1)Pmp + Jmp + Cmp ] (10)

The queuing jitter of mp is the largest among all the jitters
of signals packed in mp. The jitter Jsk of a signal sk equals
the response time of a runnable rk−1 that sends the signal
sk, i.e. Jsk = Rrk−1 .

Jmp = max
sk:m(sk)=mp

Jsk (11)

2.5 Optimization Objective
We consider an optimization metric expressing the relax-

ation of time budgets within the end-to-end deadline con-
straints. The function ftb(TBA) in (12) requires as an in-
put the set TBA of runnables with the specific valuation for
their time budgets. It is defined as the minimum time bud-
get value for all runnables in RB normalized with respect
to the target range (tbmri , tb

M
ri ). The optimization objective

is to maximize ftb(TBA), or equivalently, to maximize the
minimum normalized time budget among runnables in RB.

ftb(TBA) = min
rk∈RB

tbrk − tb
m
rk

tbMrk − tbmrk
(12)

The designer has the option to provide a minimum value
for tbri as tbmri (its intuitive meaning is a preliminary evalu-
ation of the minimum required execution time for the func-
tionality, based on the experience of the designer). If it is not
specified, then tbmri = 0. tbMri is the maximum time budget
for the runnable ri. If not set by the designer, it is assigned
with the period of the transaction to which ri belongs.

Providing for a time budget that allows for additional
slack time mitigates the design risks associated with uncer-
tainties about the execution time of the runnable implemen-
tation delivered by the supplier. The authors of [22] propose
a method to derive a certainty of obtaining a feasible sys-
tem configuration under the assumption of uncertain design
parameters such as WCET of new runnables. They define
an uncertainty function that enables the system integrator
to estimate the risk of obtaining an infeasible design and
consider it in the definition of the contract with a supplier.



Indeed, relaxation of budget values lies in the interest of
the [4]. [4] employs the binary sensitivity analysis [15] which
searches for an upper bound of the runnable execution time
so that the system remains schedulable. The proposed al-
gorithm is designed to consider the relaxation of only one
runnable, which is why the metric of interest does not need
to be normalized. In our case, relaxation should affect all the
runnables in RB. [21] accounts for more than one runnable,
by simply returning a schedulability region of all the possi-
ble combinations of the time budgets for runnables in RB.
Our proposed metric in (12) instead targets at only the best
combination, i.e. one that equally distributes the budget
constraints among different suppliers delivering implemen-
tation of runnables from RB.

3. A ONE-STEP SOLUTION
To solve the problem of time budgeting defined in the

previous section, we first consider a one-step approach and
a solution based on a Genetic Algorithm (GA) and MILP
(Mixed Integer Linear Programming). A genetic algorithm
is used to find solutions for the deployment problem [18],
which includes placement, partitioning, and scheduling (the
first three sub-problems defined in section 2.2). The GA im-
plementation for this particular problem requires the speci-
fication of the encoding and evolution operators along with
the fitness function, and stop condition. These issues are
addressed in sections 3.1–3.4.

For a given deployment solution, the time budgets of runnables
(the fourth sub-problem in section 2.2) are assigned using
Algorithm 1, which has as inputs the maximum value of
runnable time budgets. The maximum value of time bud-
gets is formulated and computed by a MILP framework.
These algorithms are described in sections 3.5 and 3.6.

3.1 Encoding
Each solution to the problem is encoded as a chromo-

some chj , representing a specific deployment configuration.
This work uses the value encoding, in which each gene gi
(subset of bits) in chj contains a specific value. A gene re-
lates to either a runnable entity or a data signal. For a
runnable gene, gi = chj(rk) stores the value Vrk (gi) repre-
senting the allocation and partitioning of rk, that is, the in-
dex of the ECU on which it is allocated and the index of the
task (also representing its priority) in which it is partitioned.
NRmax denotes the maximum number of runnables that can
be hosted by any ECU without violating the utilization con-
straints (WCETs or tbmri and periods of runnables are used
for computing NRmax). If runnable ri is allocated to ECU
em and partitioned into the task τl, its encoding Vrk (gi) is
computed according to the following Equation (13).

Vrk (gi) = (m− 1)NRmax + (l − 1) (13)

For a data signal, Vsk (gi) depends on whether it is a global
or local data signal. The gene for a global signal holds in-
formation about the bus and the message in which it is par-
titioned. For a local signal sk the value will not have any
meaning. The gene value for a data signal is computed in a
similar way (14). NSmax is the maximum number of signals
that can be transmitted over any BUS without violating the
utilization constraints (WCTTs and periods of signals are
used to compute NSmax).

Vsk (gi) = (m− 1)NSmax + (l − 1) (14)

3.2 Evolution
The evolution of a population consists in the generation of

new chromosomes (new solutions) using the crossover and
mutation mechanisms, followed by the selection of chromo-
somes with the highest fitness values. The crossover oper-
ator is very important for the quality of the GA solution,
which combines information from two parent chromosomes
to generate new ones. In this work, we use the OX3 crossover
operator [7] with a tournament selector [19] (with size equal
to 5). The tournament selector with size 5 will first create
two sets with 5 randomly chosen chromosomes. The most fit
chromosome from each set will be taken and these two chro-
mosomes will be used as parents for the crossover. Then the
OX3 operator will randomly select the “crossover points”,
i.e. indexes of genes that will constitute the boundaries of
the crossover operation. The values between these points
are copied from the first/second parent to the second/first
child in the same absolute position. The remaining values
are copied from the first/second parent to the first/second
child. The mutation operator randomly chooses a gene in
a chromosome to change its value to a new value randomly
selected among those that do not violate the constraints of
a correct deployment (see section 2.3).

3.3 Fitness Function
The fitness function defines how much the solution op-

timizes the time budgeting optimization criterion. Chro-
mosomes are ranked according to the result of the metric
function. The higher the value, the higher the probabil-
ity that the chromosome will be chosen as a parent for a
crossover. The fitness function requires as an input the de-
ployment specification, i.e. Ψ (encoded in the chromosome)
and the time budgets assignment TBA. The time budgets
assignment is obtained by using Algorithm 1.

3.4 Stop Condition
The stop condition determines when the GA will termi-

nate. In our case, the algorithm stops when n iterations of
the GA internal loop deliver a maximum fit result with the
same fitness value (the best solution does not improve in n
rounds). The value of n used in our experiments is 30.

3.5 Time Budgeting Algorithm
Within the GA optimization cycle, Algorithm 1 is exe-

cuted for each chromosome to compute the corresponding
optimum set of time budgets based on which value for the
metric function ftb(TBA) can be calculated.

The time budgeting algorithm has four inputs: Ψ, RB, ε
and MRB . ε is the maximum error on the computed budgets
that controls the terminating condition (line 15). The lower
is the value of ε, the more accurate are the time budgets, and
the larger is the runtime of the algorithm. MRB is a set of
upper bounds on the runnable budgets computed for a spe-
cific deployment Ψ, where MRB(i) is the maximum value
for ri. The values in MRB are computed before running
Algorithm 1, based on the end-to-end deadlines, utilization
bounds, and the constraints tbmri and tbMri . The formulation
that is used to compute the bounds MRB is discussed af-
ter the description of the time budgeting algorithm (section
3.6).

Algorithm 1 tries to relax the time budgets for all the
runnables in RB according to the metric (12) using a bi-
nary search algorithm (as in the sensitivity analysis test in



Algorithm 1 Time Budgeting Algorithm

Require: Ψ, RB, ε, MRB

1: for all rj ∈ RB do
2: Utbrj = MRB(j)

3: Ltbrj = tbmrj
4: end for
5: if isSchedulable(Ψ,MRB) then
6: for all rj ∈ RB do
7: TBA.set(rj ,MRB(j))
8: end for
9: return TBA

10: else
11: for all rj ∈ RB do
12: tbrj = (Utbrj − Ltbrj )/2

13: end for
14: end if
15: while ∃ri ∈ RB Utbrj − Ltbrj ≥ ε do

16: for all rj ∈ RB do
17: TBA.set(rj , tbrj )

18: end for
19: if isSchedulable(Ψ, TBA) then
20: for rj ∈ RB do Ltbrj = tbrj
21: else
22: for rj ∈ RB do Utbrj = tbrj
23: end if
24: tbrj = Utbrj − (Utbrj − Ltbrj )/2

25: end while
26: return TBA

[15]). The upper bound values are tried first, giving the
maximum possible value of ftb(TBA) (lines 6-8). If the cor-
responding configuration is schedulable (function isSchedu-
lable() validates it by running schedulability analysis test),
it is returned as the optimum value (line 9). If not, then the
algorithm assigns to each rj in RB a budget value that is
the medium value between the minimum tbmrj and the upper

bound MRB(i) (lines 11-13).
From this point on, Algorithm 1 continues by iteratively

reducing the range of the time budgets, defined as [Ltbrj , Utbrj ]
for runnable rj . The algorithm works as a binary search. In
each iteration, if the current budget values, at the midpoint
between the the upper and lower bounds result in a schedu-
lable solution, the upper bound Utbrj remains the same, and
the lower bound Ltbrj is updated to be midpoint (line 20),
and the range is reduced to be half of the size. If the current
settings result in a unschedulable solution, it means that the
time budget value is too large, and the next iteration will
search wiithin the lower half of the range (line 22).

In [15], budget values are computed for each runnable sep-
arately, in a set of recurrent calls, exploring all the possible
options for the relaxation of each individual runnable bud-
get, at the price of higher complexity. However, for the
metric (12) this is not required. Given any optimal solu-
tion according to (12), there exists another solution with
the same value of (12) that is computed by our bisection
algorithm, performing an equal relaxation of all time bud-
gets (i.e. proportionally to tbmri and tbMri ). Of course, the
solution computed by Algorithm 1 can have smaller budget
values for those runnables that are not affecting the value of
(12).

3.6 Calculating MRB using MILP
Finally, the upper bounds MRB that are required to re-

duce the initial interval of possible budget values in Algo-
rithm 1, are computed using an MILP (Mixed Integer Linear
Programming) formulation. The values in MRB are (op-
timistic) upper bounds and do not guarantee the system

schedulability as the constraints used for their computation
are a linear approximation representing only a necessary
schedulability condition that does not consider interference.
However, they are useful in constraining the search space for
the bisection algorithm.

In the MILP formulation, the problem is represented with
parameters, decision variables, and constraints over the pa-
rameters and decision variables. Moreover, an objective
function is defined to characterize the optimal solution.
Variables: the only set of variables are MRB(ri) where
ri ∈ RB.
Objective function: the objective is to maximize the met-
ric function in Equation (12), with MRB(ri) in place of tbri .
Constraints: three types of constraints are considered:

• Utilization constraints - a utilization bound applies to
each ECU (uei). Unless specified, the default limit
value is 1.

∀ei∈E ,
∑

rj∈RB∧e(rj)=ei

MRB(rj)

PΓ(rj)

≤ uei −
∑

rj∈RW∧e(rj)=ei

Crj ,ei
PΓ(rj)

(15)

• Computation time constraints - are a linear under-
approximation of the deadline constraints, ensuring
that the sum of the execution times and budgets on
each chain is lower than the deadline. These con-
straints do not consider interference and therefore do
not guarantee end-to-end deadlines.

∀Γi∈ξ,
∑

rj∈RB∧Γ(rj)=Γi

MRB(rj) ≤ DΓi −
∑

rj∈RW∧Γ(rj)=Γi

Crj ,ei

(16)

• Minimum and maximum value constraints

∀ri∈RB tbmri ≤MRB(ri) ≤ tbMri (17)

4. STAGED APPROACH
The one-step holistic approach is simple and effective but

does not scale to very large-size problems. Hence, an al-
ternate solution was developed by dividing the four sub-
problems (see section 2.2) in two stages. The first stage
solves the first three sub-problems on deployment (including
placement, partitioning and scheduling). The second stage
tries to optimize the time budgeting only. The two stages
are computed sequentially inside a loop until there is no fur-
ther improvement as shown in Figure 3. The computation
time savings derive from the execution of Algorithm 1 once
for each iteration instead of once for each chromosome.

The staged algorithm implements an iterative improve-
ment strategy that is in essence a local search. Starting
from an initial solution, the current best solution is ten-
tatively improved in the iterations of an inner cycle that
includes the two optimization stages. If at any iteration,
the two stages fail to produce a better result, the algorithm
terminates and returns the best solution found until that
point. The algorithm starts with the initialization of the
variables storing the population of chromosomes (λ), and
the current best metric values (the first two blocks from
Figure 3). The second stage (second block in the figure)
initializes the values of time budgets with their minimum
values, i.e. ∀ri∈RB , tbri = tbmri (section 5.4). The rationale
for this choice is that we do not want the algorithm (a local



search) to end prematurely and we try to ease schedulabil-
ity (and provide for maximum allocation freedom) as much
as possible in the first step. In the experiments section,
we discuss the impact of different values for the initial time
budgets.

Next, the deployment optimization is performed consid-
ering the current values of the time budgets (the first time
the loop is entered these are the initial budgets). During the
deployment optimization stage, budgets are fixed, the met-
ric function ftb(TBA) has a constant value, and cannot be
used to evaluate the quality and drive the selection of the
deployment solutions. Hence, the fitness function consid-
ered in this step is based on the end-to-end response times.
The function fslack(Ψ, TBA), defined in Equation (18), ex-
presses the goal of maximizing the minimum slack time (the
difference between the deadline and response time) of each
transaction.

fslack(Ψ, TBA) = min
Γi∈ξ

[DΓi −RΓi ] (18)

Maximizing the minimum slack means maximizing the
minimum distance between the response time and deadline
of any transaction, which is an indication of an opportu-
nity for having larger budgets and hence a better deploy-
ment. The function fslack(Ψ, TBA) is computed based on
the schedulability analysis formulas for computing the re-
sponse times of runnables and messages (see section 2.4).
In section 5, we discuss the results obtained when trying
different metric functions at this stage.

At each iteration of the main loop, a new deployment
solution is computed and then evaluated. If the value of
fslack(Ψ, TBA) does not improve on the current best solu-
tion, i.e., the minimum slack is lower, the loop terminates
and the best solution computed up to this point is returned.
Otherwise, Algorithm 1 is executed to compute a new op-
timum set of time budgets (for the current deployment).
Then, the fitness value ftb(TBA) is computed for the new
set of time budgets and the new fitness value is compared
with the current best. If the new deployment/budgets im-
prove on the current best solution, they are considered for
the next iteration, and the new budget drive the next de-
ployment optimization step. Otherwise, the algorithm ter-
minates and returns the best current deployment and time
budget solution. The procedure is summarized in Figure 3.

Besides the different optimization metric used during the
deployment, another significant difference with the one-step
deployment algorithm described in section 3 is the stop con-
dition. The loop terminates not only if no improvement is
found after n internal GA iterations, but also when the fit-
ness of the best chromosome from the new population is not
better (lower or equal) than the current best fitness value
(currentSlackF itness ≤ globalSlackF itness). Finally, the
set λ defines the initial population for the GA algorithm.
At each iteration round, λ preserves the population selected
in the previous run of the deployment algorithm. When the
deployment is run for the first time and the set λ is empty,
the deployment procedure initializes λ with a random initial
set of chromosomes which is consistent with the constraints
that apply to the system configuration.

5. EXPERIMENTAL EVALUATION
To evaluate the algorithms, a series of experiments have

been performed on a collection of automotive case studies.

TBA = Initialize Time Budgets

( , ) = Perform Deployment( , currentSlackFitness)
currentSlackFitness = f ( , TBA)

currentSlackFitness 

globalSlackFitness 

M = Calculate M with MILP
TBA = TimeBudgetingAlgorithm

currentTBFitness = f (TBA)
globalSlackFitness = f ( , TBA)

globalTBFitness = 0
currentTBFitness = 0
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Figure 3: Iterative improvement loop for the staged ap-
proach

First, a set of case studies is used to compare the one-step
approach with the staged approach in terms of the quality
of the results and the required execution time. Next, we
discuss the robustness of the staged approach by evaluating
the influence on the final results when replacing the met-
ric in Equation (18) with a different function. Then, we
present experiments to see if and by how much different ini-
tial assignments of time budget values affect the final result.
Finally we compare with the work which is closest to ours,
done in the AllTimes project [4]. All tests were run on a
machine with 8GB of memory and a single processor run-
ning at 2.4GHz. Also, all the tests assume the maximum
error factor ε = 0.5 and the stop condition for the GA (re-
gardless of initial population size) is that n = 30 consecutive
iterations compute the same value.

5.1 An Automotive Case Study
We first apply our technique to an automotive case study

constructed by merging two subsystems consisting of a CCS
(Cruise Control System) [5] and ABS (Anti-lock Braking
System) [20]. Figure 4 shows the input functional architec-
ture together with the hardware topology. The functional
model contains twelve runnables in four transactions with
their deadlines and trigger periods. For five runnables, i.e.,
Input acquisition, Input interpretation, Basic function, Di-
agnosis 1 and Diagnosis 2, the WCET information is not
available and time budget must be assigned (they belong
to the set RB). The other seven runnables are assumed as
reused from legacy libraries and belong to the set RW . The
hardware topology contains four ECUs, each connected to
the single CAN bus. The WCETs of the runnables in RW
are shown on Figure 4 and in Table 1. Table 1 also shows
the minimum and maximum budget values for the runnables
in RB.

The execution of the one-step optimization algorithm re-
sults in the deployment configuration shown in Figure 5.
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Figure 4: Input software and hardware architecture of com-
bined CCS and ABS sub-systems

Table 1: Results for time budgets assignments and initial
constraints

Runnable WCET tbm tbM tb τ ECU
Input acquisition - 0 40 8.73 τ1 1
Input interpretation - 0 40 8.73 τ1 1
Basic function - 0 40 8.73 τ1 1
Diagnosis 1 - 0 10 2.18 τ1 4
Diagnosis 2 - 0 10 2.18 τ2 1
Limp home 1.03 - - - τ1 4
Speed setpoint 3.5 - - - τ1 1
Application condition 3.92 - - - τ1 1
Controller 1.4 - - - τ1 2
Data processing 10 - - - τ1 3
Anti-lock 1 15 - - - τ2 2
Anti-lock 2 15 - - - τ2 4

For simplicity, the software components are omitted in the
figure. The index of a task also represents its priority (the
lower the value, the higher the priority). The task assign-
ments and the computed time budget values are displayed
together with the budgets constraints in Table 1.

5.2 One-step vs. Staged Approach
This subsection presents results of the comparison be-

tween the one-step holistic algorithm and the staged iter-
ative approach. We examine and compare the quality of the
solutions obtained with the two approaches, i.e. the final
fitness values - the maximized ftb(TBA) and the runtimes
that are required by the two algorithms.

For this purpose, the automotive case study has been ex-
tended with lower and higher complexity examples that have
been generated starting from the 50-runnable case study (in-
dex 9 in our list) presented in [6] and extended to lower and
higher sizes as described in [18]. Table 2 shows a summary of
the fourteen system configurations by growing complexity.
The table contains in the first column an index identify-
ing the test case, in the second column the total number of
runnables, in the third column the number of runnables for
which budgets must be assigned, and, finally, the number of
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Figure 5: Deployment configuration for CCS and ABS

ECUs in the hardware architecture. In all these examples,
we assume a single CAN bus connecting all ECUs. The
original automotive case study is in the fourth row, with
twelve runnables (as shown in the second column) and 5 of
them in RB. Finally, as a further assumption, each soft-
ware component has only one runnable entity. This means
that for each runnable, its placement is independent of any
other runnable’s placement, as AUTOSAR requires that all
runnables in the same component must be placed to the
same ECU [1].

Table 2: Properties of the testing input architectures

Test nb Runnables |RB| ECUs
1 5 2 2
2 6 2 2
3 10 4 4
4 12 5 4
5 16 6 6
6 20 8 8
7 32 12 9
8 40 14 9
9 50 17 9
10 60 20 9
11 70 25 10
12 80 27 12
13 90 30 16
14 100 35 18
15 200 70 36

5.2.1 Quality evaluation
Figure 6 shows the final fitness value of the best solution

obtained by the one-step approach, compared with the one of
the staged approach. The size of the initial population of the
GA considered for these tests is 10000. The fitness value of
the solutions computed by the two approaches for tests 1 to
6 is exactly the same, and also the same value was computed
for test 10. For tests 7 to 9 and 11 to 13 the staged approach
provided results slightly better than the one-step algorithm
(in detail, 0.33%, 0.34%, 3.48% and 0.54%, 0.53%, 0.66%
better, respectively). Finally, the one-step approach could
not compute the final solution for case 14 after more than 24
hours of processing time. During this time, the GA internal
loop performed 76 iterations. The best result obtained after
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this time was 8.75% worse than the final result computed
by the staged approach (after 5.86 hours). We also tested
the staged approach on a case (test 15) with 200 runnables,
70 runnables in RB and 36 ECUs. The best result (fitness
value of 0.13) was reached after 28.7 hours. The processing
time required by the one-step algorithm prevented a realistic
comparison in this case.

5.2.2 Runtime evaluation
Not only the staged approach manages to get equal or bet-

ter quality solutions than the one-step approach, but com-
putes them in a much shorter time. The graph in Figure 7
shows a comparison of the execution times required by the
two algorithms for each experimental case. The runtime of
the one-step and staged approaches increases not only with
the problem size but also with the size of the GA initial
population. Augmenting the size of the GA population is
desirable, as in many cases this leads to a better value for
the final solution. In our experiments, the final fitness value
was mostly independent from the size of the initial popu-
lation if it has more than 1,000 initial chromosomes. The
runtimes in the figures are shown for an initial population of
10,000 chromosomes. As shown by the graphs, the two algo-
rithms have an execution time that still grows exponentially
with the size of the problem. However, the staged approach
can solve problem configurations of a size comparable with
the typical problems of the industry (approximately 6 hours
for 100 runnables).

5.3 Robustness of the Staged Approach
This subsection evaluates the sensitivity of the staged ap-

proach with respect to the metric used in Equation (18) to
select placement solutions. As an alternative to maximizing
the minimum laxity metric in (18), we used a metric func-
tion (19) that minimizes the sum of the latencies of (a subset
of) the transactions (which is another indication of an op-
portunity for assigning larger budgets). Nonetheless please
note that ultimately what matters is the result of metric in
(12).

fe2e(Ψ, TBA) = |ξ| −
∑
Γl

RΓl

DΓl

(19)

As shown in Figure 8, the original metric (18) provides
better optimization results on the tests from 1 to 14, in the
average by 10.8%. The reason for this is intuitive. Metric
(19) may lead to situations, in which for some transactions

Figure 7: Runtimes of one-step and staged approach (GA
initial population = 10000)

Figure 8: Comparison of two different metrics for staged
approach

the response time is significantly reduced, whereas for others
it is close to the deadline. This last set of transactions is
a bottleneck for the relaxation of time budget values that
follows next. This is not the case for the metric (18) which
minimizes the response times with respect to the deadlines
and maximizes the minimum value (does not operate on a
sum of values).

Concerning the runtime, there is no significant difference
between the two metrics. The slight differences in runtimes
are mostly caused by the difference in the number of itera-
tions of the main loop in the staged approach. However, the
number of iterations (see Figure 9) is mostly similar and so
are the runtimes. The only exception is test 11 where the
use of metric (19) resulted in 138 iterations and a runtime
of 7.6 hours, which is 29.75% higher than the case of a slack
metric (18), but the final result is slightly better.

5.4 Influence of Initial Time Budgets
We tried additional test cases to confirm the choice of

starting the iterative improvement algorithm with an ini-
tial setting of time budgets equal to the minimum allowed
value for each runnable in RB. As previously stated, since
the algorithm is a local search and terminates when no fur-
ther improvements are possible, a selection of initial values
that prevents schedulability would likely cause a premature
termination. To verify, we tried initial budget assignments
at 1%, 2%, 3%, 5%, 10% and 20% of the range between the



Figure 9: Comparison of nb of iterations of two different
metrics for staged approach

minimum and maximum values [tbmrj , tb
M
rj ]. In all our exper-

iments, there was no sensible difference in the quality of the
final result. However, for the highest values of the initial
budgets (a 20% increase over the minimum value), the algo-
rithm ended prematurely for all cases from 7 to 10. In these
cases, the first deployment step from the iterative algorithm
was not able to find any feasible solution.

5.5 Comparison with AllTimes approach [4]
In this section we compare our approach with the work

on time budgeting coming from the AllTimes project [4].

5.5.1 Budgeting Algorithms
We studied the performance of our time budgeting algo-

rithm (algorithm 1) with respect to the algorithm used in
[4]. Authors of [4] claim that during each manual reconfig-
uration of deployment, they use the sensitivity analysis to
find the relaxation of time budget values. The sensitivity
analysis they refer to comes from [15]. This analysis is ap-
plicable if there is only one runnable in RB. The extended
version of this algorithm that can budget multiple runnables
is defined in [21]. Ultimately this is the algorithm that we
implemented. We ported it in the one-step and staged ap-
proach for deployment instead of the algorithm 1 to see if
it can be applied in the automated process of budgets and
deployment specification.

Table 3 presents the runtimes (for the properties of the
tests please refer to the Table 2), which clearly shows that
usage of algorithm 1 leads to shorter runtimes in the context
of both one-step and staged approaches. This difference is
more significant for the one-step approach because the calls
to the budgeting algorithm occur much more often. In fact,
starting from test nb 3, usage of algorithm from [21] in the
context of the one-step approach was too time consuming,
i.e. after 24 hours the algorithm did not finish executing.
The reason is that sensitivity analysis from [21] was designed
to construct the map of all budget combinations for which
the system remains schedulable (the schedulability region).
Our algorithm is adapted to the metric of interest which al-
lows to select one single configuration of time budgets, which
equally distributes budget constraints among the suppliers
based on the predefined values of tbmri and tbMri . For all the
tests for which algorithms terminated, we obtained the same
fitness value, which supports the usage of the algorithm 1 in
the automated process of time budgeting and deployment.

Table 3: Runtimes (seconds) of one-step and staged ap-
proach (GA initial population = 10000) when using different
budgeting algorithms

Test nb
One-
step

Staged
One-step
with [21]

Staged
with [21]

1 68.474 3.874 2088.665 25.416

2 177.383 4.667 2006.573 31.96

3 1014.547 27.442 > 86400 699.729

4 598.003 131.609 > 86400 1072.178

5 2565.429 429.153 > 86400 84132.114

6 2862.052 685.726 > 86400 > 86400

5.5.2 Improvements due to deployment
Interleaving of deployment with time budgeting has pos-

itive impact on the relaxation of budget values. The ap-
proach from [4] assumes that the deployment is known a
priori. On the other hand, our techniques (either one-step
or staged) interleave the deployment with budgets specifi-
cation. This additional design freedom allows to further
improve on time budget values. To show the gain, we first
fix the deployment for tests 1 to 6 using our deployment
technique (the runnables from RB were assigned WCETs
equal to tbmri). Then we run the budgeting algorithm from
[4] and obtained the following values for our metric in Equa-
tion (12): 0.31666666, 0.53333336, 0.178125, 0.088630214,
0.0712207, 0.07819336. This shows that by further manip-
ulation of deployment interleaved with budgets assignment,
we manage to get better results: 0%, 0%, 77.78%, 146.15%,
200.7%, 174.52% better than fixing the deployment for tests
1 to 6 respectively.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we present two algorithms that apply to

an important problem in modern automotive design flows
based on the AUTOSAR modeling paradigm for integrated
architectures. The objective is to consider end-to-end dead-
lines in time-critical functionality distributed over several
components and to define the assignment of time budgets
to component functions developed by suppliers, while at the
same time optimizing the ECU and task placement and pri-
ority assignment to the tasks.

Because of the intrinsic complexity of the problem, the
proposed algorithms apply randomized optimization (GA)
techniques. Further, to reduce complexity, we compare a
one-step intuitive solution to the algorithm with an iterative
approach. The iterative (two-stage) approach not only com-
putes results faster, but also (and somewhat surprisingly)
with equal or better quality. The runtime of the algorithm
is already compatible with problems of industrial size, but
we plan to further extend it by a careful evaluation of meth-
ods to adaptively choose the size of the initial population
and possibly to reduce the execution time of the inner loop
in the initial stages of the algorithm.
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