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Abstract

Engine control applications require the execution of tasks
activated in relation to specific system variables, as the crankshaft
rotation angle. To prevent possible overload conditions athigh
rotation speeds, such tasks are designed to vary their functionality
(hence their computational requirements) for different speed
ranges. Modeling and analyzing such a type of tasks poses new
research challenges in the schedulability analysis that are now
being addressed in the real-time literature. This paper advances
the state of the art by presenting a method for computing the
exact worst-case interference of such adaptive variable-rate tasks
under fixed priority scheduling, enabling a precise analysis and
design of engine control applications.

1. Introduction

A large variety of real-time task models have been proposed
in the literature to analyze the schedulability of different types
of embedded systems. The classical Liu and Layland periodic
task model [12] captures the typical structure of control loops
providing an implementation for discrete-time controllers. The
sporadic task model introduced by Mok [13] captures the intrinsic
irregular arrival sequence of external events, while providing a
bound on the worst-case arrival rate necessary to derive an off-
line schedulability analysis.

A rate-based execution abstraction was introduced by Jeffay
et al. [9], [10] to generalize the classical periodic and sporadic
scheme. According to such a model, a task specifies its expected
rate as the maximum numberx of executions expected to be
requested in any interval of lengthy, however the maximum
computation time required for any job of the task is fixed, while
the actual distribution of events in time is arbitrary.

The multi-frame model proposed by Mok and Chen [14]
provides the additional expressivity to capture conditional exe-
cutions and execution patterns. In this model, tasks are activated
periodically, but the execution time of each job varies according
to a predefined pattern. Such a model has been later generalized
by Baruah et al. [2] to allow jobs to be separated by a varying
interarrival time. However, in both cases the activation pattern is
known a priori and does not depend on any state variable.

An elastic model has been presented by Buttazzo et al. [3], [5]
to tolerate and handle permanent overload conditions in periodic
real-time systems. According to this model, a task has a fixed

computation time, but a variable period, which can be variedin
a given range. An overload condition is then handled by properly
compressing task utilizations as they were elastic springswith
given elastic coefficients, expressing the availability ofeach task
to change its period.

More recently, the consideration of a fuel injection systems,
as representatives of a possibly larger class of applications, has
highlighted the limitations of the existing approaches andthe need
for a new type of task model and analysis.

The general goal of a fuel injection system is to determine
the point(s) in time and the quantity of fuel to be injected
in the cylinders of an engine, relative to the position of each
piston, which is in turn a function of the angular position of
the crankshaft. In a reciprocating engine, the dead centre is the
position of a piston in which it is farthest from, or nearest to, the
crankshaft. The former is thetop dead centre(TDC) while the
latter is thebottom dead centre(BDC), as illustrated in Figure
1. In a four-cylinder engine, the pistons are paired in phase
opposition, so that, when two of them are in a TDC, the others
are in a BDC. The TDC is the typical reference point, in the
controller activities, for the functions and actions that need to take
place within the rotation. These action include (among others)
computing the phase (time relative to the TDC) of the injection
and the quantity of fuel to be injected, but also checking whether
the combustion occurred properly. Depending on the structure of
the engine control application, these functions are implemented in
tasks that are activated at each TDC, that is twice every crankshaft
rotation (pseudo-cycle) or even more frequently (half-TDC).

The problem with this type of tasks is that the time between
two activations (at the TDC) is not constant, nor arbitrary,but
depends on the rotation speed of the engine, which can vary
within given ranges with a certain maximum acceleration. Thus,
the acceleration bounds define a space of possible activation
times which is not easy to capture and analyze without incurring
in excessive pessimism (as it would, for example, if using the
sporadic model).

To further complicate the treatment, the (worst-case) execution
time of the functions executed by such tasks is typically not
constant. At low revolution rates, the time interval between
two reference points (the TDC for a set of cylinders) is large
and allows the execution of sophisticated controls (and possibly
multiple fuel injections). The same algorithm cannot be executed
at higher revolution rates, because it would lead to an overload,
generating several deadline misses. Therefore, the implementation
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Figure 1: Relationship among engine phases and reference points
in the crankshaft rotation period. In a 4-cylinder engine, cylinder
pairs are in phase opposition.

is adapted using a simplified algorithm that reduces the WCET
(i.e., the functions to be executed) when the rotation speedfalls
within pre-defined ranges. For most cars, the rotation speed
typically varies between 600 and 6000 revolutions per minute
(rpm), which maps to activation intervals between 100 and 10ms,
for a complete revolution. A simplified representation of such an
adaptive behavior is shown in Figure 2.

#define omega1 1000
#define omega2 2000
#define omega3 4000
#define omega4 6000

task sample_task {

omega = read_rotation_speed();

f0();
if (omega ≤ omega4) f1();
if (omega ≤ omega3) f2();
if (omega ≤ omega2) f3();
if (omega ≤ omega1) f4();

}

Figure 2: Typical implementation of a task with a functionality
variable with the rotation speed of the crankshaft.

In this paper, the model proposed to describe such a type
of engine control tasks is referred to asAdaptive Variable Rate
task model, or AVR-model. Overall, a subset of the system tasks
can be characterized as AVR tasks, typically executing together
with classical periodic tasks under the control of a fixed-priority
scheduler, as established in the automotive AUTOSAR standard.

Adaptivity of execution times can also be captured by con-
sidering that tasks may exhibit different execution modes.Note
however, that mode change analysis [16]–[18] is not suited for
analyzing AVR tasks, since their activation period is changing
continuously, thus an infinite number of modes would be required
to describe all possible situations.

1.1. Related work

In the real-time community, the problem related to AVR tasks
was first presented by Buttle [6], as a common practice adopted
in automotive applications to adapt the functionality and the
computational requirements of engine control tasks for different
rotation speeds.

A suitable model for AVR tasks with activation rates and
execution times depending on the angular velocity of the engine
has been proposed for the first time by Kim, Lakshmanan, and Ra-
jkumar [11], who derived preliminary schedulability results under
very simple assumptions. In particular, their analysis applies to
a singleAVR task with a period always smaller than the periods
of the other tasks, and running at the highest priority level. In
addition, all relative deadlines are assumed to be equal to periods
and priorities are assigned based on the rate-monotonic algorithm.

Pollex et al. [15] also presented a sufficient schedulability anal-
ysis under fixed priorities, but they assumed that all the tasks with
a variable rate depend on the same angular velocity, which can
be arbitrary, but fixed. Moreover, the analysis is formulated using
continuous intervals, hence it cannot be immediately translated
into a practical schedulability test, whose complexity hasnot been
evaluated.

The schedulability analysis of a generic set of AVR tasks under
steady-state and dynamic conditions (considering a maximum
acceleration of the engine) has been addressed by Buttazzo,Bini,
and Buttle [4] under Earliest Deadline First (EDF) scheduling.
They also provided a design method that allows computing the
set of switching rotation speeds that keep the overall utilization
below a desired bound.

The dynamic analysis of AVR tasks under fixed-priority
scheduling has been considered by Davis et al. [7]. After dis-
cussing the complexity of the problem, they presented a sufficient
test based on an Integer Linear Programming (ILP) formulation.
Besides of being only sufficient, their approach is based on a
quantization of the instantaneous crankshaft rotation speed, which
may introduce additional pessimism in the analysis to guarantee
the safety of the test.

1.2. Contributions and structure

This paper provides the following novel contributions:
1) it presents an exact analysis of the worst-case interference

generated by an AVR task in dynamic situations, under fixed
priority systems and arbitrary deadlines, assuming realistic
acceleration bounds derived from the automotive industry;

2) it discusses an efficient method for reducing the worst-case
complexity of the exact analysis by identifying a set of
cases that dominate the others, thus avoiding the need of
a quantization of the engine state variable;

3) it presents a set of simulation experiments to compare the
proposed analysis with the ILP-based test proposed by Davis
et al. [7], showing that the interference computed by the
ILP-based approach is always greater or equal to the one
computed by our method;



4) finally, it shows that the quantization process used in the
ILP-based test makes the schedulability analysis unsafe,
since for some intermediate values of the state variable, the
interference computed by the ILP approach can be lower
than the worst-case one.

The rest of the paper is organized as follows: Section 2
introduces the system model; Section 3 defines the interference of
an AVR task and presents a brute force approach to compute it;
Section 4 illustrates an efficient method for reducing the worst-
case complexity for computing the exact interference by taking
advantage of a pruning rule; Section 6 evaluates the performance
of the proposed approach against the ILP-based test proposed by
Davis et al. [7]; Section 7 states our conclusion and future work.

2. System model and notation

This section presents the model for the task set, for the engine
dynamics, and the functions that are used to estimate the future
activation and the execution mode of the next job instance.

2.1. Task model

This paper considers a computing system running a set of
N preemptive real-time tasksΓ = {τ1, τ2, . . . , τN} under fixed
priorities and arbitrary deadlines. Each taskτi generates an
infinite sequence of jobs,Ji,1, Ji,2, . . . and can be either a periodic
task, characterized by a fixed worst-case execution time (WCET)
Ci, periodTi, and relative deadlineDi, or an AVR task, where
bothCi, Ti, andDi are variable. For the sake of clarity, whenever
needed, a rate-adaptive task may also be denoted asτ∗i .

The peculiarity of an AVR taskτ∗i is that its activation pattern
and functionality are determined by the physical evolutionof the
engine. In particular, a generic jobJi,k of an AVR task is activated
when the crankshaft reaches predefined angular positions, thus the
interarrival time betweenJi,k andJi,k+1, denoted asperiodTi,k,
is a function of the crankshaft rotation speed. The sequenceof
activation times of the jobs ofτi is denoted asti,1, ti,2, . . ., and
we assume that activations are triggered at angular intervals of
∆θi. The relative deadlineDi,k of job Ji,k can be set arbitrarily
as a non-decreasing function ofTi,k.

To cope with such a high variability in the release times, an
AVR taskτ∗i is typically implemented as a setMi of Mi different
modes,

Mi = {(C
m
i , Tm

i ),m = 1, 2, . . . ,Mi}

each characterized by a certain functionality and WCET,
kept constant when job activation periods fall in the range
[Tm

i , Tm+1
i ), whereTMi+1 = Tmax

i represents the maximum
activation period allowed by the system. Hence, the computation
time of a generic AVR jobJi,k can be expressed as a non-
decreasing step functionC of the current job periodTi,k, that
is,

Ci,k = C(Ti,k) ∈ {C
1
i , . . . , C

Mi

i }. (1)

An example ofC function is illustrated in Figure 3.
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Figure 3: Computation time of an AVR task as a function of the
period.

When a jobJi,k is activated at timeti,k, the release time of
the next job (ti,k+1) is not known, so the exact value ofTi,k

(necessary to select the corresponding mode) cannot be computed,
but can only be estimated by a proper function.

In the following sections, we are interested in computing the
contribution to the interference of each individual AVR task (for
periodic tasks the computation is trivial). To simplify thenotation,
the task index will be omitted from the task parameters whenever
we refer to a single AVR task.

2.2. Engine dynamics and task activations

To perform schedulability analysis in the presence of AVR
tasks, it is important to characterize the relation betweenthe
engine dynamics and the task parameters. The engine speed at
time t is denoted asω(t) and, as a notation shortcut, the speed
at the activation time of the generick-th job is indicated by
ωk = ω(tk). The speed is bounded in the interval[ωmin, ωmax],
where the minimum speedωmin defines the longest task period
Tmax = ∆θ/ωmin, while the maximum speedωmax defines the
smallest periodT 1 = ∆θ/ωmax related to the first mode. The
engine acceleration at timet, denoted byα(t), is assumed to be
bounded between a maximum decelerationα− and a maximum
accelerationα+, so thatα(t) ∈ [α−, α+].

Given the current engine state (ωk, αk) at timetk, the time to
the next job release is modeled (assuming a constant acceleration
αk) by the following function [4]:

T (ωk, αk) =

√
ω2
k + 2αk∆θ − ωk

αk

, (2)

where∆θ is the angular displacement that determines two con-
secutive job activations. Similarly, the instantaneous engine speed
at the next job release is modeled (under the same assumptionof
constant acceleration) as:

Ω(ωk, αk) =
√
ω2
k + 2αk∆θ. (3)

In this paper we use an estimator typically adopted by the
industry, which assumes zero acceleration in[tk, tk+1], meaning
that the period is computed asTk = tk− tk−1 = T (ωk−1, αk−1).



In addition, the following notation is used throughout the paper:

• Ωn denotes the engine speed aftern job releases, com-
puted as Ωn(ωk, αk) = Ω(Ωn−1(ωk, αk), αk), where
Ω0(ωk, αk) = ωk.

• T n denotes the period estimate of then-th following job,
assuming constant acceleration, computed asT n(ωk, αk) =
T (Ωn−1(ωk, αk), αk).

• Ω−1(ωk, α) denotes the inverse function ofΩ, and, given a
speedωk at time tk, returns the speedωk−1 at time tk−1,
assuming a constant accelerationα in [tk−1, tk].

• T−1(Tk, α) denotes the inverse function ofT , and, given the
current estimated periodTk = tk − tk−1, returns the speed
ωk−1 at time tk−1, assuming a constant accelerationα in
[tk−1, tk].

Figure 4 illustrates a range of possible scenarios that may
determine the next activation for different speed and accelerations.
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Figure 4: Dependence of task parameters from the system state.

A crucial aspect that must always be considered in the analysis
presented in this paper is that the use of an estimator prevents
using the relationωk = ∆θ/Tk (except for the limit values),
because it would not consider the real task mode-change behavior.

Note that, if at timetk we only know the instantaneous engine
speedωk and nothing is known about the previous state of the
system, the greatest possible estimationT̃k of the period can be
computed (assuming the maximum acceleration of the engine)as

T̃ (ωk) = T (Ω−1(ωk, α
+), α+). (4)

Likewise, given an estimateTk of the activation period, the largest
possible speed̃ωk at time tk can be computed (assuming the
maximum acceleration of the engine) as

Ω̃(Tk) = Ω(T−1(Tk, α
+), α+). (5)

Using Equation (5), a mode transition can be expressed in terms
of speed as

ωm = Ω̃(Tm). (6)

3. Characterizing the interference

The interference caused by an AVR taskτh depends on the
speed of the engine when the critical instant occurs. Hence,the
interference is a function of the dynamics of the engine and
should be computed for any initial speedω0.
Iω0

(t) denotes the worst-case interference generated by an
AVR task in the interval[0, t], assuming that the critical instant
occurs at time0, when the speed of the engine isω0.

For each initial engine speedω0, we determineΩ(ω0, α) and
T (ω0, α), considering a generic accelerationα. A brute-force
approach requires considering all possible values ofα ∈ [α−, α+]
to determine all possible subsequent job releases occurring in the
interference window. Let us consider a jobJ0 released att0,
when the instantaneous speed isω0. Such an activation gives
rise to a family of possible instances ofJ1, with period in the
range [T (ω0, α

+), T (ω0, α
−)] and corresponding engine speed

ω1 in the range[Ω(ω0, α
−),Ω(ω0, α

+)], according to the model
described in Section 2.

Similarly, the next activation gives rise to a set of possible
job instances with period in[T (ω1, α

+), T (ω1, α
−)] and speed

ω2 ∈ [Ω(ω1, α
−),Ω(ω1, α

+)]. This reasoning applies recursively
for each subsequent activation, until the end of the interference
window, leading to atree of possible job releases, as depicted in
Figure 5.
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Figure 5: Tree of possible job releases of an AVR task.

Assuming the acceleration to vary continuously, the number
of branches at each recursive step is theoretically infinite, but
can be bounded by making the acceleration range discrete with a
given granularity. Of course, any quantization of the acceleration
domain makes the analysis approximate, and a large granularity,
while reducing the search complexity, increases the pessimism.

The pseudocode in Figure 6 summarizes the recursive proce-
dure for computing the maximum interference following a brute-
force approach. The procedure is called by passing the initial
engine speedω0, the longest computation timeC0 of any mode
reachable fromω0, and the current time instant.

In particular, since at the first activation the previous jobrelease
is unknown,C0 is computed as a function of the largest period
leading to the initial speedω0, that is:C(T̃ (ω0)).

At each recursive step, until the maximum deadline of any task
(i.e. the largest length of the interference window that needs to
be considered by the analysis, also denoted as MAX TIME, as in
lines 2-3), we must:



1: procedure INTERFERENCE(ω,C, t)
2: if t > MAX TIME then return ;
3: end if
4: UPDATEINTERFERENCEFN(C, t);
5: for α = α− to α+ step∆α do
6: ωnext ← Ω(ω, α);
7: T next ← T (ω, α);
8: Cnext ← C + C(T next);
9: INTERFERENCE(ωnext, Cnext, t+ T next);

10: end for
11: end procedure

Figure 6: Procedure for computing the interference of an AVR
performing an exhaustive tree-search.

• update the worst case interference function for a given value
of t (line 4);

• for each acceleration:

– compute the speed and the period related to the next
job (lines 6-7);

– accumulate the overall computational request (line 8);
– recursively call the function INTERFERENCE(line 9).

The maximum interference function is a stepwise function
storing the maximum interference time for each possible value t.
The procedure UPDATEINTERFERENCEFN at line 4 simply saves
the maximum cumulative value of the computational demand for
the time instant passed as argument.

In summary, for a givenω0, the procedure generates atree
of job releases. Hence, computing the interferenceIω0

(t) is a
search problem in the speed domain, and requires a complete visit
of the tree. The interferenceIω0

(t) corresponds to the maximum
among the interferences generated from all possible job sequences
starting with speedω0. This procedure is very expensive in terms
of computational complexity, and intractable for most practical
uses. The next section determines a pruning rule that cuts a
significant number of branches, while still guaranteeing anexact
interference analysis.

4. Computing the exact interference

To cut redundant branches in the search tree, we note that
for each job release after the critical instant, only a finiteset
of critical job releases must be taken into account to derivethe
maximum interference. We explain how to compute such critical
job releases, and then derive a pruning rule for the search problem
presented in the previous section.

First of all, we construct the interference generated by an AVR
task as the sum of the possible contributions of its individual
jobs. To determine the potential interference generated bya single
job Ja, it is necessary to consider all possible releases ofJa+1

compatible with the given accelerationα ∈ [α−, α+].

4.1. Potential-job interference

Definition 1: Given a jobJa of an AVR task activated in mode
m at timeta, thepotential-job interferenceiωa,m(δ) of Ja is the
maximum computational request generated byJa andJa+1, in the
interval [0,δ], for all possible releases ofJa+1 at ta+1 = ta + δ.

As explained in Section 3, job releases depend on the engine
dynamics, and the future release times and modes ofJa+1

are constrained by the maximum/minimum acceleration of the
engine. At timeta, iωa,m(0) = Cm, sinceJa is released in mode
m. Considering the maximum accelerationα+, it is easy to see
that no job release can occur in the interval0 < δ < T (ωa, α

+);
therefore, in this intervaliωa,m(δ) = Cm.

For T (ωa, α
+) ≤ δ ≤ T (ωa, α

−), an additional job release
must be considered: the earliest considering the maximum ac-
celerationα+, the latest considering the maximum deceleration
α−. Depending on the engine dynamics, the released job can
belong to a number of different modes. The larger the accel-
eration/deceleration range, the greater the number of possible
modes. Since we are modeling the worst-case interference ofan
AVR task, we have to take into account all possible job releases
for each possible modem′ with Tm′

∈ [T (ωa, α
+), T (ωa, α

−)]
(Tm is included in the range). Finally, forδ > T (ωa, α

−), no
release ofJa+1 can occur; hence,iωa,m(δ) = C(T (ωa, α

−)) is
the computational request of the latest possible job release time.
Overall, iωa,m(δ) is a non-decreasing stepwise function, where
each step represents the release of a different modem′.

0
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Cm+Cm−1

2Cm
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+) Tm+1 Tm T (ωa,0) Tm−1 T (ωa,α

−)

Figure 7: Potential job interference of a job activated at time ta
in modem.

Figure 7 shows an example of potential job interference
assuming that the engine dynamics allows to release jobs of
two different modes in acceleration, and one in deceleration. As
explained is Section 3, the interferenceIω0

(t) of an AVR task is
the maximum sum of all its possible job requests. Therefore,it
is possible to expressIω0

(t) as the sum of time-shifted potential
job interferences.

The following theorem allows identifying the job instancesfor
which the interference dominates the one for job instances at
other release times and therefore it can be used as a pruning rule
to reduce the search space.



Theorem 1:Let Ja and Jb be two jobs released in mode
m, and let ωa and ωb be the instantaneous engine speeds at
their respective release times. Ifωa ≥ ωb and C(T (ωa, α

−)) =
C(T (ωb, α

−)), then∀δ ≥ 0 iωa,m(δ) ≥ iωb,m(δ).

Proof: The proof is trivial forωa = ωb, therefore in the
following we assumeωa > ωb. Since, for a givenα, T (ω, α+)
andT (ω, α−) are both monotonic decreasing functions inω, we
have:

(i) T (ωa, α
+) ≤ T (ωb, α

+);
(ii) T (ωa, α

−) ≤ T (ωb, α
−).

From (i) we can derive thatiωa,m(δ) = iωb,m(δ) = Cm for
δ < T (ωa, α

+). For T (ωa, α
+) ≤ δ < T (ωb, α

+) we have
iωb,m(δ) = Cm (job releases afterJb cannot occur before
T (ωb, α

+)), while iωa,m(δ) can be larger because of the possible
job releases followingJa. Hence, in the rangeT (ωa, α

+) ≤ δ <
T (ωb, α

+), we haveiωa,m(δ) > iωb,m(δ).
For δ ≥ T (ωb, α

+) two scenarios are possible:

• T (ωb, α
+) ≤ T (ωa, α

−), i.e., the two single-job interfer-
ences are overlapped in time. In this case, forT (ωb, α

+) ≤
δ ≤ T (ωa, α

−), we haveiωa,m(δ) = iωb,m(δ). In this range,
the single-job interferences are considering the same activa-
tion periods, therefore they model the same computational
demand;

• T (ωb, α
+) > T (ωa, α

−), i.e., the two single-job inter-
ferences are non-overlapped in time. In this case, for
T (ωb, α

+) ≤ δ ≤ T (ωa, α
−), we haveiωa,m(δ) > iωb,m(δ)

sinceiωb,m(δ) = Cm.

In both cases, for δ > T (ωa, α
−), we have

iωa,m(δ) = iωb,m(δ). This follows from (ii) and the hypothesis
C(T (ωa, α

−)) = C(T (ωb, α
−)), sinceiω,m(δ) is non-decreasing.

Having shown thatiωa,m(δ) ≥ iωb,m(δ) in each possible time
interval, the theorem follows.

Figure 8 shows a typical scenario in which Theorem 1 holds,
related to the caseT (ωb, α

+) ≤ T (ωa, α
−).

0
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iωb,m(δ)

δ
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Figure 8: Example of a scenario for applying Theorem 1.

4.2. Pruning rule

In this section, Theorem 1 is used to build a pruning rule for
reducing the search space. The complexity is reduced by finding

a subset of potential job interferences that contribute to the exact
interferenceIω0

(t).
Pruning rule properties. Consider a generic jobJi−1, and its
immediate followerJi. The release time ofJi is variable and
depends on the engine acceleration. LetJi,(t) be the instance of
Ji released at timet (t is one of the activation times allowed
by the acceleration range of the engine). The objective of the
pruning rule is to identify a limited setP of critical job instances
satisfying the following properties:

(i) for eachJi,(s) /∈ P , there must exists aJi,(t) ∈ P for which
the potential job interference ofJi,(t) dominates the one of
Ji,(s);

(ii) for each Ji,(s) /∈ P , there must exists aJi,(t) ∈ P such
that the interference generated byall job releases following
Ji,(s) is dominated by the interference ofat least oneset of
possible job instances followingJi,(t).

Property (i) allows to eliminate all the job instancesJi,(s) /∈ P ,
while property (ii) allows to discard the entire sub-tree ofjob
instances released afterJi,(s).

Job instances for property (i). Suppose that the critical instant
occurs when the instantaneous engine speed isω0 and the AVR
task is in modem. The potential job interferenceiω0,m(t) is
the initial value ofIω0

(t). Using Theorem 1, it is possible to
identify a setP(i) ⊂ P of job releases for which their potential
job interference dominates the others.

Theorem 1 only applies to jobs activated in the same mode.
Hence, the setP(i) includes at least one job instance for each
modem such thatTm ∈ [T (ω0, α

+), T (ω0, α
−)]. For each mode,

we need to consider theearliest job release, in order to satisfy
the theorem hypothesisωa ≥ ωb. Formally, we refer to such job
releases as theearliest distinct mode changes(EDMCs). EDMCs
can also be defined as the set of the job instancesJi,(t) for which
their current periodTi belongs to the setTEDMC, which includes
the period corresponding to the earliest possible arrival of a job
instance (max acceleration) and all the periods that correspond to
mode changes, that is

TEDMC = {T (ω0, α
+)} ∪ {Tm | Tm ∈ [T (ω0, α

+), T (ω0, α
−)]}.

In the example of Figure 7, the setTEDMC is given by the time
instants on the x-axis corresponding to the steps ofiω0,m(t).

However, the setP(i) needs to include other job instances
besides those in EDMCs, since there can be job instancesJi,(q)
that are not dominated by any of the instances in EDMC. This
can happen because the instances in EDMC do not necessarily
guarantee the last hypothesis of Theorem 1. For these job releases
Ji,(q), there is noJi,(t) having periodTi,(t) ∈ TEDMC with
C(T (ωi,(t), α

−)) = C(T (ωi,(q), α
−)).

The set EDMC needs to be extended to include other instances.
Hence, the set EDMC ={Ji,(t1), Ji,(t2), . . . Ji,(tz)} is sorted by
increasing arrival times.Ji,(t1) is the earliest possible instance.
Then, for every interval[Ji,(tm), Ji,(tm+1)] we need to look for
an intermediate time point (arrival time)tq that corresponds
to an instance not dominated by the endpointJi,(tm) because
C(T (ωi,(tm), α

−)) 6= C(T (ωi,(tq), α
−)).



The candidate time instantstq can be computed by consid-
ering that they can only belong to the set of points for which
T (ωi,(tq), α

−) = Tm for one of the modesm.
If such tq exists, it is added to the set and the test con-

tinues in the interval[Ji,(tq), Ji,(tm+1)]. When all points in
[Ji,(tm), Ji,(tm+1)] are checked, the algorithm moves to the next
time interval in the original set EDMC until all the dominantjob
instances are found.
Job instances for property (ii). Unfortunately, Theorem 1 is not
sufficient to discardall the interferences generated by the jobs
following Ji,(s). For example, consider a generic job instance
Ji,(s) for which the potential job interference is dominated by
Ji,(t) ∈ P

(i). Since by hypothesis we haveωi,(s) ≤ ωi,(t), a
job Ji+1,(s′) immediately followingJi,(s) could have a higher
period thanall the possible jobs instancesJi+1,(t′) immediately
following Ji,(t) (formally, the maximum periods forJi+1,(t′) and
Ji+1,(s′) are respectivelyTi+1,(t′) = T (Ω(ωi,(t), α

−), α−) and
Ti+1,(s′) = T (Ω(ωi,(s), α

−), α−) > Ta+1). Hence,Ji,(s) cannot
be pruned, since it could be thatC(Ti+1,(s′)) > C(Ti+1,(t′)).

The following theorem addresses this issue. To compact the
readability of the theorem, we define the following set:

N = {k ∈ N
+|max(T k(ωa, α

−), T k(ωb, α
−)) ≤ Tmax}.

Theorem 2:Let Ja and Jb be two jobs released in mode
m, and let ωa and ωb be the instantaneous engine speeds
at their respective release times. Ifωa ≥ ωb and ∀n ∈ N

C(T n(ωa, α
−)) = C(T n(ωb, α

−)), then∀t ≥ 0 Iωa
(t) ≥ Iωb

(t).
Proof: The proof is trivial forωa = ωb, therefore in the

following we assumeωa > ωb. We must show that, for each
possible jobJb+n following Jb there exists a jobJa+n following
Ja such that the potential job interference ofJb+1 is dominated
by that ofJa+1. To do this, we apply Theorem 1 by induction.

SinceΩn(ω, α) is a monotonic increasing function, we have

∀n ∈ N Ωn(ωa, α
−) ≥ Ωn(ωb, α

−);

∀n ∈ N Ωn(ωa, α
+) ≥ Ωn(ωb, α

+).

Similarly, sinceT n(ω, α) is a monotonic decreasing function, we
have

∀n ∈ N T n(ωa, α
−) ≤ T n(ωb, α

−);

∀n ∈ N T n(ωa, α
+) ≤ T n(ωb, α

+).

For eachn, two scenarios are possible as shown in Figure 9:
a) Ωn(ωa, α

−) > Ωn(ωb, α
+); in this case, to apply Theorem 1

on eachJb+n, it is sufficient to takeJa+n having ωa+n =
Ωn(ωa, α

−). Let thenωb+n ∈ [Ωn(ωb, α
−),Ωn(ωb, α

+)].
This choice makes the three hypotheses satisfied, since:

• ωa+n ≥ ωb+n follows from Ωn(ωa, α
−) > Ωn(ωb, α

+);
• C(T (ωa+n, α

−)) = C(T (ωb+n, α
−)) follows from the

hypothesisC(T n(ωa, α
−)) = C(T n(ωb, α

−)) ∀n. This
can be shown by replacing the definition of the func-
tion T n+1(ω, α) obtainingC(T (Ωn(ωa+n, α

−), α−)) =
C(T (Ωn(ωb+n, α

−), α−)). SinceC() is a monotonic non-
decreasing function, the hypothesis is verified for all
ωb+n.

• Ja+n has the same mode asJb+n: again this is en-
sured by considering the hypothesisC(T n(ωa, α

−)) =
C(T n(ωb, α

−)) ∀n.
b) Ωn(ωa, α

−) ≤ Ωn(ωb, α
+); in this case, for each possible job

Jb+n having ωb+n ∈ [Ωn(ωa, α
−),Ωn(ωb, α

+)] there exists
a job Ja+n havingωa+n ∈ [Ωn(ωa, α

−),Ωn(ωa, α
+)], with

ωa+n = ωb+n. This result implies directlyC(T (ωa+n, α
−)) =

C(T (ωb+n, α
−)). Since in this interval also the periods for

Jb+n andJa+n are overlapped, eachJb+n can be mapped to
Ja+n having the same mode. The application of Theorem 1
is then straightforward.
On the other hand, for each possible jobJb+n havingωb+n ∈
[Ωn(ωb, α

−),Ωn(ωa, α
−)], the same considerations made for

the upper case hold. Hence, it is sufficient to takeJa+n having
ωa+n = Ωn(ωa, α

−).
Hence the theorem follows.

t

t

Ωn(ωa, α
−) Ωn(ωa, α

+) Ωn(ωb, α
−) Ωn(ωb, α

+)

Ωn(ωb, α
−) Ωn(ωa, α

−) Ωn(ωa, α
+) Ωn(ωb, α

+)

a)

b)

Figure 9: Possible scenarios for Theorem 2.

By using Theorem 2, it is possible to obtain the complete set
P required by the pruning rule. To identify critical job releases
belonging toP we proceed in the same way as forP(i): the only
difference is that Theorem 2 is applied in place of Theorem 1.

4.3. Dominant initial velocities

Theorem 2 can also be exploited to find a reduced set of initial
instantaneous speeds that must be considered for the interference
computation. Letωa andωb be two instantaneous speeds at which
the critical instant may occur. If the hypotheses of Theorem2 are
verified, then we can conclude that∀t Iωa

(t) ≥ Iωb
(t), that is,

the interference forωb is entirely dominated by the one forωa.
It follows that, given a range of possible engine speeds, we can

compute a set of dominant speeds in this range in the very same
way as we identified critical job releases applying the pruning
rule in the range of speeds determined byα− andα+.

In the following,
• Λi(ω1, ω2) denotes the set of dominant speeds for an AVR

taskτ∗i when the engine speed can vary in the range (ω1, ω2].
• Λ∗

i = Λi(ω
min
i , ωmax

i ) denotes the set of dominant speeds
of task τ∗i for all possible speeds.

• Λm
i denotes the set of dominant speeds of taskτ∗i when the

engine speed can vary in the range compatible with mode
m; that is,

Λm
i = Λi(Ω̃(T

m+1), Ω̃(Tm)).



This is a key point to simplify the analysis with respect to the
brute-force approach described in Section 3, and also to theILP
formulation proposed by Davis et al. [7], since both approaches
require to consider the complete range of possible initial speeds.

5. Exact schedulability analysis

In this section we show how to use the interference of an AVR
task τ∗H (IH,ω0

) to perform a response time analysis [1] of a
generic task set consisting of AVR and periodic/sporadic tasks.
We consider two cases to compute:

• the interference of an AVR taskτ∗H on a periodic/sporadic
task τL with lower priority;

• the interference of an AVR taskτ∗H on another AVR taskτ∗L
with lower priority.

When computing the interference ofτ∗H on a periodic/sporadic
task or an AVR task with an independent source of activation
events (independentω0), the worst-case combination for any
initial speed of τ∗H needs to be considered. To do so, the
envelopeIH(t) has to be computed as the maximum among
the interference functionsIH,ω0

(t) for each initial speed. Using
Theorem 2, it is sufficient to consider only the dominant speeds
in Λ∗

H , hence
IH(t) = max

ω0∈Λ∗

H

{IH,ω0
(t)}. (7)

To simplify the notation of the test, we also define the (finite)
setIH(t) of time points less than or equal to the argumentt, in
which the step functionIH() changes its value.

5.1. AVR Interference on a periodic task

To analyze the interference of an AVR taskτ∗H on a lower
priority periodic/sporadic taskτL, every possible initial speedω0

of τ∗H has to be considered at the beginning of the critical instant
of τL. Therefore, the feasibility condition forτL becomes:

∀ω0 CL + IH,ω0
(DL) ≤ DL,

which is the same as

CL +max
ω0

{IH,ω0
(DL)} ≤ DL.

which, using Theorem 2 and Equation (7), reduces to

CL + IH(DL) ≤ DL. (8)

5.2. AVR Interference on an AVR task

When analyzing the interference of an AVR-taskτ∗H over an-
other lower priority AVR taskτ∗L, two cases can be distinguished.
Let ωH and ωL be the variables describing the speeds of the
activation sources forτ∗H andτ∗L, respectively. As a first case we
consider the two speeds to be independent, while in the second
case we consider them related.

When rotation speeds are independent, the low-priority task τ∗L
is schedulable if and only if

∀ωHωL CL(T̃ (ωL)) + IH,ωH
(DL(ωL)) ≤ DL(ωL). (9)

Since the WCET ofτ∗L depends on its execution mode, Equa-
tion (9) must be true for all modes. In addition, the full set of
speeds ofτ∗H can be considered using Equation (7), thusτ∗L is
feasible if and only if∀m = 1, . . . ,ML and∀ωL ∈ (ωm+1

L , ωm
L ]

Cm
L + IH(DL(ωL)) ≤ DL(ωL).

The previous formula should be evaluated for the full set of
deadlines for modem, denoted asDm

L :

Dm
L = {t | t ∈ (DL(ω

m−1
L ), DL(ω

m
L )] }.

Note however, that we do not need to consider an infinite number
of points inDm

L , sinceIH(t) only changes its value in the finite
set of time pointsIH(max{Dm

L }) (up to the maximum deadline
for the mode). Therefore,τ∗L can be feasibly scheduled if and
only if ∀m = 1, . . . ,ML and∀t ∈ Dm

L ∩ IH(max{Dm
L })

Cm
L + IH(t) ≤ t. (10)

When ωH and ωL are related to a common speedω0, the
previous analysis is pessimistic and needs to be refined. The
response time analysis is a function ofω0 andτ∗L can be feasibly
scheduled if and only if

∀ω0 CL(T̃L(ω0)) + IH,ω0
(DL(ω0)) ≤ DL(ω0). (11)

Considering each mode separately we have:

∀m = 1, . . . ,ML ∀ω0 ∈ (ωm+1
L , ωm

L ]

Cm
L + IH,ω0

(DL(ω0)) ≤ DL(ω0).

To compute the interference of the high priority task, we con-
sider the set of its dominant speeds within the speed range
of every mode forτ∗L. The range of speeds for each mode is
partitioned in the intervals defined by the dominant speeds of
τ∗H . Let (ωdi−1 , ωdi ] be the generic interval between two of
such dominant speeds (ωdj ∈ Λ∗

H ), and letpm be the number
of such intervals for modem. For each interval(ωdi−1 , ωdi],
since the deadline is a non-increasing function of the speed,
the shortest deadline forτ∗L (replacing the termDL(ω0) in the
formula) corresponds to the dominantωdi at the highest end of
the interval.ωdi also allows to upper bound the interference term
IH,ωdi (DL(ω

di)) ≥ IH,ω0
(DL(ω0)) for everyω0 ∈ (ωdi−1 , ωdi].

Hence, the schedulability ofτ∗L can only be tested inpm points:

∀m = 1 . . .ML, i = 1 . . . pm

Cm
L + IH,ωdi (DL(ω

di)) ≤ DL(ω
di). (12)

6. Evaluation

This section presents an evaluation of the proposed analysis
method carried out on task data that are representative for an
engine control system. The application was provided in the
context of the INTERESTED EU project [8] and consists of a
set of periodic and AVR tasks. One of these tasks is activated
at the TDC mark and is characterized by 6 execution modes,
reported in Table 1, and by a maximum periodTmax = 120 ms
(corresponding to 500 rpm).



mode 1 2 3 4 5 6

rpm 6500 5500 4500 3500 2500 1500
Tm (ms) 9.23 10.91 13.33 17.15 24 40
Cm (µs) 246 277 343 424 576 965

Table 1: Task parameters used in the evaluation.

Such a task is used to compare the accuracy and performance
of the proposed approach with respect to the sufficient ILP-based
method proposed by Davis et al. [7].

Before describing the results of the experiments, a few con-
siderations are necessary to explain the terms of the comparison.
The interference analysis is a function of two variables: the initial
engine speedω0 and the lengtht of the interference window. The
ILP method can only compute the interference for a set of discrete
values of t and ω0. Our analysis, thanks to the derivation of
the dominant speeds, can actually compute the exact interference
function for all the valuest andω0 in their continuous ranges.

To run the experiments, the ILP method has been implemented
on a CPLEX solver running on an 8-core Intel Xeon at 2.8 GHz,
while our algorithm was implemented as MATLAB code on a
dual-core laptop Intel i7 at 2.5 GHz. The run time of the two
algorithms resulted to be in the order of few seconds to compute
the maximum interference with the ILP algorithm, and about one
minute to characterize the interference in the whole time interval
with our algorithm.

Three experiments have been carried out. The first experiment
is meant to compare the quality of the analysis in the domain
of the initial speedω0. Figure 10 plots the interferenceIω0

(t)
generated by the AVR task in a time interval of 100 ms for a set
of initial engine speedsω0 between 1500 rpm and 6500 rpm and
a maximum acceleration of1.6210−4 rev/msec2. As suggested
by Davis at al. [7], a quantization step of 100 rpm was used to
define the set of discrete values forω0. As shown in the figure,
our analysis is able to achieve an improvement of 20 percent,or
higher, for specific speeds, exhibiting an average improvement of
about 10 percent.

In the ILP formulation, we used the set of linear constraintspre-
sented in [7], which does not include any bound on the minimum
engine speed but only on the maximum one and the acceleration
values. This allows the optimization engine to compute (incorrect)
arbitrarily low values for the engine speed for low values ofω0

and is the cause for the anomalous behavior shown in the figure
for ω0 below 1900rpm, where the interference computed using
the ILP formulation falls below the exact analysis. Unfortunately,
the addition of a lower speed bound requires updating several
constraints in a non-trivial way.

In a second experiment, we evaluated the pessimism of the
ILP method in the dimension of time, for an initial engine speed
ω0 = 5600 rpm. Figure 11 illustrates the interference function
computed by the two algorithms when the interference interval is
varied from 30 ms to 75 ms. In this time range, the pessimism of
the ILP method remains of approximately 10 percent, and tends
to increase for larger values oft.
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Figure 10: AVR Interference for different initial engine speeds,
in a time interval of 100 ms.
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Figure 11: AVR Interference for different time intervals, with ω0

= 5600 rpm.

A third experiment has been carried out to evaluate the possible
consequences of the quantization process required by the ILP
method for the values ofω0. To do so, the ILP method was
executed to compute the interference function using for two
discrete values ofω0, equal to 5500 rpm and 5600 rpm.

Figure 12 shows the plots of the interference derived by the
ILP method together with the values computed by our algorithm
for the intermediate initial speed of 5550 rpm. As highlighted
in the figure, the interference computed by our exact algorithm
at 5550 rpm is not dominated by the ILP interference function
computed at 5500 rpm, nor by the one at 5600 rpm, despite the
pessimism of the ILP approach.

This example makes an even stronger cautionary case against
the use of any analysis based on discrete values, emphasizing the
use of an accurate test that operates in a continuous domain.



454030 552520

Exact @5550 rpm

ILP [7] @5500 rpm
ILP [7] @5600 rpm

60
400

600

50

800

1000

1200

1400 the analysis @5500 rpm is not safe

the analysis @5600 rpm
is not safe

µ
In

te
rf

er
en

ce
 (

   
s)

35
Time (ms)

Figure 12: The analysis for a discrete set ofω0 is not safe.

7. Conclusions

This paper presented an exact analysis of the worst-case inter-
ference generated by an adaptive variable-rate task under fixed-
priority scheduling and arbitrary deadlines. The work advances
the state of the art, since previous papers on fixed-priorityAVR
tasks either focused on special simplified cases [11] or proposed
an approximate ILP test [7] based on a quantization of the state
variable (i.e., the crankshaft rotation speed in engine control
applications) determining the task activation rate.

The second contribution of this work has been the identification
of a finite subset of dominant speeds that determine the exact
worst-case interference of an AVR task. Thanks to this result,
the interference analysis does not need to be performed for all
possible values of the engine speed, with a given quantization,
but can be determined by considering only the set of dominant
speeds.

It is worth observing that the set of dominant speeds is not
only important for reducing the complexity of the search, but
also because it allows getting rid of the quantization of thestate
variable, which can make the schedulability analysis unsafe. In
fact, by quantizing the state variable, the schedulabilitytest is
performed only in a subset of all possible values, so there can
be points (not considered in the test) in which the schedulability
test is not satisfied.

The simulation results reported in Section 6 confirm that the
interference computed by the ILP approximated method in the
discrete values of the initial speedω0 is always higher or equal to
the interference computed by the approach proposed in this paper,
in the same points. The results also indicate that, for intermediate
values of the state variable, not considered in the ILP test,the
worst-case interference can be higher than that computed bythe
ILP approach for both the lower and upper discrete value ofω0,
showing that no single interference curve computed by the ILP
method is safe for analyzing intermediate points.

As a future work, we plan to extend the task model to consider
more realistic design solutions considered in the automotive
application domain, like AVR tasks with an initial phase and
mode transitions with hysteresis.
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