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Abstract—Multicores are today used in automotive, controls
and avionics systems supporting real-time functionality. When
real-time tasks allocated on different cores cooperate through the
use of shared communication resources, they need to be protected
by mechanisms that guarantee access in a mutual exclusive way
with bounded worst-case blocking time. Lock-based mechanisms
such as MPCP and MSRP have been developed to fulfill this
demand, and research papers are today tackling the problem of
finding the optimal task placement in multicores while trying
to meet the deadlines against blocking times. In this paper, we
provide algorithms that improves on existing task placement
algorithms for systems that use MSRP to protect shared re-
sources. Furthermore, we leverage the additional opportunity
provided by wait-free methods as an alternative data consistency
mechanism for the case that the shared resource is communication
or state memory. The selective use of wait-free communication
can further significantly extend the range of schedulable systems
and consequently the design space, at the cost of memory.

I. INTRODUCTION

Multicore architectures have become commonplace in gen-
eral computing and multimedia applications, and are rapidly
advancing in typical embedded computing systems, including
automotive and controls. Partitioning computing tasks over
multiple (on-chip) cores presents several advantages with re-
spect to power consumption, reliability, and scalability, but it
often requires significant changes to the design flow to leverage
the availability of parallel processing.

In this paper, we consider partitioned fixed-priority
scheduling, where tasks are statically assigned to cores and
each core is scheduled by a local fixed-priority scheduler.
This is widely used in embedded multicore real-time systems
today. Such scheduling policy is supported by the AUTOSAR
standard for automotive systems [1], as well as most com-
mercial RTOSes, including VxWorks, QNX, LynxOS, and all
POSIX-compliant ones. The designer of a partitioned system
with real-time constraints needs to define a static mapping of
tasks to cores, such that all tasks are guaranteed to meet their
deadlines. When tasks share (communication) resources, the
problem requires the consideration of the possible blocking
times, which are a function of the task allocation and the
selection of the data consistency mechanisms. The problem of
finding such a feasible solution is demonstrated to be NP-hard
(even in the special case of no shared resources, the problem
is an instance of bin-packing [15]).

In real-time applications on multicore architectures, com-
munication resources can be shared using lock-based or wait-
free methods. Lock-based methods include locks with sus-
pension, as in MPCP (Multiprocessor Priority Ceiling Protocol
[24]), and spin locks, as in MSRP (Multiprocessor Stack

Resource Policy [17]). They both provide a bounded worst-
case blocking time, with MSRP being simpler to implement
and providing better performance for short critical sections
(see e.g. [7]). Also, the AUTOSAR operating systems standard
[1] mandates the use of spin locks for lock-based inter-core
synchronization.

When the shared resource is a communication buffer
(memory used for communicating data), another possibility is
to use wait-free methods. The writer and readers are protected
against concurrent access by replicating the communication
buffer and leveraging information on the time instant and order
(priority and scheduling) of the buffer access [13], [20]. Wait-
free methods have virtually no blocking time (in reality often
negligible) and may enhance the schedulability of the system
at the cost of additional memory. Of course, they require the
replication of the shared resource, thus are not applicable if
the shared resource is a hardware device. We will discuss how
the two methods compare in the next sections.

State of the Art
Allocation problems are very common in multicore systems,
and in most cases they are proven to be special instances of
the general bin-packing [21] problem. In the context of real-
time systems without considering shared resources, several
heuristics have been proposed, e.g., [6], [15], [16]. For the case
of independent tasks, Baruah and Bini presented an exact ILP
(Integer Linear Programming) based approach for partitioning
[5]. Chattopadhyay and Baruah showed how to leverage lookup
tables to enable fast, yet arbitrarily accurate partitioning [11].
Finally, Baruah presented a polynomial-time approximation
scheme [4]. Similarly, solutions for the partitioned scheduling
of independent sporadic tasks are presented in [4], [14].

MPCP [24] and MSRP [17] are protocols for sharing re-
sources with predictable blocking times in multicore platforms.
The response time bound in [17] for MSRP has been recently
improved using an ILP formulation, as presented in [28].
MPCP and MSRP have been compared in a number of research
works (with respect to the worst-case timing guarantees), with
general consensus that MSRP performs best for short (global)
critical sections and MPCP for large ones. A more detailed
discussion on the design options and the characteristics of lock-
based mechanisms can be found in [8]. There is also abundant
research on the development of new locked-based protocols,
most recently the FMLP+ by Brandenburg [9].

Wait-free mechanisms are an alternative solution for pre-
serving data consistency in multicore communication [13].
They can be extended to guarantee semantics preservation
of synchronous models [29] and sized according to the time
properties of communicating tasks [25], [26].



With respect to the real-time task partitioning problem,
when considering the possible access to global shared re-
sources, Lakshmanan et al. [22] presented a partitioning
heuristic tailored to MPCP. This heuristic organizes tasks
sharing resources into groups in order to assign them to the
same processor. In subsequent work, Nemati et al. presented
BPA [23], another partitioning heuristic for MPCP. It tries
to identify communication clusters such that globally shared
resources are minimized and the blocking time is reduced.

The first work to provide solutions for the partitioning
problem when using spin locks (MSRP) is [27]. Two solutions
are proposed in the paper. One is the ILP optimization formu-
lation that can provide the optimal solution, but its runtime
is exponentially increasing with the problem size. The other
is the Greedy Slacker (GS) heuristic, which obtains good-
quality solutions in a much shorter time. GS assigns tasks
to cores sequentially according to a simple greedy policy
that tries to maximize the least slack (i.e., the difference
between the deadline and the worst case response time).
[18] provides implementations of MPCP, MSRP, and wait-free
methods on two open source RTOSes and the selection of these
data consistency mechanisms that satisfies the schedulability
constraints, but the task placement is assumed to be given.

Our Contributions
In this work, we consider MSRP as the option of lock-based
synchronization protocol. We first explore the possibility of
improving on the Greedy Slacker algorithm. The proposed
algorithm, defined as Communication Affinity and Slack with
Retries (CASR), attempts to improve on the GS allocation
strategy in two ways: it considers task communication affinity
in the allocation and includes a recover-and-retry mechanism
in those cases where the slack-based strategy fails to find a
feasible allocation.

Next, we consider an additional design option when the
shared resource is a communication buffer, by selectively
replacing MSRP-protected resources with those protected by
a wait-free mechanism. We combine these two methods for
managing global resources to find a system configuration
that is schedulable with the minimum amount of required
memory. We present two approaches that try to find the optimal
task placement and selection between MSRP and wait-free
methods for global communication resources. The first (GS-
WF) extends the GS heuristic by only using wait-free methods
when GS fails to allocate a task. The algorithm assumes
MSRP as the default mechanism, but uses wait-free methods
when the system is unschedulable with MSRP. The second
approach, MPA (Memory-aware Partitioning Algorithm), is
a heuristic that leverages wait-free methods from the start
(while still trying to minimize the overall memory cost).
Experiments show that GS-WF and MPA can significantly
improve the schedulability of the systems with modest memory
cost. Between these two algorithms, MPA provides better
results in terms of both schedulability and memory when there
is a large number of shared resources.

The paper is organized as follows. We define our system
model in Section II, and summarize MSRP and wait-free
methods with the schedulability analysis results in III. In
Section IV, we present the CASR algorithm. In Section V we
describe the two approaches for selecting the data consistency
mechanisms. We give an illustrative example in Section VI. In
Section VII, we evaluate and compare the results of the four

algorithms (GS, CASR, their extension with wait-free methods,
and MPA) in terms of system schedulability and memory cost.
Finally, Section VIII concludes the paper.

II. SYSTEM MODEL

The system under consideration consists of m cores P =
{p1, p2, . . . , pm}. n tasks T = {τ1, τ2, . . . τn} are statically
allocated to them and scheduled by static priority. Each task
τi is activated by a periodic or sporadic event stream with
period or minimum interarrival Ti. The execution of task
τi is composed of a set of alternating critical sections and
sections in which τi executes without using a (global or local)
shared resource, defined as normal execution segments. The
worst case execution time (WCET) is defined by a tuple
{Ci,1, C ′i,1, Ci,2, C ′i,2, ..., C ′i,s(i)−1, Ci,s(i)}, where s(i) is the
number of normal execution segments, and s(i) − 1 is the
number of critical sections. Ci,j (C ′i,j) is the WCET of the j-
th normal execution segment (critical section) of τi. πi denotes
the nominal priority of τi (the higher the number, the lower the
priority, thus πi < πj means τi has a higher priority than τj),
and Pi the core where it executes. The global shared resource
associated to the j-th critical section of τi is Si,j . The WCET
Ci of τi is

Ci =
∑

1≤j≤s(i)

Ci,j +
∑

1≤j<s(i)−1

C ′i,j (1)

The worst case response time Ri of τi can be calculated
as the least fixed-point solution of the formula (2), where Bli
is the local blocking time, and Bri the remote blocking time,
that is, the worst-case length of the time interval in which the
task has to wait because of critical sections executed by lower
priority tasks on local and global resources, respectively. C∗i
is the worst-case execution time for task τi after considering
the possible additional time spent while spinning on a global
lock (in the case of spin lock based protocols).

Ri = C∗i +Bli +Bri +
∑

πh<πi∧Ph=Pi

⌈
Ri
Th

⌉
C∗h (2)

III. MSRP AND WAIT-FREE COMMUNICATION:
BLOCKING TIME VS. MEMORY

We propose to combine MSRP and wait-free methods to
improve system schedulability while keeping the memory over-
head low. We first introduce them and highlight the tradeoff
between the associated blocking time and memory cost.

A. Multiprocessor Stack Resource Policy

MSRP (Multiprocessor Stack Resource Policy) [17] is a
multiprocessor synchronization protocol, derived by extension
from the single-core Stack Resource Policy (SRP) [3]. In SRP,
each resource has a ceiling equal to the highest priority of any
tasks that may access it. At runtime, a task executing a critical
section immediately changes its priority to the ceiling of the
corresponding resource. After the task starts, it never blocks
when requesting a shared resource, but can possibly wait for
lower priority tasks to terminate their critical sections while
being in the ready queue. The local blocking time Bli of task
τi is bounded as the longest critical section of a lower priority



task on the same core accessing a resource with a ceiling higher
than πi.

Bli = max
k:πk>πi∧Pk=Pi

{
max

1≤m<s(k)
C ′k,m

}
(3)

In the multicore extension MSRP, global resources are
assigned with a ceiling that is higher than that of any local
resource. A task that fails to lock a global resource (in
use by another task) spins on the resource lock until it is
freed, keeping the processor busy. (In the MPCP protocol, for
comparison, the task is suspended and yields the CPU.) To
minimize the spin lock time (wasted CPU time), tasks cannot
be preempted when executing a global critical section, in an
attempt to free the resource as soon as possible. MSRP uses a
First-Come-First-Serve queue (as opposed to a priority-based
queue in MPCP) to manage the tasks waiting on a lock for a
given busy resource.

In this paper, we adopt the sufficient analysis on the global
blocking time [17]. Recently, a more accurate analysis of the
blocking time in MSRP based on an ILP formulation has been
proposed [28]. However, for the use in an optimization problem
in which many solutions need to be evaluated quickly, the
significant runtime makes it unscalable to large systems, as
demonstrated in Section VII.

The spin time Li,j that a task τi may spend for accessing
a global resource Si,j can be bounded by [17]

Li,j =
∑
E 6=Ei

{
max

τk:Pk=Pi,1≤m<s(k)
C ′k,m

}
(4)

This is the time increment to the j-th critical section of τi.
Thus, the total worst case execution time C∗i is

C∗i = Ci +
∑

1≤j<s(i)

Li,j (5)

MSRP maintains the same basic property of SRP, that is, once
a task starts execution it cannot be blocked. The local blocking
time Bli is the same as in SRP (Equation (3)) and the worst-
case remote blocking time Bri is [17]

Bri = max
k:πk>πi∧Pk=Pi

{
max

1≤m<s(k)
(C ′k,m + Lk,m)

}
(6)

B. Wait-free Communication Buffers

The objective of wait-free methods is to avoid blocking
by ensuring that each time a writer needs to update the
communication data, it is reserved with a new buffer. Readers
are free to use other dedicated buffers. Figure 1 shows the
typical stages performed by the writer and the readers in a
wait-free protocol implementation [12].

The algorithm makes use of three global sets of data. An
array of buffers is sized so that there is always an available
buffer for the writer to write new data. An array keeps in the
i-th position the buffer index in use by the i-th reader. Finally,
a variable keeps track of the latest buffer entry that has been
updated by the writer. Each reader looks for the latest entry
updated by the writer, stores its index in a local variable, and
then reads its contents.

Consistency in the assignment of the buffer indexes can
be guaranteed by any type of hardware support for atomic
operations, including Compare-And-Swap (CAS) (as in the

Signal read completion

Writer

Step 1

Reader

Find a free buffer position

Write data

Find the latest written entry
Mark entry as in use

Step 3

Step 2 Read data

Signal write completion

Fig. 1: Writer and readers stages in wait-free methods.

original paper by Chen and Burns [12]), but also Test and Set,
and hardware semaphores, as available in several architectures
today (the required support for atomicity is discussed in detail
in [19]). The use of hardware support for atomicity is not
limited to wait-free methods. Any implementation of MSRP
needs similar instructions for the low-level protection of the
lock data structures (including the FIFO queue for tasks
waiting for the shared resource).

The implementation of a wait-free mechanism is possible
in constant time (independent from the number nr of the
readers, as opposed to the O(nr) solution in [12]) using the
Temporal Concurrency Control Protocol (TCCP) discussed in
[26]. It does not need additional blocking times and has limited
overhead (as discussed in Section III-C). However, it requires
an array of buffers, thus additional memory, compared to lock-
based methods. The number of required buffers is

max
j∈R

⌈
lj
Tw

⌉
(7)

where R is the set of readers, Tw is the period of the writer, and
lj is the lifetime of reader j (the sum of its worst-case response
time Rj and the largest offset Ow,j between the activation of
reader j and the previous activation of the writer).

C. Wait-free vs. Lock based, limitation and performance issues

Wait-free methods are not meant to be a simple replace-
ment for lock-based methods. They can only be used for
memory resources (communication or state buffers). When the
access to the shared resource cannot be simply isolated as a
set of reads, such as a counter increment, wait-free methods
still apply, upon the condition that the task performing the
operation reads the content from a buffer item and writes its
updated content onto a different buffer. A counter increment
(like the statement x = x+1) wrapped inside a lock is a
simpler solution, which requires a time overhead of a single
lock- operation, smaller than the sum of the overheads for
a read and a write if these two operations are protected
separately. However, the cases that affect more the worst-case
performance are those that require large access times, where
a read-then-write pattern is less frequent.

In addition, even though the wait-free implementation
requires multiple copies of the buffer, it does not require
additional copy operations. Simply, instead of overwriting
the same memory section, the writer writes its updates on a
different memory buffer every time (in cyclic fashion). Also,
readers get a reference to the buffer item they are allowed
to use (the freshest one), which is guaranteed not to be



overwritten by the writer, and therefore can use the data already
in place, without the need of additional copies.

To find the associated time overhead, a measurement-
based comparison of wait-free (TCCP) and lock-based (MPCP,
MSRP) implementations on the Erika open source OSEK OS,
running on a Freescale FADO processor (a heterogeneous dual-
core) has been performed [18]. The overhead of TCCP is no
larger than 43 CPU cycles, or 0.36 microsecond if the CPU
frequency is at 120MHz, including the time to execute the
hardware semaphore instruction used to achieve atomicity in
the implementation. In all the measures, TCCP has an overhead
no larger than one third of MSRP (in MSRP, to set up the data
structures for acquiring or releasing the lock). Of course this
does not related to the blocking time, which is the time spent
after the lock acquisition and before its release.

Hence, with a limited penalty for the wait-free implemen-
tation, we assume that overheads even out or are negligible for
both wait-free and MSRP when compared to task executions
and resource access times. The task response time while using
wait-free methods can be computed using the general formula
(2) by setting C∗i = Ci, Bli = 0, and Bri = 0, as there is no
local or global blocking.

IV. CASR: TASK PLACEMENT WITH AFFINITY

The Greedy Slacker (GS) algorithm [27] presents a method
to obtain a resource-aware assignment of tasks to cores. It is
based on a simple rule: tasks are ordered by decreasing task
density (Ci/Di) and assigned sequentially to cores. At each
step, the candidate task is assigned to the core that guarantees
the maximum value of the minimum slack among the tasks
already allocated. To determine the minimum slack assuming
a task is assigned to a specific core, GS uses a modified version
of Audsley’s optimal priority assignment scheme [2]. The main
problem with GS is that slacks cannot be computed unless all
tasks are allocated. Therefore, at each stage, the task slacks
can only be estimated by using the subset of tasks already
allocated. In addition, GS does not include recursion or retries.
If at any point, a task fails to be assigned to any core, no
alternative solutions are tried and the algorithm returns failure.

Based on the above observations, we propose a new
heuristic, the Communication Affinity and Slack with Retries
(CASR), listed in Algorithm 1. It has the following features:
– CASR tries to assign tasks sharing the same resource on the
same core by considering their communication affinity.
– When a task is unschedulable on any core, CASR has a
recovery mechanism that de-allocates tasks and retries.

A task τi is defined to be affine to another task τj if the
two share some common resource. A core p is affine to τi
if at least one task affine to τi has been assigned to p. Task
affinity is not transitive. For example, if τi uses {r1, r2}, τj
uses {r2, r3} and τk uses {r3, r4}, then τi and τk are both
affine to τj . However, τi and τk are not affine to each other.

CASR has a main loop in which tasks are considered for
allocation in order of their density. For each task τi in the set
to be allocated NA, CASR tries to allocate τi on its affine
cores first. Intuitively, this is an attempt at minimizing the
global blocking time. However, without further constraints, a
core could be overloaded by a large cluster of affine tasks and
the partitioning procedure results in failure. To prevent such
a scenario, an affine core p can only be added to the set of
candidate cores Q considered for the allocation of the task τi if

Algorithm 1: Communication Affinity and Slack with
Retries

1: NA ← T ; aff chk=true; BL ← {}; PBL ← {};
2: while NA 6= ∅ do
3: τi ← HighestDensity(NA); Q ← ∅
4: if aff chk then
5: for all p ∈ P do
6: if Affine(p, τi) and U(p) ≤ Ub then
7: insert p in Q
8: end if
9: end for

10: end if
11: if Q = ∅ then Q = P
12: C ← ∅
13: for all p ∈ Q do
14: if tryAssign(τi, p) then C ← (s, p)
15: end for
16: if C 6= ∅ then
17: p = FindMaxS(C)
18: Allocate(τi, p); NA = NA \ {τi}
19: continue
20: end if
21: if τi ∈ PBL then return failure
22: if τi ∈ BL then
23: PBL = PBL ∪ τi
24: aff chk = False
25: else
26: BL = BL ∪ τi
27: end if
28: D =AffineSet(τi);
29: for all τk ∈ D do DeAllocate(τk); NA = NA ∪ {τk}
30: end while

its total utilization U(p) is lower than a predefined utilization
bound (Ub) (lines 5–9). If there is no available affine core,
e.g. they are all overloaded, CASR simply considers all cores
as candidates to host τi (line 11).

Ub is a tunable parameter for the algorithm. Unfortunately,
the algorithm is sensitive to the value of Ub and there is no
single value that performs best in all our experiments. A value
that performed very well on average and provides for a good
baseline is Ub = UT /m, where UT is the total task utilization,
with the obvious intuitive meaning of trying to achieve load
balancing. In our experiments (Section VII) this value performs
consistently better than GS. However, given that the runtime
of the algorithm allows for multiple executions in a reasonable
time, it is possible to execute the algorithm with a set of
different values for Ub (e.g., from 0 to 1 in steps of 0.25 or
0.1) and select the best outcome among them. This allows to
further and sensibly improve upon the GS solution.

After finding the set of candidate cores Q, the following
steps (lines 12–20) are the same as in GS. The method
tryAssign is iteratively called on each of these cores. A task
is assigned to the core where tryAssign returns the maximum
least normalized slack (s). Like [27], tryAssign uses the
Audsley’s algorithm [2] to find a priority order of the tasks.

The second salient feature of CASR with respect to GS
is the recovery procedure that is invoked when no core is
available for τi (in the algorithm, when the set C is empty).
Every time the allocation of a task τi fails, CASR de-allocates
all its affine tasks previously allocated to some core, and
puts them back in the list NA (lines 28–29). This recovery
procedure, however, is not used unconditionally. The first time
a task fails to find a suitable core, it is put in the black-list
BL (line 26); the second time it fails, the task is put in the
post-black-list PBL (line 23). When the post-black-list PBL
is used first, continuing to the assign a task to its affine cores
will most likely lead to another failure. Hence, when a task



enters the list PBL, the CASR algorithm stops considering
the affinity between cores and tasks, by setting the aff chk
flag to false (line 24). Only if the allocation of a task inside
the PBL fails, the CASR task partitioning procedure returns
failure (line 21).

V. USING WAIT-FREE METHODS TO INCREASE
SCHEDULABILITY

As summarized in Section III, MSRP provides data con-
sistency for shared buffers at the price of a blocking time and
a negative impact on the schedulability of the system. The
blocking time increases with the number and the length of the
critical sections on global shared resources. Wait-free methods
provide an alternative way to ensure consistent data access to
shared resources. They have practically no blocking time, but
this comes at the price of additional memory cost. We propose
to use a combination of MSRP and wait-free methods, to
leverage their complementary characteristics. We develop two
algorithms for task partitioning and the selection of protection
mechanisms in multicore systems. The first is a wait-free
extension of the GS and CASR algorithms. The second is an
entirely novel memory-aware partitioning heuristic.

A. Extending Greedy Slacker with Wait-free Methods

Our first algorithm (GS-WF) extends the greedy slacker
heuristic by providing an additional recovery option. Once a
task fails to be assigned to any core, either in the original GS or
after the latest attempt from the PBL in CASR, GS-WF uses
wait-free mechanisms for all the global resources accessed by
the task and attempts to assign the task to each of the cores.
If the use of wait-free methods makes the task schedulable on
more than one core, GS-WF selects the one with the maximum
value of the smallest normalized slack. If the task can not be
assigned to any core even after using wait-free methods, the
algorithm fails.

B. Memory-aware Partitioning Algorithm

Extending the greedy slacker algorithm with wait-free
methods enhances schedulability. However, our extension only
enhances the assignments that the GS or CASR defined in
case of their failure. Given that the allocation decisions are
inherently based on minimizing slack and do not consider
the memory cost, the end result can be schedulable but quite
inefficient in terms of memory usage. Hence, we propose the
Memory-aware Partitioning Algorithm (MPA), which consists
of two phases:
Phase 1: Finding an initial feasible solution (possibly of good
quality, that is, low memory use);
Phase 2: Improving the solution by exploring other possible
solutions using a local search.

In the first phase, the algorithm tries to obtain an initial
schedulable solution. In order to maximize the probability
of finding such a solution, all global resources are initially
protected by wait-free methods. Local resources are managed
using the SRP policy [3]. The second phase reduces the mem-
ory cost resulting from the use of wait-free methods using local
search to selectively change the data consistency mechanism
to MSRP. We first describe the concept of assignment urgency.

1) Assignment Urgency: In the proposed algorithm, tasks
are allocated to cores in a sequential order. The order has a
significant impact on the schedulability and the overall cost
of the task allocation. We propose the concept of Assignment
Urgency (AU ), an estimate of the penalty (in schedulability
or memory) if a task is not the next to be assigned. The
assignment urgency AUi of task τi is defined as:

AUi=


Mmax

τi schedulable
on 1 core∣∣∣∣∣∣ min

1≤j≤m
MC(τi, pj)−min

1 ≤ k ≤ m

k 6= j

MC(τi, pk)

∣∣∣∣∣∣ τi schedulable
on > 1 cores

(8)
where MC(τi, pj) is the memory cost of assigning τi to pj
using wait-free for all its global resources, and Mmax is a
value higher than the worst case memory cost of assigning
any task to any core in the system.

Mmax = max
∀τi∈T

max
∀pj∈P

MC(τi, pj) + 1 (9)

Defining Mmax in this way ensures that tasks schedulable on
only one core will always have higher AU values than tasks
with more assignment options. If a task can be scheduled on
more than one core, then there is usually enough allocation
freedom to defer its assignment. However, this might come
with a cost in memory since the task may have to be sched-
uled on a different core that could not guarantee the lowest
memory cost. The possible memory penalty is quantified by
the (absolute) difference in memory between the core where
it has best memory cost and the one with the second best.

The function TaskSort() in Algorithm 2 computes the
assignment urgencies and sorts the unassigned tasks in the
system by decreasing AU values. LT contains the list of
tasks that have not been assigned yet. The feasible cores for
a given unassigned task τi are stored in a list of candidate
solutions cP . Each entry in cP is a pair of core and cost (p,
c), where c is the memory cost of assigning τi to the core
p, as computed by the function MemoryCost(). If there are no
feasible solutions for a given task, the algorithm reports failure
(line 10). Otherwise, the task assignment urgency is calculated
according to Equation (8) (lines 12-17). The function also
computes the best candidate core for a given task τi as BPi
(line 18). It then sorts the list LT by decreasing assignment
urgency (line 20). In case of a tie in the AU values, the task
with the highest density is assigned first.

The main algorithm (Algorithm 3) for task allocation and
resource protection selection works in two phases.

2) Phase 1: The first phase is a greedy algorithm that
assumes the use of wait-free methods for all global resources
and tries to assign each task to the core on which it has the least
memory cost. The algorithm uses the function TaskSort()
to sort the set of unassigned tasks in the list LT by their
AUs, and compute the best core for the allocation of each
task (where it causes the least memory cost). The task with
the highest assignment urgency is then assigned to its best
candidate core (lines 13–14). At any time, if a task has no
feasible core, the algorithm resets the task assignments and
tries a resource-oblivious any-fit policy which runs in order:
worst-fit with decreasing utilization, best-fit with decreasing
utilization, first-fit, and next-fit (lines 5–10). If any-fit also



Algorithm 2: Calculating assignment urgencies
1: Function TaskSort(LT )
2: for all τi in LT do
3: cP = {}
4: for all pj in P do
5: if isSchedulable(τi,pj ) then
6: cP ← (pj , MemoryCost(τi,pj ))
7: end if
8: end for
9: if cP = ∅ then

10: return failure
11: end if
12: if size(cP) = 1 then
13: AUi = Mmax

14: else
15: sortByCost(cP)
16: AUi = cP[1].c-cP[0].c
17: end if
18: BPi = cP[0].p
19: end for
20: sortByAU(LT )
21: return success

Algorithm 3: Memory-aware Placement Algorithm
1: Function AllocationAndSynthesis(T )
2: Phase 1:
3: LT ← T
4: while LT 6= ∅ do
5: if TaskSort(LT ) = failure then
6: Reset partitioning
7: if anyFit() = true then
8: Goto Phase 2
9: else

10: return failure
11: end if
12: else
13: τk = ExtractFirst(LT )
14: TA← Allocate(τk , BPk)
15: end if
16: end while
17:
18: Phase 2:
19: optimizeResources(TA)
20: CurOpt = TA; NA.add(TA)
21: while NA 6= ∅ do
22: Th = MemoryCost(GetLast(NA))
23: curSys = ExtractFirst(NA)
24: LN =generateNeighbors(curSys)
25: for all AS in LN do
26: optimizeResources(AS)
27: if IsSchedulable(AS) and MemoryCost(AS) < Th and NotVisited(AS)

then
28: NA.add(AS)
29: if size(NA) > n then RemoveLast(NA)
30: if cost(AS) < cost(curOpt) then curOpt = AS
31: Th = MemoryCost(GetLast(NA))
32: end if
33: end for
34: if NoChange(curOpt, #iter) or cost(curOpt) ≤ tgtCost then
35: return CurOpt
36: end if
37: end while

fails, the algorithm fails. At the end of the first phase, all tasks
should be assigned to a core in a task allocation scheme TA.

3) Phase 2: In the second phase, the solution obtained in
the first phase is improved with respect to its memory cost.
This is done in an iterative manner by exploring selected
neighbors (with small memory cost) of candidate solutions
starting from the initial solution obtained at the end of phase 1.
Phase 2 uses two sub-functions:
– optimizeResources(), which optimizes data consis-
tency mechanisms for shared resources;
– generateNeighbors(), which generates neighboring

Algorithm 4: Determining resource protection mecha-
nisms

1: Function optimizeResources(TA)
2: GR = FindGlobalResources(TA)
3: for all ri in GR do
4: setProtocol(ri, WAITFREE)
5: end for
6: sortByMemoryCost(GR)
7: for all ri in GR do
8: setProtocol(ri, MSRP)
9: if isSchedulable(TA) = false then

10: setProtocol(ri, WAITFREE)
11: end if
12: end for

solutions for a given task assignment.
Function optimizeResources() changes the protec-

tion mechanism of global resources from wait-free to MSRP
for as many resources as possible, while retaining system
schedulability. It is called at the start of phase 2 (line 19,
Algorithm 3) and whenever a new candidate solution is found
(line 26, Algorithm 3), to optimize its memory cost.

The determination of the optimal resource protection mech-
anism for each global shared resource would require an
exhaustive analysis of all the possible configurations with
complexity 2r, where r is the number of global resources in the
system, which could easily be impractical. Therefore, a heuris-
tic procedure (detailed in Algorithm 4) is used. The procedure
initializes the protection mechanism for all the global resources
to wait-free and places them in a list GR (lines 2–5). It then
sorts the resources in GR by decreasing memory cost of their
wait-free implementation (line 6). The protection mechanism
of the first resource in GR (the resource with highest cost) is
changed to MSRP and the system schedulability is checked. If
the system becomes unschedulable, the protection mechanism
is reversed back to wait-free. The procedure iterates through
all the resources in GR, changing the protection mechanism
from wait-free to MSRP whenever possible (lines 7–12).

The other function invoked in the main loop of phase 2
is generateNeighbors(). It generates neighboring solu-
tions and places them in the list LN , which will be evaluated
in the context of the local search for improving the current
solution. A neighbor of a given task allocation solution can be
obtained by a re-assignment of a task τi allocated on core Pa
to a different core Pb 6= Pa that can accommodate it, either
directly (1-move neighbor) or by removing a task τj with equal
or higher utilization from Pb and assigning τj to another core
Pc 6= Pb (2-move neighbor).

The main loop of phase 2 (lines 21–37 of Algorithm 3) is
similar to a branch-and-bound algorithm. It performs a best-
first search among candidate solutions. Candidate solutions
for exploration are placed in a list NA sorted by increasing
memory cost of the solution. The first solution (one with lowest
cost) in NA is then further explored by branching (generating
its neighbors).

The difficulty in exploration arises from the estimate on
the quality of the solutions that may be found under a given
branch. The algorithm allows the exploration of solutions
(neighbors) with both lower and higher costs than the current
optimum to avoid getting stuck at a local optimum. However,
to avoid infinite searches, the exploration is bounded by a
condition on the number of iterations without improvement
(line 34, Algorithm 3). It is also bounded by the size of



NA which is at most equal to the number n of tasks in
the system (line 29, Algorithm 3). Essentially, the best n
unexplored candidates at any stage are kept in NA. In our
experiments, larger sizes for NA such as 2n or 4n do not
improve the quality of the obtained solution but result in
substantially longer execution times. To avoid loops, recently
visited neighbors are discarded.

The solution space exploration is depicted in lines 21–37 of
Algorithm 3. The first solution in NA (solution with minimum
cost) is removed from the list (line 23) and considered as
the new base (curSys) for further exploration. Lines 24-33
show the generation and exploration of neighbors. All feasible
neighbors of the current base curSys are generated (line 24).
However, not all of them are further explored. A threshold
value Th is used as an acceptance criterion for new neighbors
generated from curSys, which is set to be the memory cost
of the last solution in NA (the unexplored solution with the
n-th highest cost, as in line 31). Only solutions with lower
costs than Th are accepted for further exploration (added to
NA, lines 27–28). The cost of any new solution is considered
only after resource optimization (line 26), such as when
comparing with Th (line 27), or when comparing with the
current optimum curOpt (line 30).

If there are no more promising solutions to explore (NA
becomes empty), or the solution is not improving for a certain
number of iterations, or a solution with the desired quality
(tgtCost, typically depending on the available RAM memory)
is found, the algorithm terminates (lines 34–35).

VI. AN ILLUSTRATIVE EXAMPLE

We provide a simple example to illustrate the operation
of the GS, CASR, GS extended with wait-free (GS-WF), and
MPA algorithms. The system consists of seven tasks to be
partitioned on two cores, as shown in Table I. All critical
sections have a WCET of 1ms, except that task τ0 has a
duration of the critical sections as 0.15ms. Task deadlines are
equal to their periods. The task-to-core assignment during the
execution of the algorithms is shown in Figure 2.

Task Period (ms) WCET (ms) Readers Comm. size (Bytes)
τ0 10 1 1, 3 256
τ1 100 8 0, 5 128
τ2 400 117 4 48
τ3 40 6 1, 6 128
τ4 20 7 2 48
τ5 1000 394 6 256
τ6 20 7 1, 5 128

TABLE I: Task parameters for the example system

GS (Figure 2a) arranges tasks by density and assigns them
to maximize the minimum slack. Task τ5 has the highest
density and is assigned first. Without loss of generality, it is
allocated to p1. GS then tries to assign task τ4 to both cores. On
p1, the smallest normalized slack after assigning task τ4 to p1
is 0.389. Alternatively, assigning τ4 to p2 achieves a minimum
normalized slack of 0.65. Hence, GS chooses to assign τ4 to
p2. Following the same procedure, τ6 is assigned to p1 then
τ2, τ3, and τ0 are assigned to p2. Greedy slacker then fails to
assign task τ1 to any core. At this point, the algorithm fails.

For CASR (Figure 2b), we assume Ub = 0.858 (the total
task utilization divided by 2). CASR first assigns τ5 and τ4 to
p1 and p2 respectively, similar to GS. Then, CASR allocates
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Fig. 2: Task assignment for the example system: (a) Greedy
slacker, (b) CASR, (c) GS-WF, (d) MPA

τ6 to its affine core p1 and τ2 to its affine core p2. Next, CASR
assigns τ3 to p1 because of the affinity, whereas GS places it
on p2 because of the slack-based rule. At this point, the total
task utilization of p1 exceeds Ub. Thus, when allocating the
next task τ0, p1 loses its privilege as an affine core. CASR
would try both p1 and p2, and allocates τ0 to p2 to maximize
the least normalized slack. Finally, τ1 is assigned to p2, and
the CASR succeeds in partitioning the task set.

GS-WF (Figure 2c) performs the first six task assignment
(5, 4, 6, 2, 3, 0) in the same way as GS. The algorithm then
attempts and fails to assign τ1 using MSRP. At this point, a
second attempt is made to assign τ1 using wait-free for all the
global resources used by τ1. This attempts succeeds with a
memory penalty of 1664 bytes. The memory cost is calculated
according to Equation (7), leveraging information about task
parameters to reduce the buffer sizes.

The MPA algorithm (Figure 2d) starts by calculating the
initial assignment urgencies according to Equation (8). Tasks
are then sorted by their assignment urgency values. Since no
task has been assigned, all assignment urgencies will be equal
to zero. The task density is used as a tie-breaker and τ5 is
selected as the first task to be assigned. Once τ5 is assigned,
the remaining tasks are all schedulable on both cores, therefore
their assignment urgencies depend solely on the memory costs
resulting from sharing resources with τ5. Assigning any task to
core p1 has no memory cost since all shared resources defined
until this stage will be local and managed using SRP. However,
the costs of assigning tasks to p2 will differ among tasks. The
highest memory cost comes from τ6 (cost is 1152) and hence
it has the highest assignment urgency of 1152 (by Equation
(8)). τ6 will then be assigned to the core where it causes the
least memory cost (p1).

Next, the check on schedulability, performed by
TaskSort(), reveals that tasks τ4 and τ2 are now
unschedulable on p1. Since these tasks can only be assigned
to one core, their assignment urgencies becomes Mmax

(according to Equation (8)). All other tasks are schedulable on
both cores and hence have lower AU values. Task τ4 is now
at the top of the list LT (using its density to break the tie
with task τ2) and is assigned immediately to core p2 followed
by task τ2. Phase 1 of the algorithm continues in a similar
way, until the last task τ3 is assigned. All global resources
use wait-free methods as the data consistency mechanism,
and the cost of this initial solution is 1280 bytes.

Phase 2 of MPA starts by running the function
optimizeResources(), which reduces the memory cost
to 768 bytes by changing the protection mechanism for the
resource written by τ3 to MSRP. This solution is the current
optimal solution (CurOpt in line 20 of Algorithm 3). Phase



2 then generates and examines neighbors to this solution.
One of the feasible neighbors can be obtained by swapping
tasks 0 and 3. This proves to be an effective move as
optimizeResources() is able to reduce the memory cost
to 0. Since this is an optimal solution in terms of memory, the
algorithm terminates.

VII. EXPERIMENTAL RESULTS

In this section, the proposed algorithms are evaluated in
terms of schedulability and memory cost (if applicable). In
Section VII-A, we first compare the schedulability analysis
from [17] (Equations (2)–(6)) and the ILP-based approach [28]
using relatively small task sets. The ILP-based analysis [28]
achieves better results, but is significantly slower and does not
scale to large systems. We then provide an overall evaluation in
Section VII-B comparing the GS with the CASR, GS-WF and
MPA in terms of schedulability. We also compare the memory
costs of GS-WF and MPA. In Section VII-C, we study the
effect of other system parameters. Finally, in Section VII-D,
we compare MPA with an exhaustive search to evaluate its
ability to find solutions with reduced memory cost.

We adopt a task generation scheme similar to [27]. We
consider systems with 3, 4 or 8 cores. The task periods are
generated according to a log-uniform distribution from one
of two different ranges [10, 100] ms and [3-33] ms. The
task utilization is selected from the set {0.05, 0.1, 0.12, 0.2,
0.3}. The worst case execution time is then derived from the
period and utilization. The critical section lengths are randomly
generated in either [0.001, 0.1] ms or [0.001, 0.015] ms.

The tasks in the system share a number of resources
between 1 and 40. The resource sharing factor represents
the portion of tasks in the system sharing a given resource.
A resource sharing factor of 0.1 means that each resource is
shared by 10% of the tasks in the system. For each experiment,
a resource sharing factor from the set {0.1, 0.25, 0.5, 0.75} is
selected. The tasks that share a given resource are randomly
selected and are independently generated from other resources.
For each parameter configuration, 100 systems are randomly
generated. The size of communication data was chosen among
a set of possible values (in bytes): 1 (with probability p =10%),
4 (p =20%), 24 (p =20%), 48 (p =10%),128 (p =20%), 256
(p =10%), and 512 (p =10%).

For the CASR, we evaluate two approaches: 1) a single run
of CASR with the utilization bound Ub = UT /m (single Ub)
and 2) the best solution from multiple (five) runs of CASR
with a set of Ub values {0, 25%, 50%, 75%, 100%} (multiple
Ub). For MPA, the number of iterations is set to be 10n where
n is the number of tasks in the system.

A. Schedulability Analysis

We first evaluate the task partitioning algorithm using
the approximate schedulability analysis in [17], and the ILP-
analysis in [28]. The average core utilization is selected to be
in the range 68%-96%, by fixing the average task utilization
at 12% and varying the number of tasks to be scheduled on
3 cores in the range [17, 24]. Tasks share 20 resources with
a resource sharing factor of 0.25. The periods of the tasks are
randomly generated in [10, 100] ms and the critical section
lengths are randomly generated in [0.001, 0.1] ms. Table II
reports the percentage of schedulable solutions obtained by

U = 68% U = 80% U = 88% U = 92% U = 96%
GS 100% 46% 0% 0% 0%

CASR (single Ub) 100% 69% 0% 0% 0%
CASR (multiple Ub) 100% 91% 1% 0% 0%

GS-WF 100%/0 100%/1687 26%/6963 0%/– 0%/–
MPA 100%/0 100%/0 96%/231 37%/3315 0%/–
iGS 100% 99% 70% 9% 0%

iCASR (single Ub) 100% 100% 85% 21% 0%
iCASR (multiple Ub) 100% 100% 98% 37% 0%

iGS-WF 100%/0 100%/31 81%/347 13%/1395 0%/–
iMPA 100%/0 100%/0 96%/0 37%/79 0%/–

TABLE II: Schedulability/average memory cost (GS-WF and
MPA only, in bytes) for the algorithms

U = 68% U = 80% U = 88% U = 92% U = 96%
GS 0.022 0.026 0.011 0.007 0.007

CASR (single Ub) 0.016 0.044 0.035 0.002 0.001
CASR (multiple Ub) 0.019 0.073 0.159 0.009 0.007

GS-WF 0.020 0.032 0.021 0.009 0.008
MPA 0.077 0.183 13.2 3.7 0.022
iGS 65.31 86.06 101.99 49.97 20.16

iCASR (single Ub) 28.49 70.53 122.91 132.74 51.7
iCASR (multiple Ub) 41.54 86.6 164.29 398.2 253.22

iGS-WF 47.31 88.67 104.65 57.83 26.13
iMPA 198.62 247.73 133.43 52.96 17.35

TABLE III: Average runtimes (in seconds) for the algorithms

each algorithm and the memory costs (for MPA and GS-WF).
Table III reports the average runtimes of the algorithms. Each
table is divided into two parts where the upper half shows the
results using the approximate analysis, and the lower half (with
the prefix i) shows the ILP-based analysis results.

The general trend is that CASR with multiple utilization
bounds and MPA outperform the other algorithms. The per-
formance of all partitioning algorithms improves in terms of
both schedulability and memory cost when using the ILP test.
However, this comes at the price of a larger runtime. The
runtimes for relatively small systems increase by 150 times
on average when using the ILP analysis, and even more for
larger systems. In general, the relative comparison among the
partitioning schemes does not appear to be sensitive to the
choice of the analysis method. In the rest of the experiments,
we use the analysis in [17] for larger systems.

B. General Evaluation

The second set of experiments is performed on systems
with a (higher) number of tasks n in the range [40, 76],
scheduled on 4 and 8 cores. The average utilization of each
task is 0.1. The periods are generated in the range [10, 100]
ms, and critical section lengths are selected from the range
[0.001, 0.1] ms. The number of resources shared among tasks
is fixed at 4. Each resource is shared by a quarter of the tasks
in the system.

The results are shown in Table IV and Figures 3 and 4 for
the case with 8 cores. In our experiments, CASR performs
better with respect to schedulability. Table IV shows the
effectiveness of the recovery strategy. For each Ub value, the
table shows the results of CASR for all the generated systems,
as the percentage of systems that are found schedulable after
the first and the second recovery stage (over all the schedulable
ones). In each table entry, the first number is the percentage
of systems successfully partitioned (schedulable) only after



#tasks Ub = 0 Ub = 25% Ub = 50% Ub = 75% Ub = 100%
40 (0, 0) (0, 0) (0, 0) (3, 2) (27, 3)
43 (0, 0) (0, 0) (0, 0) (3, 2) (24, 5)
46 (0, 0) (0, 0) (0, 1) (7, 10) (30, 4)
50 (0, 0) (0, 0) (0, 0) (9, 5) (35, 6)
53 (0, 1) (0, 1) (0, 1) (7, 12) (36, 7)
56 (0, 4) (0, 5) (1, 5) (17, 8) (40, 7)
60 (1, 11) (3, 13) (0, 19) (19, 15) (37, 11)
63 (10, 31) (8, 30) (4, 30) (38, 21) (53, 17)
66 (0, 0) (0, 0) (25, 25) (30, 20) (75, 25)

TABLE IV: Percentage of systems recovered by PBL and BL
in CASR among the schedulable ones (8 cores, 4 resources)

using the post-black-list PBL and the second number is the
percentage of configurations found only after using the BL list
and with empty PBL. For systems with more than 68 tasks,
CASR (and the other policies) do not find any feasible solution.
The recovery strategy is more effective when the utilization
bound is larger or the system utilization is higher.

Figure 3 also shows the improvement obtained using wait-
free methods. The GS-WF algorithm, as expected, contributes
to a significant increase in the schedulability of GS. MPA
performs even better, scheduling more systems at high utiliza-
tions. Figure 4 compares the additional memory cost needed
by wait-free methods for both GS-WF and MPA. It shows that
for systems with a small number of tasks, GS-WF performs
slightly better. However, as the number of tasks (and hence
utilization) increases, MPA outperforms GS-WF. For systems
with 60 tasks (or an average core utilization of about 0.75),
these algorithms perform approximately equally; at higher
utilization, MPA tends to have a lower memory cost.
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C. Effect of Other Parameters

To evaluate systems in which tasks share a large number of
resources we generated system configurations with 4 cores and
20 resources and a number of tasks in the range [20, 40]. All
other parameter settings are similar to those in Section VII-B.
Figures 5 and 6 plot the results of this experiment. The
general trend in schedulability remains the same, with CASR
performing better than GS while MPA significantly improving
upon GS-WF in both schedulability and memory cost.

Next, we fix the number of tasks at 28 and try a variable
number of resources in the range [1, 40]. The schedulability
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results are shown in Figure 7. Both GS-WF and MPA always
schedule all tasks and are thus omitted from the figure.

To evaluate the effect of changing the resource sharing
factor, another experiment is performed using the same pa-
rameter settings while keeping the number of resources at
20 and changing the resource sharing factor (rsf). Table V
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rsf=0.1 rsf=0.25 rsf=0.5 rsf=0.75
GS 100% 68% 0% 0%

CASR (single Ub) 100% 94% 0% 0%
CASR (multiple Ub) 100% 100% 0% 0%

GS-WF 100%/0 100%/1136 98%/9628 67%/11493
MPA 100%/0 100%/0 100%/104 100%/841

TABLE V: Schedulability and average memory cost (GS-WF
and MPA only, in bytes) for different resource uses

presents the result of this experiment. It shows that CASR
schedules more tasks than GS. As communication increases,
CASR outperforms GS. When the use of wait-free resources is
possible, the MPA algorithm performs significantly better than
both GS and GS-WF as tasks communicate more often. MPA
also succeeds in keeping the memory usage relatively small,
requiring just 841 bytes of memory at rsf=0.75 compared to
11934 bytes for GS-WF.
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D. MPA vs. Exhaustive Search

Finally, we tried an exhaustive search to validate the
quality of the proposed MPA heuristic. Exhaustive search can
be time consuming, as task partitioning is an NP-hard bin
packing problem. Therefore, we restrict our comparison to
small systems with 12–16 tasks and 3 cores. To compare the
effectiveness of the MPA algorithm in terms of memory cost,
we computed the results of exhaustive search for partitioning
100 systems at a utilization of 80%. The average memory
cost was 19% worse for MPA. In terms of schedulability,
MPA successfully scheduled all 100 systems. However, MPA
runs significantly faster than the exhaustive search: the average
runtime for MPA is about 6.3 seconds, while the exhaustive
search takes about 2988 seconds on average.

VIII. CONCLUSION

In this paper, we provide two algorithms that improve on
existing task placement algorithms for systems using MSRP
to protect shared resources. Furthermore, we leverage an
additional opportunity provided by wait-free methods as an
alternative mechanism to protect data consistency for shared
buffers. The selective use of wait-free methods significantly
extends the range of schedulable systems at the cost of
memory, as shown by experiments on random task sets.
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