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Abstract. The Model-based development of robotics applications relies
on the definition of models of the controls that abstract the computa-
tion and communication platform under the synchronous assumption.
Computation, scheduling and communication delays can affect the per-
formance of the controls in way that are possibly significant, and an
early evaluation allows to select the best control compensation or the
best HW/SW implementation platform. In this paper we show a case
study of the application of the open T-Res framework, an environment for
the co-simulation of controls and real-time scheduling, on a quadcopter
model example, highlighting the possible tradeoffs in the selection of the
scheduling strategy and priority assignment.

1 Introduction

Model-based development of robotics controls is an industrial reality. The MAT-
LAB/Simulink tool from Mathworks is a very popular framework used to define
the controls functionality and the model of the controlled plant, and provides for
the simulation and verification of hybrid systems. In Simulink, however, the model
execution is simulated according the the synchronous reactive paradigm, in which
all the computations and communications are assumed to complete within the
interval between two events in logical time (formally referred to as synchronous
assumption). When the (controller) model is implemented in software and its
implementation executes on a real architecture of CPUs and communication
links, computation, scheduling and communication delays may exceed what is
prescribed by the synchronous assumption and the jitters and latencies may affect
the performance of the controls. The impact of these delays is often eveluated
late, at testing time, with significant costs, additional development cycles and
possible changes to the hardware architecture.

An early evaluation of the impact of the hardware and software implementation
is desirable and requires the co-simulation of the controller functionality, the
plant model, and the computation, scheduling and communication hardware and
software platform, together with a model of the software tasks and the messages
exchanged over the networks. To support such a co-simulation in the popular
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Simulink environment we developed the T-Res open project and a framework
supporting its use.

Our framework merges methods and tools of the MDE (Model Driven Engi-
neering [15]) approach in a development flow in which Simulink models are used
to define the functionality of the controls and SysML models define the hardware
execution platform and the task model of the controls implementation. After
the functionality is mapped for execution on the platform model, defining the
structure of the tasks and messages, the execution and transmission times are
estimated (or measured) and the Simulink model can be annotated with blocks
that allow the simulation of the scheduling, computation and communication
latencies, allowing to fine tune the control logic or the task and message model
(possibly with their priorities), or evaluate different scheduling policies.

The evaluation of the impact of the scheduling on the controls performance
allows to overcome the often myopic assumption that all control loops/tasks are
of type hard real-time. In reality, several systems may miss deadlines without
losing stability, and indeed, several systems (including fuel injection [8]) actually
operate in spite of deadline misses, at the boundary of overload conditions.

MDE approaches have become popular in robotics and several MDE Integrated
Development Environments (IDEs) and Domain-Specific Languages (DSLs) are
available. BRIDE1 is an IDE based on Eclipse developed in the BRICS project [1].
It targets the automatic generation of platform-specific code for component-based
frameworks from a graphical (abstract) model of the system architecture and
its SW components (the BRICS Component Model [6]). BRICS uses model-
to-model (M2M) transformations to generate framework-specific code for the
communication, configuration, composition and coordination of ROS [16] and
Orocos-RTT [7] components. The declarative description of robotics architectures
and software (SW) deployment using a DSL is described in [13] with a hierarchy
of architectural concepts for hardware and software, inspired by AADL [4].
However, the properties of HW and SW that define the timing behavior of
components are not included. The SmartSoftMDSD toolchain [17] supports
non-functional properties for design-time real-time schedulability analysis. The
framework allows the graphical modeling of applications in Papyrus2, and provides
M2M transformations to construct a platform-specific model for schedulability
analysis using Cheddar [18].

Some IDE provide DSLs for the algorithmic description of behaviors. V3CMM [5]
is a modeling language that provides a simplified version of UML activity diagrams,
to model the sequential flow of execution within components RobotML [11] is a
DSL aiming at the design of robotic applications in Papyrus and their deployment
to multiple target execution platforms (and simulators). It uses a specialization
of UML state machines for the modeling of the behavior of generated component
implementations. RobotML enables (simplistic) modeling of platform-specific
non-functional properties of SW components, that are used to create models

1 http://www.best-of-robotics.org/bride/
2 http://www.eclipse.org/papyrus/
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for third-party real-time schedulability analyzers. Hence, it suffers the same
drawbacks of the SmartSoftMDSD toolchain.

Virtual Path [14] is a HW-SW co-Design method that includes Simulink in the
development flow, to create executable models representing the controls. In [19],
Wätzoldt et al. adapt the automotive toolchain to the development of robotic
systems. The design methodology uses Simulink for the simulation of robot
functionalities, and Embedded Coder for the generation of the implementation.
AUTOSAR models and tools (e.g., SystemDesk [12]) are used to combine hard
and soft real-time tasks in a system view and analyze the scheduling feasibility.

Finally, TrueTime [9] is a freeware Matlab/Simulink-based simulation tool
that allows to model multi-task real-time kernels and networks in simulation
models for networked embedded control systems and study the (simulated) impact
of lateness and deadline misses on controls. Because of the monolithic architecture
and the number of code artifacts that are needed for system configuration, the
current TrueTime implementation is hardly compatible with an automatic model
generation flow.

2 From the Simulink Model of the Controls to the
Platform and Implementation Design

In the development flow considered in our work (summarized in Figure 1), a
Simulink functional model of the controls executing in the abstract logical time
(zero delays) is the starting point. The functional model is created by importing
in EMF a Simulink model that includes the controller part and the model of
the plant. The Simulink model must comply with the restriction that there is
a decomposition level in which the controller part consists of a collection of
subsystems and each subsystem only contains periodic blocks with the same
period (each subsystem is single-rate).

A Matlab script uses the Simulink modeling API to parse the model structure
and export an XML view of the controller subsystems. The XML conforms to
a schema created in accordance with an Eclipse Ecore meta-model, defined for
representing the execution constraints that apply to the Simulink subsystems
and preserving the structural properties of the Simulink model, such as the types
and interfaces of the blocks and the connections among the blocks, and also the
information related to the timed execution events, including rate and partial
order of execution constraints.

After the functional model is imported in the Eclipse EMF framework, a
QVTo model-to-model transformation is executed to import the model in SysML,
leveraging a profile definition for SR systems. Generic Block entities are mapped
to standard SysML blocks; Subsystem entities are mapped to SRSubsystem
instances. The input/output ports and the corresponding connections are suitably
translated from the source model (Ecore) to the destination model (SysML).

Here, it is extended with the platform and mapping models. For the modeling
of the hardware (HW) part of the execution platform we rely on the concepts
provided in MARTE. It introduces the HwProcessor stereotype, which matches
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Fig. 1: The development flow for the proposed Model-Driven approach.

the concept of CPU and provides the attribute nbCores to specify the number
of cores, thus enabling the modeling of multi-core architectures.

For the modeling of basic software (BSW) components and for the deployment
of BSW modules onto the HW we define our own taxonomy of stereotypes, since
those in MARTE are mostly cumbersome, come with a large number of properties
and are in turn quite difficult to be mastered by the system designer. The BswRTOS
package provides a set of stereotypes to model RTOS concepts (Figure 2a). The
stereotype BswRTOS denotes an RTOS and inherits from the general block concept
of SysML. The RTOS (kernel) contains a scheduler, denoted as BswScheduler,
which is responsible for executing tasks according a given scheduling policy.

The mapping model represents the execution of functional elements by tasks
and the allocation of tasks on cores. Concurrent execution contexts are classified
in terms of Process and Thread instances. A Thread is contained in a Process, is
characterized by a priority value and runs on one of the system cores under the
control of an RTOS. Concrete specializations of Thread are AperiodicThread
and PeriodicThread (with its period).

The mapping model also specifies a set of dependencies that define map-
pings/deployments as extensions of the standard SysML Allocation concept.
The FunctionToThreadMap denotes the mapping of a functional subsystem into
a Thread. When multiple subsystems are mapped into the same Thread, the
attribute mapOrder defines how their execution will be serialized in the generated
thread code. The SysML profile for mapping is shown in Figure 2b.

3 Time and Resource Aware Simulation in Simulink

The simulation of the control functions considering task implementations with
finite execution times and RTOS scheduling delays is enabled by integrating
Simulink and a RT scheduling simulator in the T-Res [3] co-simulation framework.
T-Res is designed according to object-oriented design patterns to provide an easy
integration with any RT simulator.
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(a) Structure of the BswRTOS meta-model. (b) Structure of the Mapping meta-model.

Fig. 2: Mapping and BswRTOS meta-models.

The Simulink master simulation engine computes the model updates at major
steps: time instants in which the inputs and outputs of the blocks are updated.
Major steps include all the periodic activation times of tasks, as well as the
aperiodic events that lead to the activation of other tasks.

T-Res is implemented as a set of custom blocks that execute at all major steps,
interact with the Simulink engine and capture all the relevant events from the
simulated environment. Every time a major step occurs, the block implementing
the RTOS kernel is invoked and processes (if there is any) the task arrival events.
These events are forwarded to the underlying RT scheduling simulator and cause
an update of its internal structure. Then, the kernel block queries the scheduling
simulator to determine future events (execution completions and context switches)
and uses the Simulink API to define major steps in the simulation at all the
points in time in which a task scheduling event occurs.

In a RT simulator, tasks execute according to a model of (time-consuming)
computations. T-Res assumes that the execution of a task is split in units that are
atomic from the standpoint of execution time granularity, but can be preempted,
called segments, informally corresponding to the execution of a function called
by the task main code. Each segment is identified by an execution time and all
segments in a task are executed according to a pre-defined sequence. Segments
represent the execution of Simulink subsystems and their execution order in a
task must match the order of execution of subsystems. The time duration of
each segment corresponds to the execution time of the code implementing the
subsystem. The start and completion times of the segments correspond to the
times in which the corresponding subsystems read or sample their inputs and
produce their outputs. The activation of the Simulink subsystems is changed from
periodic to function activated and a latch barrier is added on all their outputs.
Figure 3a shows the activation mechanism: when a segment starts executing,
the subsystem is activated; the output signals are latched and enabled when the
segment terminates. The signals activating a subsystem (and its input sampling)
and its output latch are generated by the task blocks upon the beginning of the
execution and the completion of the task segment.
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Fig. 3: Execution model of segments and interfaces of T-Res blocks.

The actual implementation of T-Res relies on two custom blocks, namely
Kernel and Task, implemented as C++ S-Functions. Blocks’ input/output in-
terfaces are shown in Figure 3b. The block Task models one instance of a task
that consists of the serialized execution of the segments/subsystems. Task is a
triggered subsystem, executed on the occurrence of a function call event received
on its port f(). Its output port activ issues activation and termination events
to the task segments; port next_instr_duration outputs a scalar signal rep-
resenting the duration of next segment executed by the task. The duration of
segments is set by a variable in the Matlab workspace. The computation time of
a segment can be fixed or random (e.g., uniform and exponential distributions).

The block Kernel models an event-based RT kernel and the scheduler inside
it on a single- or multi-core computer node. It is responsible for keeping the
scheduling simulation aligned with the system simulation. At each activation, it
checks for any aperiodic requests. If there is any, it activates the corresponding
aperiodic tasks. Next, it advances the RT scheduler simulator. Two types of events
are relevant for the simulation: the segment completion and task completion. In the
first case, Kernel reads the input signal on the port duration and dynamically
creates a new instruction for the corresponding task. In the second case, Kernel
resets the internal state of the corresponding task. A number of parameters
configure the (simulated) kernel such as the scheduling policy and the number
of cores of the computer node. Parameters are set through the Kernel mask
dialog. T-Res is open-source and is released under the terms of the 3-Clause BSD
License. Currently, it features a concrete implementation of the adapter layer
based on RTSim [2], which is available under the GNU GPLv2+.

4 Case Study: Quadcopter Attitude Control

The application of the methodology and an example of analysis results are shown
using a model of a quadcopter.
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4.1 Functional, Platform and Mapping Models

The quadcopter is required to lift off and fly in a circle at constant altitude,
while spinning slowly around its Z-axis. The adopted control scheme (shown
in Figure 4a) is taken from [10] with minor changes introduced to comply with
our design restrictions. The original model in [10] contains multiple functional
loops at the top level of the model hierarchy dedicated to set-point generation
and flight control. Each loop has been included in a Simulink subsystem. The
constantly increasing signal for the desired yaw angle, originally generated by
a Ramp block in [10], is now obtained from the set of blocks of Figure 4b that
use the output of an external Clock block as time source. In Figure 4b, start
represents the time at which the block begins generating the signal, X0 is the
initial value of the output and the the rate of change of the generated signal
is influenced by the parameters of the block Step. This is because subsystems
mapped into segments cannot contain continuous time blocks (such as Ramp).
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Fig. 4: Models used for the quadcopter flight-control scheme.

The set-points of the desired circular path and the desired yaw and altitude are
generated by the subsystem SetPointGen. Quadrotor implements the motion of
vehicle. The inputs are the speeds of the four rotors; the output is the 12-element
state vector with the position, velocity, orientation and orientation rate of the
quadcopter. The actual vehicle velocity is assumed to be estimated by an inertial
navigation system or GPS receiver (i.e., there is no velocity estimator in the
Simulink model).

The control strategy involves multiple nested loops that compute the required
thrust and torques so that the quadcopter moves to set-points. Position control has
a two-level hierarchical structure: the subsystem AttitudeLoop implements the
inner loop, which uses the current and desired roll and pitch angles and angular
rates to control the vehicle’s attitude and to provide damping (to slow down the
dynamics). The subsystem PositionLoop realizes the outer loop, which controls
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the XY -position of the flyer by generating changes in roll and pitch angles so as
to provide a component of thrust in the direction of the desired motion. Finally,
yaw angle and altitude are controlled by proportional-derivative (PD) controllers,
respectively implemented by the subsystems YawLoop and AltitudeLoop.

In practice, control loops are implemented as real time tasks, with finite
execution times, running at different rates under the control of a scheduler.
Typical execution rates range from 10Hz for reading (generating) set-points
to 50Hz (or more) for controlling the vehicle attitude. To investigate how the
performances of control code are actually affected by computation and scheduling
delays, a structural view of the Simulink model of controls is first exported to
Ecore and then automatically translated into a SysML model in Papyrus, where
it is extended with the models of platform and mapping (deployment).

Figure 5a shows a (partial) view of an implementation model of controls
consisting of four periodic tasks. Task_spr runs every 100ms and reads the
set-points. Task_pos uses the set-points and the current state of the vehicle
to perform the position control. Every 20ms, it executes the position loop, the
attitude loop and the control mixer, in sequence. Finally, Task_yaw and Task_alt
use the same information to perform yaw and altitude control with a period of
50ms and 25ms, respectively. Figure 5b shows a view of the deployment model
of tasks to a single-core Autopilot/FMU board running a Fixed Priority (FP)
real-time scheduler. Subsystems are now modeled as executing with execution
times randomly generated according to uniform distributions (Figure 7b). Once
the task priorities are specified, the mapping model includes all the information
needed to automatically generate and connect the kernel and task blocks to the
original Simulink model.

(a) Function-to-task mapping model.(b) Models of Autopilot board (with BSW) and
of task-to-platform mapping.

Fig. 5: Functional, platform and mapping models.
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4.2 Back-Annotated Functional Model

The Acceleo M2T transformation processes the mapping model and generates a
collection of Matlab scripts that contain the back-annotation commands. The
execution of the Matlab scripts produces the Simulink model of Figure 6.
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Fig. 6: Attitude control with models of RT kernel and tasks from T-Res.

One instance of kernel block (Kernel1) and four instances of task blocks (the
names are the same of the corresponding SysML modeling artifacts) are added
to the functional model. Kernel1 outputs task-activation signals in the order
specified by the taskSetIdx attributes of the «ThreadToCPUMap» allocations in
the mapping model. Activation signals are forwarded to task blocks through
the Goto-From connections labeled A_spr, A_pos, A_yaw, and A_alt. Similarly,
tasks communicate the duration of the next segment to Kernel1 through the
Goto-From connections labeled D_spr, D_pos, D_yaw, and D_alt.

Each control subsystem is transformed to a triggered subsystem and a latch
barrier is added on its outputs. Task blocks manage the activation and termination
signals of the (control) subsystems executing in the segments.

Figure 7a shows a snapshot of the generated Matlab code that adds the
Kernel1 block, and configures its parameters. All parameters are available
from the platform model and their values are set through the Matlab func-
tion set_param(). The timing properties and the type of tasks in the task-set
are described by the variable task_set_descr in Figure 7b (cell array). Tasks
types and periods (or interarrival times) are available from the mapping model.
Relative deadlines coincide with periods and activation offsets are set to zero.
All task periods are expressed in milliseconds, therefore a time-scale constant
equal to 0.001 is generated. The duration of segments executed by each task is
described by a Matlab cell array of strings (Figure 7b). Each string that describes
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% - Add and configure the Kernel block
kern1 = ’quadcopter_bn / Kernel1 ’;
add_block (’t_res / Kernel ’, kern1 );
set_param (kern1 , ’taskset_descr_name ’,’task_set_descr ’);
set_param (kern1 , ’scheduling_policy ’, ’FIXED_PRIORITY ’);

(a) Matlab commands for the generation of block Kernel1.

% Description of timing properties of task set
task_set_descr = {...

% type %iat % rdl %ph % prio
’PeriodicTask ’, 100*0.001 , 100*0.001 , 0.0 , 0; ... % spr
’PeriodicTask ’, 20*0.001 , 20*0.001 , 0.0 , 5; ... % pos
’PeriodicTask ’, 50*0.001 , 50*0.001 , 0.0 , 15; ... % yaw
’PeriodicTask ’, 25*0.001 , 25*0.001 , 0.0 , 10; ... }; % alt

% Sequences of pseudo instructions ( task codes )
spr_instrs = {’delay (unif (0.001 ,0.002) )’};
pos_instrs = {...

’delay (unif (0.005 ,0.008) )’; ... % PositionLoop
’delay (unif (0.003 ,0.007) )’; ... % AttitudeLoop
’delay (unif (0.002 ,0.004) )’; ... };% CtrlMix

yaw_instrs = {’delay (unif (0.004 ,0.006) )’};
alt_instrs = {’delay (unif (0.008 ,0.009) )’};

(b) Definition of type and timing properties of tasks.

Fig. 7: Matlab commands for the configuration of kernel and task blocks.

the computation time of a segment is available from the execTime attributes of
the «SRSubsystem» block instances.

4.3 Scheduling Selection and Priority Assignments

All design refinements, be them minor (e.g., changing the scheduling policy) or
more prominent (e.g., mapping functional subsystems to a different task-set), are
realized at SysML level to keep platform and mapping models in synch with the
generated Matlab code for back-annotations.

Initially, Task_spr is given the highest priority; the other tasks’ priorities are
assigned according to their period, so that the shorter the period the higher the
priority (Rate Monotonic rule). In this case, computation times and scheduling
delays induce deadline misses of tasks Task_yaw and Task_alt, that do not affect
much the altitude control, as shown in Figure 8a, but degrade the performances
of circular path-following significantly (Figure 8b). This fact is easily explained if
one considers that the low-priority task Task_yaw, which drives the high-priority
task Task_pos (that controls the XY -position of the flyer), is repeatedly subject
to preemption from the mid-priority task Task_alt, and that this prevents the
preservation of SR communication flows between Task_yaw and Task_pos, with
respect to the pure functional control model of Figure 4a.

The analysis indicates that the response time of task Task_yaw has a significant
impact on the effectiveness of the control action, and suggests to raise its priority
to a value greater than the one of Task_alt. Figure 8d shows the simulation
results of circular path-following in the refined design. Task_yaw has now a
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Fig. 8: Simulation results. Comparison of trajectories and errors for different
scheduling and priority assignments.

priority level greater than Task_alt and meets all its deadlines; consequently, the
control behavior is closer to the pure functional one. On the other hand, Task_alt
misses more deadlines than in the initial design and the altitude control performs
slightly worse, as shown in Figure 8c (dark line vs light line). However, it is still
controlled with a reasonable error, which makes the refined design preferable. As
an additional option, we tried an application of the Earliest Deadline First (EDF)
dynamic scheduling policy, which results in a slightly worse performance of the
altitude control (dashed line of Figure 8c) and path following performance similar
to that of the refined priority model (not shown in the graphs but practically
overlapping with the dark line).

5 Conclusions And Future Work

The paper presents a case study application of a MDE framework for the definition
of the execution platform and the impact of the computation and communication
dlays and the T-Res co-simulation framework to a quadcopter model. The example
shows how the selection of task priorities and scheduler models can affect the
performance of the controls and the co-simulation environment allows to quantify
the errors for different options. Future work includes the extension of the modeling
and co-simulation framework to networked architectures and messages and the
evaluation on a distributed case-study.
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