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Abstract—Synchronous reactive models are used by automotive
suppliers to develop functionality delivered as AUTOSAR com-
ponents to system integrators (OEMs). Integrators must then
generate a task implementation from runnables in AUTOSAR
components and deploy tasks onto CPU cores, while preserving
timing and resource constraints. In this work, we propose an
integrated synthesis flow that addresses both sides of the supply
chain. On the supplier side, from synchronous models, we
generate AUTOSAR runnables that promote reuse and ease the
job of finding schedulable implementations. On the integrator
side, we find the mapping of runnables onto tasks and allocation
of tasks on cores that satisfy the timing constraints and are
memory efficient.

I. INTRODUCTION

Model-based design is being increasingly used in the de-
velopment of cyber-physical systems due to its capability
to support early design verification/validation through formal
functional models and to generate software implementations
from models [? ? ? ]. In the automotive domain, model-based
design and the advent of the AUTOSAR standard [? ] for the
specification of software components are changing the way
the automotive electronics toolchain operates from electronics
systems suppliers (TIER 1) to system integrators or carmakers.

Fig. 1. The automotive software systems supply flow.

As shown in Fig. ??, many automotive controls are to-
day specified and realized using Synchronous Reactive (SR)
models such as those modeled in the Simulink/Stateflow tool.
In Simulink, the control functionality is defined (by TIER 1
suppliers) as a network of blocks, organized in a hierarchy of
subsystems or higher level components. In the software supply
flow, a code implementation is generated for each subsystem as
a set of runnables (functions), and provided with the black-box
functional specification of the component as an AUTOSAR
software component or SWC. The code functions are typically

provided in the format of object code or library, together with
an AUTOSAR model that expresses the data dependencies, the
order of execution dependencies, the activation events or the
call dependencies for all the functions. Then, the integrators
(carmakers or OEMs) collect all the SWCs from the TIER 1
suppliers, connect them in a system-level model, and generate
the task configuration by mapping runnables onto tasks and
allocating tasks to the CPUs, assisted by AUTOSAR tools.

In this work, we propose a set of synthesis algorithms for
automating and optimizing the steps in the above software sup-
ply flow. For the first step, we generate a set of runnables from
synchronous models with multiple objectives: The runnables
should try to hide the internal structure of the synchronous
models for IP protection, and at the same time should be
reusable (without false dependencies) and allow for an easy
integration and scheduling. For the second step, we generate
task implementations from runnables to achieve a schedulable
and resource efficient deployment.

A. State of the Art

A number of formal definitions belong to the general
category of SR models, such as the Signal, Lustre, and Esterel
[? ]. Esterel or Lustre models are typically implemented as a
single executable that runs according to an event server model.
Reactions to events are decomposed into atomic actions that
are partially ordered by the causality analysis of the program.
The scheduling is generated at compile time and tries to exploit
the partial causality order of functions. The generated code
executes without the need of an operating system [? ? ].

The Simulink/Stateflow toolset [? ] is very popular among
control system designers. The Simulink code generator pro-
duces a Step function for each subsystem block (a subset of a
component). When generating code from a model, subsystem
blocks are clustered and often provided to the integrator in
binary form with a higher level model of the component.

The problem of clustering synchronous blocks in functions
(runnables) for modular reuse by avoiding false input-output
dependencies is discussed in [? ], with solutions for single-
rate and multirate systems. In [? ], the trade-off between
modularity and code size is further explored. Optimal disjoint
clustering is demonstrated to be an NP-complete problem and
encoded as a Boolean satisfiability (SAT) problem. In [? ], an
efficient symbolic representation is proposed to simplify the
modularity optimization with reusability consideration.

The problem of finding the optimal definition of a multitask
implementation for multirate Simulink models scheduled with
fixed priority on a single-core is discussed in [? ] where aCopyright 2015 ACM 978-1-4503-3455-6/15/04/$15.00



branch-and-bound algorithm is presented. In [? ], an MILP
(Mixed Integer Linear Programming) formulation is provided.

The problem of mapping single-rate SR blocks to functions
and tasks with timing constraints and performance objectives
is discussed in [? ], where the synthesis methods in [? ]
and [? ] are extended to consider execution times and timing
constraints. In [? ], the Firing Time Automaton formalism is
proposed for expressing firing times of multirate components.

The Prelude synchronous language [? ] includes rules and
operators for the selection of a mapping onto platforms with
Earliest Deadline First (EDF) scheduling, including symmetric
multicore architectures. Communication among nodes execut-
ing at different rates is realized using the protocol and data
structures defined in [? ] (an extension of [? ] which is optimal
with respect to the number of required buffers for a system
containing only periodic nodes).

The problem of mapping AUTOSAR runnables onto ECUs
in a distributed system with the objective of bus load mini-
mization is discussed in [? ] and [? ], with solutions based on
a genetic algorithm. The analysis of real-time communication
mechanisms based on spin locks for AUTOSAR runnables in
multicores is presented in [? ], and mechanisms for a flow-
preserving AUTOSAR implementation of synchronous signals
are presented and compared in [? ]. The optimal placement of
tasks with deadline constraints communicating with locking
primitives in multicores is discussed in [? ] [? ], where an
MILP solution and effective heuristics are presented.

B. Contributions

Existing research works either consider the automotive
software synthesis problem as a one-step process with limited
optimization, or treat different aspects of software synthesis as
isolated steps and focus on only part of them. For instance, the
generation of runnables is often conducted without considera-
tion of timing and schedulability implication, and the mapping
from runnables to tasks is often conducted separately from the
mapping of tasks to cores. In this work, we provide:
• An integrated model-based software synthesis flow, with

formal identification of synthesis steps from synchronous
models to AUTOSAR runnables and from runnables to a
task implementation on multicores.
• A set of algorithms for optimizing the synthesis steps with

respect to multiple design metrics, among which schedulabil-
ity is being addressed throughout the entire flow. In particular,
the problem of generating runnables with schedulability
consideration and the problem of mapping runnables with
partial execution order and flow preservation constraints on
multicores have not been discussed before.
• The formalism of Firing and Execution Time Automaton

(FETA) for capturing the worst-case execution time (WCET)
of blocks and runnables at each activation. FETA is utilized
throughout our synthesis flow for timing request description.
In this work, three system views are considered, the Syn-

chronous (or SR) view, the Runnables (or AUTOSAR) view,
and the Task view (or Task model). The SR view and the
Runnables view are the input and output of the first synthesis

step, while the Runnables view and the Task model are the
input and output of the second synthesis step.

II. FROM SR MODELS TO AUTOSAR RUNNABLES

The first step of the synthesis flow is to synthesize multirate
SR models to runnables.

A. System Model

In the Synchronous view, a system is a synchronous
block diagram (SBD) composed of a set of subsystems or
components S = {Cj}. Each component Cj consists of a
network of blocks Bj = {bj1, b

j
2, . . . , b

j
mj} connected by links

representing functional dependencies, a set of inputs Xj =
{xj1, x

j
2, . . . , x

j
pj} and a set of outputs Y j = {yj1, y

j
2, . . . , y

j
qj}.

The output yjk depends on the input xjp, denoted as D(yjk, x
j
p),

if there is a path of links and blocks (indicating a causal
dependency) between xjp and yjk. X(bjk) and Y (bjk) denote
the set of input and output ports directly connected to block
bjk, respectively. Each block bji has an activation period tji and
a WCET γji . Whenever there is an input-output dependency
between a sender block bji and a receiver block bjk for which
the output update function depends on the input values (bjk
is of type feedthrough), there is an execution order constraint
between the two blocks (and their implementations) bji → bjk.
For every bji , Pred(bji ) is the set of its predecessors, and
Succ(bji ) is the set of its successors. The starting synchronous
model may have cycles in the data paths, but there must be no
cycles in the set of the execution order constraints. This means
that whenever there is a cycle in the model, for at least one of
the blocks or subsystems in the cycle the outputs should not
depend instantaneously on the inputs, but only on the block
state (the block is of Moore type).

The component of Fig. ?? with 10 blocks, labeled A to J,
is used as a running example. The block periods are shown
in their right side and their WCET on the bottom-left corner.
Functional dependencies between blocks are shown as links.
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Fig. 2. Illustrating example

In the Runnables view, an implementation Rj consisting
of a set of runnables Rj = {rj1, r

j
2 . . . r

j
p} is provided for

each component Cj . Each runnable is the code implementation
of a subset of the blocks in Cj , denoted as BI(rjk) =
{bjk1, b

j
k2, . . . b

j
ks} with the requirement that the union of all

the runnable blocksets covers all the blocks in Cj . Some blocks
may be allocated to more than one runnables, in which case



a mechanism in the generated code ensures that the block
implemented by multiple runnables is only executed once by
the runnable that executes first. Each runnable rjk has a base
period φjk corresponding to the greatest common divisor of
all the blocks in BI(rjk). A set of partial execution order
constraints rik → rjk is defined on runnables. Each runnable
will read from (write into) the input (output) ports accessed
by the blocks mapped onto it. By extending the previous
notations, X(rjk) and Y (rjk) denote the set of input and output
ports accessed by runnable rjk with X(rjk) =

⋃
tX(bjkt).

B. Using FETA for the Specification of Activations and Exe-
cution Time Requests

The runnables implementation of a component must be a
correct implementation of the synchronous model and provides
the input for the task synthesis. The task model must guarantee
that all reactions complete before the next activation event.
To verify this property, the WCETs of the runnables and
the blocks mapped onto them need to be properly expressed.
The timing specification needs to represent the time instants
at which the execution of the runnable is requested and the
amount of processing time that is requested for each activation.

A runnable is the implementation of a set of blocks (possibly
with different periods) for which execution is requested peri-
odically. A Firing Time Automaton (FTA) [? ] is a formalism
to describe activation events for components that result from
the union of synchronously-activated periodic systems. We
provide an adapted description here (and also simplified –
the original definition allows for activation offsets). An FTA
A is a pair A = (θ, S) where θ is a (base) period and
S = (V, v0, F, δ), where V = {v0, v1, . . . vn} is a set of
vertices/states, v0 ∈ V is the initial vertex, F ⊆ V is the
subset of firing (double lines in the figures) vertices, indicating
a point in time when one or more blocks are triggered, and
δ : vi−1 → vi is a link or transition, with vn → v0 ∈ δ, i.e.
the FTA is a cycle. The cycle period of the FTA is Θ = θ ∗n.
Extending FTA: The FTA description is not sufficient for
our purpose, and needs to be extended with the representation
of the requested execution time at each activation instant.
In addition, to account for the possibility that a block is
mapped onto multiple runnables, execution time needs to be
expressed in a conditional way, depending on the runnable
execution order. In our FETA extension, each firing vertex
vp is associated with a WCET specification list of the type
Wp = {(cp0,−), (cpk, rk)∗}, where the first WCET is uncon-
ditional, and the other WCETs in the list (with cpk < cp0) are
conditional to the previous execution of the runnable rk for the
same activation event (in order to account for blocks mapped
onto multiple runnables, the component index is dropped
because the definition only applies to runnables from the same
component). For convenience, CEp denotes the set of all the
runnables indexes k that appear in the conditional execution
list of Wp. A sample runnable generation of our example,
with the execution time requirements indicated with an FETA
notation is in the Fig. ??. In the figure, the data paths from
the component ports to the internal runnables are shown as

solid lines, the execution order constraints between runnables
(derived by those between the blocks inside them) are shown
as dashed lines.
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Fig. 3. A sample runnable generation of the Fig. ?? example

The FETA specification for a runnable can be easily con-
structed from the timing specifications (t, γ) of its blocks.
Also, an FETA specification can be computed when merging
runnables into tasks. In this case, operators are needed to
compute the merger. Two FETAs are equivalent if their firing
times occur at exactly the same time instants and for the same
(conditional) specification of execution time.
Operators and Composition: Two operators are required
for the composition of FETA specifications: an oversampling
operator, which transforms an FETA A = (θ, S) into an
equivalent A′ = (θ′, S′) with θ = k × θ′ for some integer
k, and a sum operator A = B ⊕ C with θB = θC (defined for
two FETAs with the same base period).

For the oversampling operator, the structure of A′ is
S′ = (V ′, v′0, F

′, δ′), with ‖V ‖ = k ∗ n. For each
vi ∈ V , with i = 0, . . . , n, there is a set of k vertices
{v′i∗k, v′i∗k+1, . . . v

′
i∗k+k−1} ∈ V ′, where v′i∗k ∈ F ′ if vi ∈ F ′

(and W ′i∗k = Wi), and v′i∗k+j 6∈ F ′ for all j = 1, . . . , k − 1.
Finally v′j → v′j+1 ∈ δ′ for all j = 0, . . . , k ∗ n − 1 and
v′k∗n → v′0 ∈ δ′. The result of the sum operation A = B⊕C
is SA = (V A, vA0 , F

A, δA) with ‖V A‖ = nA = lcm(nb, nC)
and vAj → vAj+1 ∈ δA for all j = 0, . . . , nA − 1 and
vAnA → vA0 ∈ δA. For each vAi ∈ V A, there are two nodes
vBj ∈ B and vCk ∈ C such that j = i mod nB and k = i
mod nC (where mod is the modulo operator).
Definition of firing nodes: vAi ∈ FA if vBj ∈ FB ∨ vCk ∈ FC .
Definition of execution time for a firing node: If vBj ∈ FB

and vCk 6∈ FC , then WA
i = WB

i . Conversely, if vBj 6∈ FB and
vCk ∈ FC , then WA

i = WC
i . If vBj ∈ FB ∧ vCk ∈ FC , then

CEA = CEB ∪CEC . For unconditional executions, it is (as-
suming the runnable index matches the FETA denomination)

cA0 =


cB0 + cC0 if B 6∈ CEC ∧ C 6∈ CEB

cB0 + cCB if B ∈ CEC

cBC + cC0 if C ∈ CEB

Similarly, ∀k ∈ CEA (which implies k 6= B,C).

cAk =


cBk + cCk if k ∈ CEC ∧ k ∈ CEB

cB0 + cCk if k 6∈ CEB ∧ k ∈ CEC

cBk + cC0 if k ∈ CEB ∧ k 6∈ CEC



C. Objectives and Constraints

Each runnable inherits inputs, outputs, and execution order
constraints from the blocks mapped onto it. Runnable syn-
thesis, i.e. the mapping of blocks to runnables, is subject
to the constraints of execution order and activation rate, and
evaluated on the metrics of modularity, reusability and schedu-
lability. The execution order constraint requires that all blocks
are implemented by runnables (calling their update functions)
according to their execution order. The rate constraints require
that each block is mapped to a runnable whose period is an
integer divisor of the block’s period. The three metrics for
evaluating runnable generation are introduced in below.

Modularity (IP disclosure): A runnable generation hides
information of the internal block structure if the number of
runnables (and their dependencies) is significantly smaller than
the number of internal blocks. Modularity is measured by the
number of runnables generated.

Reusability: A runnable generation is reusable if it does not
introduce any false input-output dependencies.

The concept of reusability is defined and investigated in [?
? ? ? ]. Fig. ?? shows a simple example. Diagram S includes
three blocks, two inputs and two outputs. If S is implemented
as a single runnable (with a single-function code implemen-
tation of S such as o1, o2 = S.step(i1, i2)) and
reused as a black-box, the feedback connection on the top
right of Fig. ?? is not allowed, leading to limitations in its
reuse. In reality, there is no dependency between o1 and i2
and the feedback composition in the top-right is safe since it
does not result in any functional loop.
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Fig. 4. Different runnable generations result in different reusability

To improve reusability, different runnable generations could
be explored, such as using two runnables: c1, which includes
b1 and b2 and computes o1 from i1; and c2, which includes
b1 and b3 and computes o2 from i1 and i2. The connection
from o1 to i2 becomes possible even when c1 and c2 are
considered as black-boxes, because no loop exists, as shown
in the bottom right of the figure. b1 is part of both runnables
in this implementation. A binary flag is associated with the
invocation of the block update function for b1. The first
runnable executing the block sets the flag so that the other
can skip the execution of b1. Note that this runnable generation
introduces overhead on code size.

For the running example in Fig. ??, if we simply map all
blocks into a runnable, we have false dependencies between
output o1 and input i5, o2 and i1, etc. In comparison, the

runnable implementation in Fig. ?? does not introduce false
dependencies and therefore provides maximum reusability.
However the modularity is worse (more runnables).
Schedulability: A runnable implementation eases schedula-
bility if it does not introduce scheduling bottlenecks. A quan-
titative metric expressing this requirements can be computed
as follows. Any firing vertex vi of any FETA Fk is further
characterized by its local utilization ui = ci0/ρi , where
ρi = θk ∗ di and di is the length of the FETA path from
vi to the next firing vertex (ci0 is the unconditional WCET at
vi and θk is the period of Fk as defined earlier).

For a component C (the index is dropped for simplicity) and
one of its runnable implementation R, the local utilization of
vertex v in the kth runnable rk is denoted as uvk. The sum
of the maximum local utilizations for R is denoted as Ul and
can be computed as:

Ul =
∑
rk∈R

umax
k where umax

k = max
v

(uvk) (1)

The component utilization Uc is computed as:

Uc =
∑
bi∈C

Ci

Ti
(2)

where Ci and Ti are the computation time and period of the
block i in the component.

We define the alpha ratio αu = Ul/Uc as the ratio between
the sum of maximum local utilizations and the component
utilization. αu is used to estimate the schedulability of the
runnable implementation (smaller αu indicates better schedu-
lability). The following theorem helps identify the runnable
generation with maximum schedulability.

Theorem 2.1: The alpha ratio αu = Ul

Uc
for any runnable

implementation R is greater than or equal to 1, i.e. Ul ≥ Uc.
The ratio is 1 if and only if the blocks with the same period
are grouped in the same runnable.

Proof: For the FETA Fk of a runnable, let d′ be the
path length from the vertex at which all the blocks in Fk are
triggered to the next firing vertex. Let Ck,j and Tk,j denote
the computation time and period of block j in the runnable
rk. Then, we have:

Ul =
∑
k

max
v

(uvk) ≥
∑
k

∑
j Ck,j

d′

≥
∑
k

∑
j Ck,j

minj{Tk,j}
≥

∑
k

∑
j

Ck,j

Tk,j
= Uc

It is easy to see that Ul = Uc if and only if minj{Tk,j} = Tk,j
for any j, i.e. all the blocks in rk have the same period.

Intuitively, schedulability is maximized when αu = 1.

D. Runnable Synthesis Algorithms

Utilizing the above definitions of FETA and alpha ratio,
we propose a top-down method and a bottom-up method for
runnable synthesis, to trade off schedulability and modularity
while achieving maximum reusability and minimum code size
(each block is mapped to one runnable).



Top-down Method:
In the top-down method, we first use an MILP formula-

tion to find a runnable generation with optimal modularity,
i.e. the minimal number of runnables, while achieving the
maximum reusability. Next, a heuristic gradually decomposes
the runnables to improve schedulability, until the desired alpha
ratio is obtained. Maximum reusability is preserved during the
process, since the decompositions in the heuristic part will not
introduce any false input-output dependencies.

The initial MILP formulation for obtaining optimal modu-
larity under maximum reusability is as follows (similar as in
[? ]). Maximum reusability can be expressed using constraints
that refer to the causal relationships among outputs and inputs.
Each input or output is represented by a virtual block. X and
Y denote the set of input and output blocks, respectively,
and B denotes the original block set. An input or output
(pseudo) block can only be mapped to the same runnable
as the original block reading/driving the inputs/outputs. Cbi

and Crm denote the component to which bi and rm belong.
The binary variable gbi,rm represents whether the block bi is
mapped to runnable rm, and abi,bj denotes whether bi and bi
are mapped to the same runnable. The variable hrm,rn captures
the causality relation between runnables (if 1 then rm must
be executed before rn) and the parameter Qbi,bj records the
causality relation between blocks and can be computed by
using a BFS (Breath-first search) before running the MILP
optimization. Zrm indicates whether there is at least a block
mapped to runnable rm, and therefore

∑
m Zrm represents

the number of runnables. The constraints on block-to-runnable
mapping are (??–??). Constraints (??–??) define the causality
relations among tasks, and (??) requires that the block-to-
runnable mapping does not introduce any false input-output
dependencies.

min
∑
m

Zrm (3)

Zrm ≥ gbi,rm ∀bi, rm ∈ B,R (4)∑
m

gbi,rm = 1 ∀bi, rm ∈ B,R (5)

gbi,rm = 0 ∀Cbi 6= Crm (6)
gbi,rm = 1 ∀bi, rm ∈ X,Y ∧m = i (7)
gbi,rm = 0 ∀bi, rm ∈ X,Y ∧m 6= i (8)
hrm,rn ≥ gbi,rm + gbj ,rn +Qbi,bj − 2 (9)

hrm,rn ≥ hrm,rl + hrl,rn − 1 (10)
hrm,rn + hrn,rm ≤ 1 (11)

hrm,rn = Qbm,bn ∀bm, rm ∈ X ∧ bn, rn ∈ Y (12)

Starting from the solution obtained from the MILP formu-
lation, the heuristic Algorithm ?? gradually decomposes run-
nables to improve schedulability. At each step, the algorithm
finds the runnable rm that has the maximum local utilization
among those that contain blocks with different periods. It then
tries to decompose fm by moving some of the blocks from fm
to a new runnable fn without introducing cyclic dependencies
(line ?? to ??). First, it tries to find a block bi that can be

moved to rn without introducing cycles (blocks are sorted by
their potential of reducing α). Then it moves to rn all the
other blocks with the same period that will not add a cycle
when added to rn. The new rn will only have blocks with the
same period, thereby reducing α.

Algorithm 1 Top-down heuristic for runnable synthesis
1: Obtain a runnable generation p with optimal modularity with N run-

nables using the MILP formulation.
2: Let α′u be the target value for αu (alpha ratio), N ′ is the desired number

of runnables.
3: αu = ComputeAlpha()
4: while αu > α′u ∨N < N ′ do
5: Let rm denote the runnable with maximum Ul among those with

different period blocks.
6: ∀bi ∈ rm, order bi based on descending Tbi , Cbi
7: rn = Φ, found = false, Tn = 0
8: for all bi ∈ rm in order do
9: if found = false then

10: rn = rn ∪ bi
11: pt = decompose(rm, rn)
12: if existsCycle(pt) then
13: rn = rn − bi
14: else
15: pb = pt, found = true, Tn = Tbi
16: else
17: if Tbi = Tn then
18: rn = rn ∪ bi
19: pt = decompose(rm, rn)
20: if existsCycle(pt) then
21: rn = rn − bi
22: else
23: pb = pt
24: p = pb, αu=ComputeAlpha(), N = N + 1
25: return p

Algorithm ?? does not have to start with a schedulable
solution (e.g., the max local utilization may be larger than
1), and in rare cases may terminate without finding a feasible
solution. In those cases, a pre-processing step can be added to
explore more (schedulable) starting points.
Bottom-up Method:

In the bottom-up method, the initial MILP formulation
finds a runnable generation with maximum schedulability,
i.e. minimum alpha ratio, while achieving the maximum
reusability. Then a heuristic gradually merges runnables to
improve modularity. During the merging process, input-output
dependencies are checked to ensure that maximum reusability
is preserved. According to Theorem ??, schedulability is eased
when runnables only contain blocks with the same rate. The
bottom-up MILP formulation maximizes the schedulability
in runnable synthesis by enforcing such constraint on block
periods, while achieving the maximum reusability and the best
possible modularity. It is similar to the MILP formulation used
in the top-down method, except for the following additional
constraints (??–??) on block periods to ensure that all blocks
in a runnable have the same period.

abi,bj ≥ gbi,rm + gbj ,rm − 1, ∀bi, bj , rm ∈ B (13)
abi,bj ≤ gbi,rm − gbj ,rm + 1, ∀bi, bj , rm ∈ B (14)
abi,bj ≤ gbj ,rm − gbi,rm + 1, ∀bi, bj , rm ∈ B (15)

abi,bj = 0, ∀Tbi 6= Tbj (16)



Starting from the MILP solution, the heuristic Algorithm ??
explores all possible merges between two runnables, and
selects the merge that results in the least increase in the
sum of maximum local utilizations, while retaining maximum
reusability. The merging process continues until the number
of runnables reaches the desired modularity level or the alpha
ratio becomes larger than a given threshold, or no schedulable
merges can be found.

Algorithm 2 Bottom-up heuristic for runnable synthesis
1: Obtain a runnable generation p with optimal schedulability.
2: Let ∆U = inf and N ′ denote the desired number of runnables, α′u is

the desired αu value,
3: Ul = compLocalUtil(p)
4: αu = Ul/Uc

5: while N > N ′ ∧ αu < α′u do
6: for all rm, rn ∈ p do
7: pt = merge(rm,rn)
8: if isSched(pt) then
9: Upt

l = compLocalUtil(pt)
10: if ∆U > Upt

l − Ul then
11: pb = pt, ∆U = Upt

l − Ul

12: if ∃pb then
13: p = pb, update(αu), N = N − 1
14: else
15: return p
16: return p

III. FROM RUNNABLES TO TASK IMPLEMENTATIONS

The runnable synthesis in Section ?? generates runnables
while optimizing schedulability, modularity, reusability and
code size. The second step of our synthesis flow maps run-
nables to tasks, allocates, and schedules tasks on a multicore
platform. This synthesis step is today largely performed man-
ually under the assistance of AUTOSAR design tools.

We assume that cores are scheduled according to a par-
titioned algorithm by local schedulers that are synchronized
in time, to allow for task activations with offset (used for
the preservation of execution order constraints). In the Task
view, all the runnables (for implementing components) need
to be properly mapped to tasks for execution. For simplicity,
we label runnables with a single index, as in ri (note that
runnables from different components may be mapped to the
same task). An execution order constraint may be defined
between two runnables belonging to a component and also
between runnables belonging to different components and
communicating through one of the component ports. ri → rj
denotes an execution order constraint between ri and rj . The
closure of the execution order relation is denoted as ri  rk,
meaning that there is a chain of execution order dependencies
between ri and rk.

The task model is defined for a given core cp as T p =
{τp1 , τ

p
2 , . . . , τ

p
m}. The core index is dropped from tasks when

not required. Each task τj has period θj , activation offset
φj , and is scheduled according to its priority πj using pre-
emptive priority-based scheduling on its core. Tasks execute
the runnable functions mapped onto them according to an
execution order. The worst-case response time of τj is denoted
as wj . A mapping relation M(τj , r

j
s, k) defines the execution

of runnable rjs with order k (in a sequence of runnable calls)
inside the code of task τj (the execution index of a runnable
in its task is also denoted as k(ri)). Also, for simplicity, τ(ri)
denotes the task on which ri is mapped, and c(τi) denotes
the core on which τi executes. By extension, c(ri) is the core
on which ri executes. As an additional notation shortcut, the
attributes of tasks and runnables are also going to be available
in function form when convenient (e.g., φ(τ(ri)) stands for
the offset of the task executing ri).

Task synthesis, i.e. runnable to task mapping and task
allocation and scheduling, is subject to the constraints of
execution order, activation rate, and schedulability and it is
optimized with respect to memory requirements.

A. Constraints

The runnables (and their blocks) executed by a task must
guarantee the synchronous assumption, that is, the amount of
execution time requested at each activation must complete
before the arrival of any following event associated with
the runnable FETA. This is the schedulability constraint for
the task configuration. As for the precedence constraints, if
ri → rj , the following cases apply:
• If τ(ri) = τ(rj), then it must be k(ri) < k(rj) (the
execution order is enforced by the static mapping).
• If τ(ri) 6= τ(rj) and c(ri) = c(rj), then the execution
order may be enforced by the priority order if π(τ(ri)) >
π(τ(rj)). However, when θj < θi, it is possible to delay
the communication between runnables by one period using
a wait-free communication device at the price of additional
memory.
• If c(ri) 6= c(rj), then it must be φ(τ(rj)) > w(τ(ri)) (the
execution order is enforced by an activation offset).
The execution order constraints may be relaxed by adding a

communication delay, which eases schedulability at the cost of
memory. The commercial code generators for Simulink models
allow to relax the execution order constraint by adding a Rate
Transition (RT) communication buffer, which introduces a
communication delay and an additional memory cost estimated
as twice the size of the data communicated between the
functions (for storing the values in the delay element and
for the additional set of output variables). Our runnables to
task mapping algorithms leverage this opportunity to improve
schedulability when necessary. In addition, other communi-
cation buffers may be needed to ensure the preservation of
the data flows when communicating runnables with different
rates are mapped onto different tasks (even if the execution
order is preserved [? ]). Overall, the goal of the task synthesis
algorithm is to find the schedulable solution with the minimum
amount of memory required for RT buffers. Our two proposed
algorithms try to achieve this objective in different ways.

B. Offset-based Schedulability Analysis

Tasks are activated with offset to guarantee precedence
constraints among the runnables mapped onto them. Hence,
the scheduling analysis consists of a set of single-core response
time analysis problems with offset. The offset φi of a task τi is



the maximum among the response times of all the predecessor
runnables that have a successor in τi. These response times
are approximated (with pessimism) with the response time
of the task where they execute. Therefore, there is a circular
dependency between offsets and response times (a fixed point
problem) that is solved iteratively. The offsets of all tasks are
initially set to 0 and response times are computed (as in [? ]).
Next, based on the computed response times, the task offset
assignment is updated, iteratively, until response times and
offsets do not change in two consecutive iterations.

The FETA Fi of a generic task τi provides the set of
all the possible activation times with the corresponding ex-
ecution time requests. For each core, we compute the least
common multiple of all the cycle periods of the FETA of
its tasks Θci = lcm(Θi). This least common multiple is the
cycle period for the entire set of tasks. For each FETA Fi

(or task τi), we denote the set of activation times in the
scheduling period plus the largest offset Θci + maxk(φk) as
{ai(1), ai(2) . . . , ai(p)}. When considering the task offset, φi
is added to all the activation times a′i(k) = ai(k) + φi. At
this point, leveraging the analysis in [? ], the response time
for a generic request in a′i(k) of execution in the FETA of
τi is performed by considering all the busy periods of level
πi that begin before or at a′i(k) and are not completed by
a′i(k). The difference between the endpoints of these busy
periods and the activation time a′i(k) is the response time
for the activation in a′i(k), which has an implicit deadline
at the next activation in a′i(k + 1). The comparison between
the response time and the deadline for each time request in
the FETA allows to compute the schedulability and also the
minimum slack (minimum difference between any response
time and its deadline) for a task.

C. Task Synthesis Algorithms

The first task synthesis algorithm is a search heuristic
extended from the solution presented for single-core platforms
in [? ] and the allocation heuristics in [? ], [? ]. The algorithm
conducts a greedy allocation with limited backtrack, and
has a post-processing step that tries to further improve the
solution. The task set is constructed incrementally when a new
runnables is allocated. Algorithm ?? shows an outline of the
greedy heuristic.

The set of the partial execution order constraints defines
a graph of runnables. Some of these runnables do not have
incoming edges (are unconstrained) and are placed in an
allocation list L sorted by their maximum local utilization
umax (a measure of their impact on schedulability). The
algorithm iteratively picks the runnable on top of this list
and tries to find a core for its execution. The core is selected
based on communication affinity, that is, among the set of
cores that are hosting at least one of the runnable predeces-
sors and have a utilization lower than the threshold Utot/c,
where Utot =

∑
Cj Uj is the sum of the utilizations of all

components, and c is the number of cores. If no affine core is
available, the execution core is selected among all cores.

Algorithm 3 Greedy heuristic algorithm for task synthesis
1: G graph of all runnables with execution order dependencies
2: L = {} is the allocation list; C = {c1, c2, . . . cp} the set of all cores.
3: set RC = {Rc1, Rc2, . . . Rcp} as runnable-to-core allocations.
4: set T C = {Tc1, T c2, . . . T cp} as task sets by core.
5: each Rci = {}, Tci = {} initially empty.
6: state = firstrun;
7: while G 6= 0 do
8: R = runnables in G with no predecessor
9: L ← R

10: ri = GetFirst(L)
11: CA = ComputeAffineSet(ri, RC)
12: cur min = -1;
13: for all ck in CA do
14: Rck ← ri; SaveandUpdate(T C) // try allocation
15: min slack = ComputeMinSlack(T C)
16: Rck = Rck − ri; Restore(T C) // undo allocation
17: if min slack > cur min then
18: cur min = min slack; ctgt = ck
19: if cur min > 0 then
20: Rctgt ← ri // if schedulable
21: G = G − ri; Update(Tctgt)
22: else
23: if state = firstrun then
24: state = recovery // try recovery once
25: AR = ComputeAffineRunnables(ri)
26: Deallocate(AR, RC); Update(T C)
27: G = G

⋃
AR

28: else
29: return fail
30: return success

Once the list of candidate cores for allocation is selected,
the runnable is tentatively allocated to each of them in
turn (line ?? to ??). When it is allocated onto a core, the
tasks already mapped to the core are examined in function
SaveandUpdate: If there is a task with the same period,
the runnable is assigned to it. Otherwise a new task is created.
Whenever a new task is added, priorities are reassigned
according to the rate monotonic rule. Then, the task set is
analyzed for schedulability. For each possible core allocation,
the algorithm stores the minimum (or least) slack for any task
in the system (computed in ComputeMinSlack). If there is
at least one core that allows for a positive slack, the runnable
is allocated to the core that results in the largest minimum lack
(line ?? and ??). Otherwise, the algorithm enters its recovery
stage (line ?? to ??). The recovery stage has two steps. In the
first step, all the runnables that are in a dependency relation
with the current runnable are deallocated and the algorithm is
restarted. If one of the runnables in this list is again found
unschedulable, they are deallocated again, but this time the
algorithm will ignore the affinity rule when allocating them.

When a runnable is successfully allocated, it is removed
from the graph and the allocation list. All its outgoing edges in
the precedence graph are removed, and a new set of runnables
possibly becomes available (all its predecessors are allocated)
and are placed in the allocation list.

Each time a runnable is tentatively allocated and the set is
analyzed for schedulability, the activation offsets are updated
in the iterative procedure discussed in Section ??. The task
allocation and priority and offset assignments are constructed
to enforce all execution order constraints, thereby avoiding



if possible the memory cost for the rate transition buffers.
However, this may prevent reaching schedulability. When the
algorithm cannot find a schedulable solution, it relaxes the
execution order constraints using buffer delays, and tries again
to find a schedulable solution.

We also develop a Simulated Annealing (SA, in Algorithm
??), as a comparison to the greedy heuristic.

In the initial configuration, each runnable is mapped to its
own task. Tasks are randomly allocated to cores and scheduled
using Rate Monotonic policy. At each step, Acur denotes the
current solution, which includes information of the runnable
to task mapping, task to core allocation, and core-level
task scheduling. At each iteration, a randomChange(Acur)
transition function computes a new candidate solution by
randomly selecting one of the following transition operators:
• Randomly select a core and two tasks on that core, and swap

their priorities.
• Randomly select a core and two tasks on that core, then

merge the tasks and randomly set the new task priority to
one of the original priorities.
• Randomly select a core and one task on that core, then

randomly select a subset of its runnables and create a new
task from them (with a random priority).
• Randomly select a core and one task on that core, and

migrate the task to a different randomly selected core.
Solutions with cycles among runnables and tasks mapped

to different cores are not allowed, because the offset up-
date rule is not guaranteed to converge in those cases.
existCycle(Anew) will check for the existence of cycles.
After each transition, the memCost(Acur) function computes
the memory cost Cnew of the new candidate solution Anew,
and checks its schedulability using checkSched(Anew). If
the solution is not schedulable, a penalty ∆ is added to its cost.
If Cnew is better than the current cost Ccur, the new solution
is accepted; otherwise, it is accepted with a probability that
is computed by P (Ccur, Cnew, T ) (an exponential function of
the cost difference and the inverse of a temperature parameter
T as in typical SA). For each temperature value, there can be
up to K∗ new solutions, and the algorithm terminates when
the temperature T is lower than a minimum T ∗. The best
schedulable solution found Aopt is returned at the end.

IV. EXPERIMENTAL RESULTS

We apply our synthesis flow to two industrial case studies
and a set of synthetic examples. The experiments are run on
a 3.7GHz quad-core server with 8G memory.

A. Fuel Injection Example

The first industrial case study is a portion of an automotive
fuel injection control example from [? ], with 58 subsystem
blocks, 5 inputs and 10 outputs.
Runnable synthesis: We apply the top-down runnable syn-

thesis method, which completes within 2 hours (the MILP
formulation in the bottom-up method cannot be solved within
24 hours because of its complexity, which precludes the use
of the bottom-up method for this example). By changing the

Algorithm 4 Simulated annealing for task synthesis
1: Construct initial configuration.
2: while T ≤ T ∗ do
3: while K < K∗ do
4: Anew = randomChange(Acur)
5: while existsCycle(Anew) do
6: Anew = randomChange(Anew)
7: Cnew = memCost(Anew)
8: is sched = checkSched(Anew)
9: if is sched = false then

10: Cnew = Cnew + ∆
11: if Cnew < Ccur then
12: Acur = Anew , Ccur = Cnew

13: if is sched = true then
14: Aopt = Acur

15: else if P(Ccur, Cnew, T ) > rand() then
16: Acur = Anew , Ccur = Cnew

K = K + 1
17: T = T ∗ β
18: return Aopt

desired number of runnables in Algorithm ??, we obtain a set
of runnable solutions, as shown in Fig. ??. Each solution is
measured by its modularity metric (number of runnables) and
its schedulability metric (alpha ratio).
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Fig. 5. Runnable synthesis with top-down method for fuel injection example

The leftmost point in Fig. ?? is the solution with optimal
modularity (7 runnables, the minimum to ensure maximum
reusability and minimum code size), obtained by the MILP
formulation in Equation (??)–(??). This solution has an alpha
ratio αu = 10.1, and is in fact unschedulable regardless of
future task implementations (the maximum local utilization of
several runnables is larger than 1). This infeasible solution is
the one that would be provided by algorithms in the literature
that only optimize modularity and reusability ([? ? ]).

Our top-down heuristic decomposes the runnables from the
infeasible solution and improves the schedulability. For 12
runnables, αu = 5.12 and the system is potentially schedulable
(i.e., the maximum local utilization of any runnable is less than
1; the actual schedulability can only be determined after the
task synthesis). When the number of runnables is 28, αu = 1,
which corresponds to the maximum schedulability.
Task synthesis: As shown in Fig. ??, the runnable synthesis
step provides a set of potentially schedulable runnable solu-



tions with 12 to 28 runnables. We then apply the two task
synthesis algorithms (greedy heuristic and simulated annealing
– GH and SA in all figures) to these solutions. We randomly
generate the memory cost for each possible communication
buffer, and we assume a 4-core processor for task allocation
and scheduling. The block execution times in this application
result in an average global utilization (the total execution time
requests in the hyperperiod of all runnables divided by the
hyperperiod) of 60%. While this number is low, it easily results
in tight local schedulability constraints for individual events,
because of the large range of possible runnable periods in this
example.

Runnable # 12 14 16 18 20 22 24 26 28
GH 6.3 8.7 8.3 16.8 14.5 11.1 13.8 13.4 11.5
SA N/A 12.1 12.6 18.6 20.9 9.4 11.3 24.5 N/A

TABLE I
MEMORY COSTS OF THE TASK SYNTHESIS RESULTS FOR THE FUEL

INJECTION EXAMPLE (IN KB)

Table ?? shows a summary of the results. The greedy
heuristic algorithm is more effective in finding schedulable
solutions (SA is not able to find a solution for the 12 and 28
runnables configurations) and produces schedulable solutions
with lower memory cost, with the exception of two cases
(22 and 24 runnables) where the results are comparable.
The possible reason for the higher memory cost in this case
is that the heuristic algorithm does not try to optimize the
memory requirements for buffering communications between
high priority and lower priority tasks. In terms of runtime, it
is approximately 1 hour for SA and under 1 minute for GH
for each case.

B. Robotics Car Example

The second industrial case study is a Simulink model of a
robotics car from [? ] that performs a path following algorithm
based on a front and a lateral camera. The model has 6 inputs,
11 outputs and 28 blocks (some blocks are macro-blocks with
S functions and are considered as black boxes).
Runnable synthesis: For the robotics car example, the re-
sults of both top-down method and bottom-up method are
shown in Fig. ??. The top-down method starts with a max-
modularity solution (left most solution with two runnables)
that is unschedulable. When the number of runnables reaches
7 in the top-down heuristic, a potentially schedulable solution
is found. When the number of runnables reaches 11 in the top-
down method, the maximum schedulability is reached with
alpha ratio being 1. The bottom-up method starts with a max-
schedulability solution (right-most solution with 8 runnables
and alpha ratio being 1, obtained by the MILP formulation
of the bottom-up method), and uses the heuristic to gradually
merge runnables to improve the modularity. When the number
of runnables decreases to 5, the alpha value increases to 2.
The algorithm cannot find any 4-runnable solution that is
schedulable, and therefore stops at 5 runnables.

The bottom-up method provides better results (smaller alpha
ratio with the same number of runnables) because it starts
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Fig. 6. Runnable synthesis (top-down and bottom-up) for the robotics case

with a solution that provides maximum schedulability and best
possible modularity. Its disadvantage is longer runtimes. The
bottom-up method runs 127 minutes for robotic example (most
of the time is spent on the initial MILP formulation) while the
top-down method takes only 7 seconds.

The task synthesis for this example is relatively easy be-
cause of the problem size. Both SA and GH are able to
find schedulable solutions for all the potentially schedulable
runnable generations from top-down and bottom-up methods.

C. Synthetic Examples

We also apply our algorithms to a set of synthetic examples
generated by TGFF [? ], with 10 to 50 blocks in the diagram
(20 examples for each block size).

Runnable synthesis: The bottom-up method completes all
examples with 20 blocks or fewer, and some of the 30-
block examples. The top-down method completes within 1
hour for all examples, and in general is much faster than
the bottom-up method (because of the complexity difference
in the MILP formulations). We observe similar trade-offs
between modularity and schedulability as in the industrial case
studies, for both top-down and bottom-up methods. Fig. ??
shows the runnable synthesis results with top-down method
for examples with 50 blocks. For each modularity level, the
average, maximum and minimum alpha ratio values are shown.
If we apply the algorithms from literature that only consider
modularity and reusability, none of their solutions is feasible.

Task synthesis: We then apply our two task synthesis al-
gorithms to the runnable configurations that are generated
in the first step, assuming a 4-core platform. Task synthe-
sis is performed only on potentially schedulable runnable
configurations. Fig. ?? shows the comparison of schedulable
percentage and relative memory cost of the two task syn-
thesis algorithms, for different problem sizes (measured by
the number of blocks in the synchronous model). The solid
lines represent schedulable percentages, and the dashed lines
represent relative memory costs. GH algorithm successfully
schedules more than 90% of the cases, and SA schedules
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Fig. 7. Runnable synthesis with top-down method for synthetic examples

between 55% and 80% of the cases depending on the problem
size. The memory cost of the solutions obtained by GH is also
better than SA, in average 20% to 35% lower. In terms of
runtime, GH is about two orders of magnitude faster than SA.

The high schedulability of the GH algorithm also indicates
that the alpha ratio used in the runnable generation is an effec-
tive measurement of schedulability, i.e., most of the runnable
configurations deemed as feasible are indeed schedulable.
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Fig. 8. Task synthesis algorithms (GH and SA) for synthetic examples

V. CONCLUSION

To fully unleash the power of model-based design and im-
prove design quality, it is essential to have automated synthesis
tools that can generate correct and optimal implementations
from high-level functional models. In this work, we present an
integrated synthesis flow for synchronous reactive models that
includes two steps: a runnable synthesis step that generates
runnables from SR models using a top-down method or a
bottom-up method, and a task synthesis step that maps run-
nables to tasks and allocates and schedules tasks on multicore
platforms using an effective greedy heuristic. Schedulability is
being optimized throughout the flow based on the introduction
of FETA and an abstract schedulability metric. Other metrics

such as modularity, reusability and memory cost are also
addressed, while the synchronous assumption (with its timing
constraints) is preserved. Future work includes generating
multiple runnable configurations for the same component and
considering a more comprehensive model for code execution
on multicores with the consideration of overheads.
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