
An MDE Approach for the Design of Platform-Aware
Controls in Performance-Sensitive Applications

Matteo Morelli
Scuola Superiore S. Anna, Pisa

Marco Di Natale
Scuola Superiore S. Anna, Pisa

Abstract—Model-Based Design is widely adopted in
control domains for the early validation of systems
properties using simulation or formal verification and
the possibility of automatic generation of code. Most
tools used in the industrial practice allow for the rep-
resentation of the controller functionality abstracted
from the implementation details. These models may
be inaccurate in those cases in which computation and
communication delays affect the performance of the
controls. To address this problem, we propose a Model-
Driven approach in which a Simulink functional model
of controls is matched to a model of the execution
platform through a mapping model, representing the
implementation as a set of tasks and messages. The
platform and the implementation are modeled in SysM-
L/MARTE and are used to automatically generate a
new Simulink model with an additional set of blocks rep-
resenting the execution time of the tasks running under
the control of a selected scheduler. Acceleo and QVTo
model-to-text and model-to-model standard transfor-
mation languages are used to automatically generate
the intermediate models, the task and scheduler blocks.

I. Introduction
The use of models for the advance analysis of the system

properties and verification by simulation, the documenta-
tion of the design decisions and the automatic generation of
the software implementation is an industrial reality. In the
Model-Based Design approach (MBD) models are based on
a formal (synchronous reactive) execution model. Examples
of available commercial tools are Simulink [1] and SCADE
[2]. These tools allow the modeling of continuous-, discrete-
time, and hybrid systems. They allow verifying the system
functionality against a dynamic model of the controlled
system (plant), but lack the capability of modeling physical
computing architectures (and to some degree tasks and
resources), as well as computation and communication
delays that depend on the platform.

Model-Driven Engineering (MDE) and Architecture
Description (ADL) languages are very good at representing
architectural aspects and are designed for being easily
extended. Also, they typically provide mechanisms to
transform models expressed in a language into another.
MDE and ADL languages may support the modeling of
the execution platform [3], but the tools supporting these
languages seldom allow for simulation and the automatic
generation of the behavioral code (with some exceptions).

When the communication and computation delays
arising from the platform implementation may affect the
behavior of the controls it is highly desirable to be able to

assess this impact at simulation time on a virtual model of
the controller, the plant and the software implementation
of the system. The analysis of computation and communica-
tion delays can be performed using the Truetime blockset in
Simulink. However, this solution creates a model in which
the functional solution is interspersed with platform-specific
implementation blocks. If the implementation platform, or
the task placement, or in general the task configuration
is modified, the user must change all the affected blocks
inside the model.
In our work, we provide:
A framework and a methodology for importing the functional
definition of the controller part from Simulink into the
Eclipse Modeling Framework (EMF - based on a custom
metamodel expressing the execution constrainst of the
Simulink model of execution) and model-to-model trans-
formation rules to translate the imported EMF model into
a SysML model in Papyrus.
A set of customized profiles for the modeling of execution
platforms and task implementations in SysML/MARTE.
A methodology for mapping the functional model into
the execution platform components and defining the task
and message model. Model-to-code transformation rules to
automatically generate a set of Matlab-language files that
extend the Simulink model and backannotate it with blocks
representing the execution of the Simulink controller model
into a set of real time tasks, with finite execution times,
under the control of a scheduler.
A modular representation of tasks and schedulers in
Simulink using a set of custom blocks and a framework that
allows co-simulating real-time scheduling together with the
hybrid Simulink models of the controller and the plant.

We show the application of our framework to the design
of a concurrent, three task implementation of electric
engine PID controls in Simulink. The example will show
how the design of the functional model and the platform
implementation can be kept separated and how automation
allows the automatic generation of the simulation models
that allow evaluating the impact of different task designs
or different scheduler selections.

State of the Art
In the model of complex (cyber-physical) systems, sepa-

ration of the functional and platform models is advocated
by many. Examples from the academia are the Y-chart [7]
and the Platform-based design (an implementation in the
Metro II tool [5]) approaches. The OMG (a standardization
organization) in its Model-Driven Architecture (MDA)

[6] defines a three stage process in which a Platform-
Independent Model or PIM is transformed in a Platform-
Specific Model or PSM by means of a Platform Definition
Model (PDM). Finally, the automotive industry AUTOSAR
standard [4] defines a virtual integration environment for
platform-independent software components and a separate
model for the (distributed) execution architecture, later
merged in a deployment stage (supported by tools). The
TIMMO/TIMMO2 [8] projects focus on the modeling
infrastructure and the capability of modeling timed events
in AUTOSAR. Unfortunately, AUTOSAR does not have a
formal model for the behavior of the functions and especially
the dynamics of the plant. Therefore, an external tool or
the actual code is needed for functional modeling and simu-
lation. Raghav et al. [9] and Hugues et al. [10] proposed two
methods for describing the functional behavior according to
a reference architecture and then comparing the deployed
system with respect to the reference to check whether the
performance (delay) target is guaranteed.

The development of a platform model for (large and
distributed) embedded systems and the modeling of concur-
rent systems with resource managers (schedulers) requires
domain-specific concepts. The OMG MARTE [11] standard
is general, rooted on UML/SyML and supported by several
tools. MARTE has been applied to several use cases,
including automotive projects [12]. GeneAuto [13], ProjectP
[14], the Rubus Component Model [15] and AADL [16] put
emphasis on the modeling of task sets and their interactions
and the code generation infrastructure, without including
simulation capabilities or an explicit formal metamodel for
the internal behavior of tasks. The BIP framework [17] is
another example of a formal modeling methodology for the
verification of timing properties.

Several authors [18] acknowledge that future trends
in model engineering will encompass the definition of
integrated design flows exploiting complementarities be-
tween UML or SysML and Matlab/Simulink, although the
combination of the two models is affected by the fact that
Simulink lacks a publicly accessible meta-model [18].

A very large number of projects target the evaluation of
scheduling policies and the analysis of task implementations
(more than 6 million hits when searching the keywords
real time scheduling simulator in Google). A necessarily
incomplete list includes Yartiss [19], Storm [20], ARTISST
[21], Cheddar [22], Stress [23].

TrueTime [24] is a freeware Matlab/Simulink-based
simulation tool that has been developed at Lund University
since 1999. It provides models of multi-tasking real-time
kernels and networks that can be used in simulation
models for networked embedded control systems and study
the (simulated) impact of lateness and deadline misses
on controls. The TrueTime Kernel block simulates a
computer node with a generic real-time kernel, A/D and
D/A converters, external interrupt inputs and network
interfaces. The block is configured via an initialization script
to create tasks, timers and interrupt handlers and define
the scheduling policy and the communication resources.
Because of the monolithic architecture and the number
of code artifacts that are needed for system configuration,

the current TrueTime implementation is hardly compatible
with an automatic model generation flow.

II. Proposed Approach
In the development flow considered in our work (sum-

marized in Figure 1), the Simulink functional model is the
starting point. Once the simulation results are satisfactory,
the designer uses the model exporter to generate an abstract
view of functional model. The abstract view is an exported
XML file that conforms to the Ecore meta-model for SR
systems shown in Fig. 3. The Ecore view preserves all
the structural properties of the Simulink model, such as
the types and interfaces of the blocks and the connections
among the blocks, and also accounts for the information
related to the timed execution events, including rate and
partial order of execution constraints.

Next, the Ecore representation of the functional
Simulink model is translated using QVT scripts into a
SysML model in Papyrus (leveraging a profile definition).
Here, it is extended with the platform and mapping models.

The Platform model, as well as the model of the tasks
and messages, is generated using SysML [25], [26]. A
specialized profile, built on top of the OMG standard
MARTE (Modeling and Analysis of Real-Time and Embed-
ded systems) [11] profile, is used for modeling embedded
platforms and systems.

The mapping model associates functional elements to
tasks, and tasks to processing (HW) elements. Matlab code
is generated from the SysML model using the Acceleo
[27] open model-to-text generator. The generated code
operates on the original Simulink model and adds to it a
set of custom blocks (with connections), representing the
implementation of the Simulink subsystems of the controller
in tasks, executing under the control of a scheduler.

Functional
meta-modelmodel

exporter

Functional

Mapping

Platform

M2M

M2T

Simulink

Simulink

generate

Functional

Figure 1. The development flow for the proposed Model-Driven
approach.

III. Modeling Concepts
A. Functional Modeling

The functional model is created by importing in EMF
a Simulink model that includes the controller part and the
model of the plant. The Simulink model must comply with
the restriction that there is a decomposition level in which

the controller part consists of a collection of subsystems,
in which each subsystem only contains periodic blocks
with the same period (each subsystem has a single rate).
This may require reworking some of the existing models,
possibly adding one more hierarchical level in the model
decomposition.

Figure 2 shows a Simulink model in which three DC-
servo systems are controlled by a PID (derived from
a corresponding TrueTime example). Each DC-servo is
described by a continuous-time SISO transfer function
(a TransferFcn block), and is controlled by a dedicated
discrete-time PID regulator. The three PID controllers have
the same proportional, derivative and integral coefficients
Kp, Kd, Ki, and are modeled as (masked) subsystem blocks.
A standard SignalGenerator block produces the reference
signal for the controllers.

Signal
Generator

Scope

PID3

r

y

u

PID2

r

y

u

PID1

r

y

u

Display

DcServo3

1000

s +s2

DcServo2

1000

s +s2

DcServo1

1000

s +s2

Clock

Figure 2. The application example from TrueTime [24], PID control
of three DC-servo systems.

A Matlab script uses the Simulink modeling API
(programming interface) to parse the model structure and
export an XML view of the controller subsystems. The
XML conforms to a schema created in accordance with
an Eclipse Ecore metamodel, defined for representing the
execution constraints that apply to the Simulink subsystems
(Figure 3). This metamodel is not too dissimilar from the
one proposed in the GeneAuto project [13] (actually, a
simplified version of it), but contrary to GeneAuto, it is
formally available as an Ecore definition.

After the functional model is imported in the Eclipse
EMF framework, a QVT model-to-model transformation is
executed to import the model in SysML, which conforms
to the profile for SR systems in Figure 4. Generic Block
entities are mapped to standard SysML blocks; Subsystem
entities are mapped to SRSubsystem instances. The in-
put/output ports and the corresponding connections are
suitably translated from the source model (Ecore) to the
destination model (SysML).

Figure 5 shows how the parts of our three servo (SysML)
functional model are connected.

B. Platform Modeling in SysML
For the modeling of the physical (HW) part of the

execution platform we rely on the concepts provided in the
HRM::HW_Logical package of MARTE, and we define our
own taxonomy of stereotypes for Basic Software (BSW)
components and for the deployment of BSW modules onto

Figure 3. The Ecore meta-model for the functional part.

Figure 4. The SysML profile for the functional part.

Figure 5. Structure of the functional model. Parts and their connec-
tions are automatically generated by the QVTo M2M transformation.

the HW. The execution-platform meta-model concepts are
organized in two packages: HwResources and BswRTOS.

The HwResources package introduces an element rep-
resenting a HW board (HwBoard) and other HW modeling
entities, including computing, storage, communication,
timing, or device resources, imported from the MARTE
HW_Logical and its sub-packages. The HwProcessor stereo-
type provided in the HW_Computing sub-package matches

Figure 6. Structure of the BswRTOS meta-model (UML extensions).

the concept of CPU and provides the attribute nbCores to
specify the number of cores, thus enabling the modeling of
multi-core architectures.

The BswRTOS package provides a set of stereotypes to
model RTOS concepts. The stereotype BswRTOS denotes
an RTOS and inherits from the general block concept of
SysML. The RTOS (kernel) contains a scheduler, denoted
as BswScheduler, which is responsible for executing tasks
according a given scheduling policy, and corresponds to
the scheduling policy kind defined in the MARTE model
library (SchedPolicyKind). The allocation relationship
BswRTOSDeployment specifies which processor executes the
RTOS.

In the case of our three-servo example, the execution
platform is single-core and does not include networks.
Therefore, only the CPU node that performs the computa-
tions is modeled. The example assumes that regulators’
codes execute on a single-core architecture, under the
control of a RTOS providing a (SW) clock resolution of
the order of millisecond (timeRes). The RTOS scheduler
operates according to the EDF scheduling policy (policy).
Tasks trespassing their deadlines are allowed to continue
their execution (dlMissPolicy).

C. Mapping Models
The mapping model represents the execution of func-

tional elements by tasks and the allocation of tasks
on cores. The Concurrency package classifies concurrent
execution contexts in terms of processes and threads.
The Interaction package defines the signal variables,
implementing functional communication signals. Finally,
the Allocation package specifies a set of dependencies
that define mappings/deployments as extensions of the
standard SysML Allocation concept.

Figure 7. Structure of the BswRTOS meta-model (UML extensions)
for use by M2M transformation tools.

There are two concepts that are central to the definition

of a mapping model: threads, represented by the stereotype
Thread, and signal variables, denoted as ComImpl. A
Thread is a unit of concurrent execution that runs on one
of the system cores under the control of an RTOS. Each
Thread is contained in a Process and is characterized by
a priority value. Concrete specializations of Thread are
AperiodicThread and PeriodicThread (with its period).

The concept of allocation completes the specification of
mapping meta-model. The FunctionToThreadMap denotes
the mapping of a functional subsystem into a Thread. When
multiple subsystems are mapped into the same Thread,
the attribute mapOrder defines how the execution of their
step() methods will be serialized in the generated thread
code. The mapping order must be consistent with the
partial order of execution imposed by the Simulink model
semantics. The ThreadToCPUMap models the deployment
of a Thread to an HwProcessor. The attribute coreAfn
enables the binding of the thread to a physical processor
core (processor affinity).

Our three-servo application example considers the case
of three periodic control tasks, namely Task1_1, Task2_1
and Task3_1, running concurrently on the CPU. Tasks
have different periods, respectively equal to 6ms, 5ms and
4ms. Each task executes the PID control logics of one
regulator subsystem (the i-th task, Taski_1, executes the
i-th regulator subsystem, PIDi). The execution times of
all subsystems are set to 2ms. The mapping model for
our three servo example is shown in Figure 8. Individual
application elements are associated to individual execution
platform elements by means of Allocation instances. The
«FunctionToThreadMap» allocation denotes the mapping
of a functional subsystem into a Thread. In this case,
the mapOrder attribute is set to 1 for all control tasks,
since each task executes one single PID subsystem. The
«ThreadToCPUMap» allocation models the deployment of a
Thread onto the HwProcessor. The attribute taskSetIdx
allows the designer to specify the position (index) of each
task in the task-set.

Figure 8. Mapping model.

IV. A Modular Representation of Tasks and
Schedulers in Simulink

A Real-Time scheduler simulator is a Discrete Event
System (DES) implementing an event handling mechanism
(typically with a queue). It reacts to tasks arrival events and
dispatches the currently active tasks from the ready queue
according to a fixed or dynamic priority-based scheduling
algorithm. Tasks arrival events can be asynchronous or
periodic, and are ordered in the event queue in ascending
order following the event occurrence time and the event
priority. At any point in time, the next scheduling event can
be the termination of the task currently in execution, or the
arrival event of a task, that can possibly cause a preemption
(if the new task has higher priority) and a context switch
or a task dispatch. In an RT simulator, tasks execute
according to a model of (time-consuming) computations.
Our framework assumes the same model as in TrueTime
(which is also suited to the typical code generation process
for Simulink models). The execution of a task is split in
units that are atomic from the standpoint of execution
time granularity, but can be preempted, called segments,
informally corresponding to the execution of a function
called by the task main code. Each segment is identified by
an execution time (possibly randomly generated according
to a given distribution) and all segments in a task are
executed according to a pre-defined sequence.

When the RT simulator is integrated with Simulink,
segments represent the execution of Simulink subsystems
and the execution order of the segments in a task must
match the partial order of execution imposed on the
subsystems. The time duration of each segment corresponds
to the execution time of the code implementing the sub-
system. The execution time of segments can be estimated
in several ways. One possibility is to generate the code for
each subsystem using the Embedded Coder tool. Once the
code implementation is available, it can be executed on a
(virtual or real) platform prototype measuring the execution
times. In alternative, it can be compiled for the desired
target and have the worst case timing analysis estimated
by a dedicated tool like AiT from AbsInt.

At simulation time, the Simulink engine computes the
model update in an outer loop, in which major steps are
evaluated. A major step is a point in time in which the
inputs and outputs of the model blocks are computed and
updated. Inside each major step, there is an inner loop, in
which minor steps are evaluated, allowing for the updates
of the state of the continuous parts of the model.

Our real-time scheduling simulator is implemented as
a set of custom blocks that execute at all the major steps
and interact with the Simulink main engine (and capture
all the relevant events from the simulated environment).
The major steps of the Simulink simulation include all the
periodic activation times of tasks, as well as the aperiodic
events that lead to the activation of other tasks. The custom
blocks define major steps in the simulation at all the points
in time in which a scheduling event occurs. Every time a
major step occurs, the block implementing the real-time
scheduling simulator is invoked and processes (if there is
any) the task arrival event and any other event that is active
at the same time. The task activation instant corresponds

to the activation of the first segment. Next, the real-time
scheduler determines the tasks to be set in execution and
the execution time for their current segments, determining
the point in time when the current segments are expected
to complete. These times are set as future major step times
in the Simulink simulation.

Our framework adds the capability of simulating real-
time task execution of Simulink models on single- and
multi-core platforms through two custom blocks: Kernel
and Task, implemented as C++ S-Functions (custom
block implementations, blocks are shown in Figure 9). The
interactions between the Simulink simulation engine and
our custom blocks occur through a predefined set of API
functions that allow setting inputs and outputs and forcing
a simulation event (zero crossing point).

The block Kernel models an event-based real-time
kernel and the scheduler inside it on a single- or multi-
core computer node according to a given scheduling policy.
Each task is modeled with one instance of the block Task
and consists of the serialized execution of the segments/-
subsystems.

Figure 9. Kernel and Task blocks.

Each block Task is a triggered subsystem, executed
on the occurrence of a function call event received on its
port function(). Its output interface consists of two ports:
activ and next_instr_duration. The first one is an array
of function call events with size equal to twice the number
of subsystems managed by the task. This port is used to
issue activation and termination events to the Simulink
subsystems executed in the the task segments. The second
port outputs a scalar signal representing the duration of
next segment executed by the task. Each time Task is
triggered, it issues the termination signal for the previously
executed segment (if any), outputs the activation signal
for the current segment, and transmits the execution time
of the new segment to the block Kernel. The duration
of segments executed by Task is set by a variable in the
Matlab workspace. The computation time of a segment can
be fixed or random (uniform, exponential and Dirac delta
distributions).

The block Kernel has two input ports: duration and
trigger. On the duration port receives an array of values,
one for each Task block, with the indication of the duration
of the next segment to be executed. On the second port, it
receives the array of activations signals of aperiodic tasks
(from external sources). The block has one output port,
named activ, which is used to signal to each task the
execution of the current segment. The block Kernel is
responsible for keeping the scheduling simulation aligned
with the system simulation. At each activation, it checks
for any aperiodic requests. If there is any, it activates the
corresponding aperiodic tasks. Next, it advances the RT

scheduler simulator. Two types of events are relevant for
the simulation: the segment completion and task completion.
In case of a segment completion, Kernel reads the input
signal on the port duration and dynamically creates a
new instruction for the corresponding task. In case of a
task completion, Kernel resets the internal state of the
corresponding task.

A number of parameters configure the (simulated) kernel
and are set through the Kernelmask dialog. The scheduling
policy (Deadline Monotonic - DM, Fixed-Priority - FP,
and Earliest Deadline First - EDF), with its options
(deadline miss recovery), and the number of cores on which
the task execution is simulated. The current implemen-
tation of the scheduler simulator is obtained through an
abstract interface from the open source RTSim project
(rtsim.sssup.it). RTSim supports multi-core architectures
with global scheduling policies.

The actual start and completion times of the task
segments must correspond to the times in which the
corresponding subsystems reads or sample their inputs
and produce their outputs. To guarantee this execution
semantics that accounts for CPU availability, the activation
of the (formerly periodic) subsystem blocks by Simulink
must be inhibited. The subsystem blocks must be changed
from periodic to function activated (Figure 10) and a latch
barrier must be added on all its outputs. The signals
activating the subsystem (and its input sampling) and
the output latch are generated by the task blocks upon
the beginning of the execution and the completion of the
corresponding task segment.

Task1

C D E

BA

A AB B

C D D E

activate
segment

terminate
segment

D

PID

y

r

u

f() f()

Latch

D Q

segment
terminate

segment
activate

Task2

Figure 10. The execution of subsystems modeled through segments.

Figure 10 describes the activation mechanism of a block
(D in this example). When a task segment starts executing,
the block is activated (activation signal). The output signal
u is latched and enabled to the output only when the
segment terminates the execution.

V. Generation of Back-Annotated Models from
the Mapping Model

A set of Acceleo Model-to-text generation templates
processes the SysML Papyrus model and generates au-
tomatically the Simulink blocks for the task and sched-
uler implementation. The current set of scripts (and the
Simulink custom blocks) handle the case of single-core and
multicore execution under global scheduling policies. The
Acceleo scripts are invoked from a common main template
that performs the following sequence of operations: 1) The
Simulink custom library of tasks and scheduler blocks is

opened. 2) The functional model is saved and a new model
is created for its backannotated version. 3) A Matlab script
is generated, that creates the initialization variables for
the kernel and the task attributes. 4) Another Matlab
script is generated for the generation of the kernel and the
task blocks. 5) Finally, another set of .m files is created
to modify the input model by changing the subsystem
blocks to triggered, adding latches on the output links
and rerouting the connections (removing the old links and
adding new ones that go through the latches).

As an example, Figure 11 shows the most relevant part
of the template file that generates the kernel block.

[template public generate_kernel (mdl : Model) post (trim
())]

...
[file (’ kernel_gen_commands .m’, false , ’UTF -8 ’)]
[** - Adding the Kernel block */]
[generateKernelBlock (mdl_name , cpu , rtos)/]
[** - Adding the infrastructure for the activation of

tasks and signals with task duration */]
[generateTasksManagementInfrastructMulti (mdl_name ,

t2c_set)/]
[** - Adding the Duration of next task instruction */]
[generateBlocksOfNextDuration (mdl_name)/]
[/ file]

Figure 11. Acceleo template instructions for the generation of the
kernel and task blocks.

Figure 12 shows the template sections that generate the
Matlab instructions for the creation of the kernel block.

[template public generateKernelBlock (mdl_name : String ,
cpu : Class , rtos : Class) post (trim ())]

[** Add and configure the Kernel block */]
...
add_block (’yaks /Kernel ’, ’[mdl_name /]_bn/Kernel1 ’, ’

Position ’, kern1_pp);
[** Configure ’taskset_descr_name ’ */]
set_param (’[mdl_name /]_bn/Kernel1 ’, ’taskset_descr_name

’, ’task_set_descr ’);
[** Compute the other mask parameters by using the Class

instances cpu and rtos */]
[** Set the scheduling policy (’ scheduling_policy ’) */]
[let sched : Class = rtos. getSchedulerFromRtos ()]
[setKernelMaskParamSchedPolicy (mdl_name , sched)/]
[** Set the Deadline miss rule (’ dead_miss_rule ’) */]
set_param (’[mdl_name /]_bn/Kernel1 ’, ’dead_miss_rule ’,
’[sched . getValueOfStereotypePropertyEnumLit (’

BswResources :: BswRTOS :: BswScheduler ’,
’dlMissPolicy ’)/] ’);
[/let]
[** Set the Time resolution (’time_res ’) */]
set_param (’[mdl_name /]_bn/Kernel1 ’, ’time_res ’,
’[rtos. getValueOfStereotypePropertyEnumLit (’ BswResources

:: BswRTOS :: BswRTOS ’, ’timeRes ’)/] ’);
[** Set the Number of cores (’core_num ’) */]
set_param (’[mdl_name /]_bn/Kernel1 ’, ’core_num ’,
’[cpu. getValueOfStereotypeProperty (’ MARTE ::

MARTE_DesignModel :: HRM :: HwLogical :: HwComputing ::
HwProcessor ’,

’nbCores ’)/] ’);
[** Set the Underlying engine (’ under_engine ’) */]
set_param (’[mdl_name /]_bn/Kernel1 ’, ’under_engine ’, ’

RTSIM ’);
...
[/ template]

Figure 12. Acceleo template instructions for the generation of the
kernel block.

VI. Application Example
The three servo Simulink example with the PID con-

trollers of Figure 2 and Figure 5 (in SysML) is mapped

onto a single-core platform. The result of the mapping is
the structure of tasks in Figure 8. The example assumes
that each segment of control code, implementing the PID
functionality of one subsystem, takes a fixed amount of
time equal to 2ms to execute.

The mapping model includes all the information needed
to automatically generate and add as back-annotations the
kernel and task blocks to the original Simulink model. The
Acceleo M2T transformation processes the mapping model
and generates a collection of Matlab scripts that contain the
back-annotation commands. The execution of the Matlab
scripts produces the Simulink model of Figure 13.

Task3_1

function()
activ

next_instr_duration

Task2_1

function()
activ

next_instr_duration

Task1_1

function()
activ

next_instr_duration

Signal
Generator

Scope

SS_PID3

function()
r

y

u

SS_PID2

function()
r

y

u

SS_PID1

function()
r

y

u

Mux1

Latch_PID3

function()

D Q

Latch_PID2

function()

D Q

Latch_PID1

function()

D Q

Kernel1

activ

duration

trigger

Ground1

[S1_3_1]

[S1_2_1]

[S1_1_1]

[F1_3_1]

[F1_2_1]

[F1_1_1]

[D3_1]

[D2_1]

[D1_1]

GotoD1

[D1]

[A3_1]

[A2_1]

[A1_1]

[S1_3_1]

[S1_2_1]

[S1_1_1]

[F1_3_1]

[F1_2_1]

[F1_1_1]

[D3_1]

[D2_1]

[D1_1]

FromD1

[D1]

[A3_1]

[A2_1]

[A1_1]

Display

1

Demux1

DcServo3

1000

s +s2

DcServo2

1000

s +s2

DcServo1

1000

s +s2

Clock

Figure 13. Simulink model with back-annotations of kernel and task
models.

One instance of kernel block (Kernel1) and three
instances of task blocks (the names are the same of the
corresponding SysML modeling artifacts) are added to
the functional model. Since the example does not consider
aperiodic tasks, a ground block is connected to the trigger
port of the kernel block (top-side).

Kernel1 outputs task-activation signals in the or-
der specified by the taskSetIdx attributes of the
«ThreadToCPUMap» allocations in the mapping model. Sim-
ilar considerations apply to the way tasks communicate
the duration of the next segment to Kernel1 through the
Goto-From connections D3_1, D2_1 and D1_1. Each PID
subsystem is transformed to a triggered subsystem and a
latch barrier is added on all its outputs.

Task blocks manage the activation and termination
signals of the PID subsystems executing in the segments.

Two function-call signals are issued by each task block.
These signals are sent to the trigger port of the subsystem
and latch blocks managed by the task through Goto-From
connections. Connection labels are prefixed with S1_ and
F1_ to indicate, respectively, the activation and termination
signals of the first (and, in this case, the only) segment
of each task. In the general case, the indices of activation
and termination signals of a specific segment depends on
the mapOrder attribute of the «FunctionToThreadMap»
instance that describes the subsystem-to-task allocation
relationship.

Figure 14 shows a snapshot of the generated Matlab
code that adds the block Kernel1 and configures its
parameters.

% - Add and configure the Kernel block
kern1 = ’threeservos_bn / Kernel1 ’;
add_block (’t_res / Kernel ’, kern1);
set_param (kern1 , ’taskset_descr_name ’,’task_set_descr ’);
set_param (kern1 , ’scheduling_policy ’, ’EDF ’);
set_param (kern1 , ’dead_miss_rule ’, ’Continue ’);
set_param (kern1 , ’time_res ’, ’Milli_Seconds ’);
set_param (kern1 , ’core_num ’, ’1’);
set_param (kern1 , ’under_engine ’, ’RTSIM ’);

Figure 14. MATLAB commands for the generation of block Kernel1.

A number of parameters are readily available from the
platform model: (scheduling_policy, dead_miss_rule,
time_res and core_num), and their values are set through
the Matlab function set_param().

The timing properties and the type of tasks in the task-
set are described by the Matlab variable task_set_descr
in Figure 15 (cell array).

% Description of timing properties of task set
task_set_descr = { ...

% type %iat % rdl %ph
’PeriodicTask ’, 4*0.001 4*0.001 0; ...
’PeriodicTask ’, 5*0.001 5*0.001 0; ...
’PeriodicTask ’, 6*0.001 6*0.001 0; ...

};

% Sequences of pseudo instructions (task codes)
task3_1_descr = { ’fixed (0.002) ’ };
task2_1_descr = { ’fixed (0.002) ’ };
task1_1_descr = { ’fixed (0.002) ’ };

Figure 15. Definition of type and timing properties of tasks in the
task-set, and of execution times of tasks activities.

Tasks types and periods (or interarrival times) are
available from the mapping model of Figure 8. Relative
deadlines coincide with periods. For each task, the time-
scale constant is generated depending on the value of
the unit of the task period (NFP_Duration), which is
of type TimeUnitKind and for which MARTE provides
a convFactor attribute (with respect to seconds). In this
case, all the tasks periods are expressed in milliseconds,
therefore a time-scale constant equal to 0.001 is generated.
The duration of segments executed by each task is described
by a Matlab cell array of strings (Figure 15). Each string
that describes the computation time of a segment is
available from the (SysML) functional model of Figure 5.

The back-annotated Simulink model enables the verifi-
cation (by simulation) of the impact that scheduling and

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

Time [s]

Am
pl

itu
de

Three Servos with RM Scheduler
o2

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

Time [s]

Am
pl

itu
de

o1

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

Time [s]

Am
pl

itu
de

o0

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

Three Servos with EDF Scheduler
o2

Time [s]

Am
pl

itu
de

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2
o1

Time [s]

Am
pl

itu
de

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2
o0

Time [s]

Am
pl

itu
de

Reference
TrueTime
T−Res + RTSim

Reference
TrueTime
T−Res + RTSim

Reference
T−Res + RTSim

Reference
T−Res + RTSim

Reference
T−Res + RTSim

Reference
TrueTime
T−Res + RTSim

Figure 16. Verification by simulation on the back-annotated model.

execution times delays have on the performance of the
controls. Figure 16 shows the output of the DC-servos with
respect to the reference signal. when a Rate Monotonic
(RM, on the left) or EDF scheduling policy (on the right) is
used. In both cases, task Task1_1 (on top) has the lowest
priority. In this example, the CPU utilization factor is
U ' 1.23. The overload condition degrades the performance
of controls with respect to the results obtained from the
Simulink model without back-annotations. In the case of
RM, the task with the lowest priority cannot guarantee
a stable control, because of too many deadline misses. In
the case of EDF, the delay due to scheduling tends to be
spread among the three tasks, and after an initial transient
all tasks miss their deadlines. However, the motion of the
DC-servos is still controlled with a reasonable error, and
the overall control performance is satisfactory.

VII. Conclusions and Future Work
We present a framework for the definition of execution

platforms and task implementations of Simulink models.
The platform and the task implementation are defined
in SysML/MARTE, together with the selection of the
scheduling policies. This allows to keep the functional
model separated from the implementation. An automatic
generation flow allows to obtain a new Simulink model
that contains custom blocks that model the computation
and scheduling delays and evaluates their impact on the
performance of the controls. Future work includes the
extension to distributed architcetures, with the modeling
of networks, messages and communication delays.

References
[1] The MathWorks, Inc. Simulink. [Online]. Available: http:

//www.mathworks.com/products/simulink/
[2] Esterel Technologies. SCADE Suite. [Online]. Available:

http://www.esterel-technologies.com/products/scade-suite/
[3] EAST Architecture Description Language (ADL). [Online].

Available: http://www.east-adl.info/
[4] AUTomotive Open System ARchitecture (AUTOSAR).

Specifications 4.0. [Online]. Available: http://www.autosar.org/
[5] A. Davare, D. Densmore, L. Guo, R. Passerone, A. L.

Sangiovanni-Vincentelli, A. Simalatsar, and Q. Zhu, “metroii:
A design environment for cyber-physical systems,” ACM Trans.
Embed. Comput. Syst., vol. 12, no. 1s, Mar. 2013.

[6] Object Management Group. Model Driven Architecture (MDA).
[Online]. Available: http://www.omg.org/mda/specs.htm

[7] B. Kienhuis, E. F. Deprettere, P. van der Wolf, and K. A.
Vissers, “A Methodology to Design Programmable Embedded
Systems - The Y-Chart Approach,” in Proceedings of Embedded
Processor Design Challenges: Systems, Architectures, Modeling,
and Simulation - SAMOS, 2002, pp. 18–37.

[8] TIMing MOdel – TOols, algorithms, languages, methodology,
and USE cases (TIMMO-2-USE). [Online]. Available: https:
//itea3.org/project/timmo-2-use.html

[9] G. Raghav, S. Gopalswamy, K. Radhakrishnan, J. Delange,
and J. Hugues, “Model Based Code Generation for Distributed
Embedded Systems,” in Proceedings of the European Congress
on Embedded Real Time Software and Systems, ERTSS, 2010.

[10] J. Hugues, B. Zalila, L. Pautet, and F. Kordon, “From the
prototype to the final embedded system using the Ocarina AADL
tool suite,” ACM Trans. Embed. Comput. Syst., vol. 7, no. 4,
pp. 42:1–42:25, Aug. 2008.

[11] Object Management Group. (2011) A UML Profile for MARTE:
Modeling and Analysis of Real-Time Embedded systems. OMG
Document Number formal/2011-06-02. [Online]. Available:
http://www.omg.org/spec/MARTE

[12] E. Wozniak, C. Mraidha, S. Gerard, and F. Terrier, “A Guidance
Framework for the Generation of Implementation Models in
the Automotive Domain,” in Proceedings of the EUROMICRO
Conference on Software Engineering and Advanced Applications,
SEAA, 2011, pp. 468–476.

[13] Automatic Software Generation for Real-Time Embedded
Systems (Gene-Auto). [Online]. Available: http://gforge.
enseeiht.fr/projects/geneauto

[14] Project P. [Online]. Available: http://www.open-do.org/
projects/p/

[15] K. Hänninen, J. Mäki-Turja, M. Nolin, M. Lindberg, J. Lund-
bäck, and K.-L. Lundbäck, “The Rubus Component Model for
Resource Constrained Real-Time Systems,” in Proceedings of
the IEEE International Symposium on Industrial Embedded
Systems, SIES, 2008.

[16] Architecture Analysis & Design Language (AADL). [Online].
Available: http://standards.sae.org/as5506b/

[17] A. Triki, J. Combaz, S. Bensalem, and J. Sifakis, “Model-based
implementation of parallel real-time systems,” Springer LNCS
vol. 7793.

[18] Y. Vanderperren and W. Dehaene, “From UML/SysML to
Matlab/Simulink: Current State and Future Perspectives,” in
Proceedings of the Conference on Design, Automation and Test
in Europe, DATE, 2006, pp. 93–93.

[19] Y. Chandarli, F. Fauberteau, D. Masson, S. Midonnet, and
M. Qamhieh, “YARTISS: A Tool to Visualize, Test, Compare
and Evaluate Real-Time Scheduling Algorithms,” in Proceedings
of Int. Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems, WATERS, 2012, pp. 21–26.

[20] R. Urunuela, A.-M. Déplanche, and Y. Trinquet, “STORM a
Simulation TOol for Real-time Multiprocessor scheduling eval-
uation,” in Proceedings of IEEE Int. Conference on Emerging
Technologies and Factory Automation, ETFA, 2010, pp. 1–8.

[21] D. Decotigny and I. Puaut, “ARTISST: An Extensible and
Modular Simulation Tool for Real-Time Systems,” in Proceed-
ings of IEEE Int. Symposium on Object-Oriented Real-Time
Distributed Computing, ISORC, 2002, pp. 365–372.

[22] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: a
flexible real time scheduling framework,” in Proceedings of the
ACM International Conference on Ada (SIGAda), 2004, pp. 1–8.

[23] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings,
“STRESS: a Simulator for Hard Real-time Systems,” Softw.,
Pract. Exper., vol. 24, no. 6, pp. 543–564, 1994.

[24] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K. E. Årzén,
“How does control timing affect performance? Analysis and
simulation of timing using Jitterbug and TrueTime,” IEEE
Control Syst. Mag., vol. 23, no. 3, pp. 16–30, June 2003.

[25] Object Management Group. (2011) The Unified Modeling
Language (UML). [Online]. Available: http://www.omg.org/
spec/UML/2.4.1/

[26] ——. (2012) The Systems Modeling Language (SysML).
[Online]. Available: http://www.omg.org/spec/SysML/1.3/

[27] Obeo. Acceleo. [Online]. Available: http://www.eclipse.org/
acceleo/

