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Abstract—This paper presents a master algorithm for co-
simulation of hybrid systems using the Functional Mock-up
Interface (FMI) standard. Our algorithm introduces step revision
to achieve an accurate and precise handling of mixtures of
continuous-time and discrete-event signals, particularly in the
situation where components are unable to accurately extrapolate
their input. Step revision provides an efficient means to respect
the error bounds of numerical approximation algorithms that
operate inside co-simulated FMUs. We first explain the most
fundamental issues associated with hybrid co-simulation and
analyze them in the framework of FMI. We demonstrate the
necessity for step revision to address some of these issues and
formally describe a master algorithm that supports it. Finally,
we present experimental results obtained through our reference
implementation that is part of our publicly available open-source
toolchain called FIDE.

I. INTRODUCTION

Cyber-physical systems (CPS) comprise many compo-
nents, including physical parts (e.g., mechanical systems,
electrical systems, radio systems) and cyber parts (software
and communication networks). Each of these components is
best described using specialized modeling formalisms, e.g.,
state machines for discrete components such as software,
differential equations for continuous components (physical
plants), and discrete-event systems for networks. Modeling and
simulation are non-trivial problems that have received a lot of
attention and have by now resulted in languages and tools
highly specialized in each of the above domains. For instance,
UML and SysML are standard modeling languages for soft-
ware systems, including notations to specify hierarchical state
machines; Simulink is a de facto standard for signal processing
and control applications; and Modelica is an equation-based
language that is particularly strong for continuous systems.

Co-simulation technology seeks to leverage existing model-
ing and simulation tools and the artifacts created with them, in
order to provide users with the capability to simulate an entire
system. Instead of using a single simulation language and tool
for the entire system, the idea is to model separate parts or
aspects of the system separately, using specialized tools, and
then connect and co-simulate these models by means of an
integration and coordination environment.

The Functional Mock-up Interface (FMI) is an in-
ternational standard, one version of which supports co-
simulation [1]. FMI defines a standard API (application pro-
gramming interface) that enables simulators to work together.
In co-simulation, a component called an FMU (Functional

Mock-up Unit) is a “black box” with input ports, output
ports, and a set of state variables. It implements functions in
the API, including init (initialize the state variables), set
(set the value of an input port), get (retrieve the value of
an output port), and doStep(h) (advance the state and local
time of the FMU by h time units). Internally, an FMU can
implement a simulator that is quite distinct from the simulators
implemented by other FMUs.

The FMI standard only specifies the API that FMUs must
implement, and does not specify a master algorithm (MA),
which is the algorithm that orchestrates the co-simulation by
calling the API functions on interconnected FMUs. Devising
an MA with good properties is not trivial, and has been the
focus of earlier work [2]]. That work proposes an MA that
ensures determinism and consensus on the size of each time
step. An implementation of the algorithm is described in [3].

A key feature of the MA of [2] is step determination,
which entails finding the largest step that is acceptable by
all FMUs before taking a step. This procedure ensures that
maximal progress is made and all FMUs move in lockstep.
After a simulation step has been completed, however, there
might still be reason to conclude that the step taken was too
large. For instance, consider the scenario where one of the
FMUs implements a zero-crossing detector (ZCD). A ZCD
is a component that conceptually takes as input a continuous-
time, real-valued signal x and outputs a discrete event every
time = crosses 0. Now, suppose z(t) = —1 and the master
advances time to ¢ + h. The ZCD does not have enough
information to determine whether a zero crossing has occurred
in the interval between ¢ and ¢ + h. To know whether a zero
crossing has occurred, it will also need to know the value of
the input x at time ¢ 4+ h. This value is not provided in the
FMI API until after the step has been accepted and committed
by all FMUs. Since the ZCD does not know whether a zero
crossing has occurred, the only thing it can do to find out is
to accept the step size h.

After the step has been committed, suppose that the input
to the ZCD is x(t + h) = 1, which means that 2 crossed 0 at
least once between ¢ and ¢ + h. Should the ZCD generate an
output event at the current time ¢ + h? This depends on the
error parameters with which the ZCD is configured. It may
be the case that generating an output event at time ¢ + h is
unacceptable, if the uncertainty interval [¢, ¢+ h] is considered
too large. In that case, the only solution is to backtrack the
entire simulation model, i.e., all FMUs, to time ¢ and try again



with a smaller step. We call this procedure step revision.
We identify it as an essential feature for FMI co-simulation
because it provides an efficient means to respect the error
bounds of numerical approximation algorithms that operate
inside co-simulated FMUs. Hence, the main contribution of
this paper is our enhancement of the MA from [2] by adding
step revision.

The remainder of this paper is organized as follows. In
Section [l we discuss continuous-time and discrete-event simu-
lation and how state of the art tools like Simulink and Ptolemy
II combine them. In Section we discuss step revision, and
explain how exactly it is different from step determination.
Section [IV] summarizes the extensions to the current FMI co-
simulation standard that we rely on in order to offer support
for hybrid co-simulation (i.e., co-simulation that integrates
continuous-time and discrete-event semantics). In Section [V]
we present our MA with step revision capability. We show
an example that leverages this new capability in Section
Finally, in Section we deliver our conclusions and discuss
possible avenues to explore as future work.

II. SIMULATION OF HYBRID SYSTEMS
A. Principles of Numerical Integration

Numerical Integration is the area of numerical analysis that
studies algorithms to calculate the value of a definite integral:

t
z(t) = xo —|—/ z(r)dr
to
The derivative & is the integrated function, z the initial state
(initial conditions), and % is the time instant from which the
integral is solved. In the case of an ordinary differential
equation (ODE), i(t) at any time ¢ is a function of the current
state x(t), the current input u(t), and ¢,

#(t) = f(x(t), u(t),t).

All of these quantities may have vector values. If
f(x(t),u(t),t) is analytic, then the value of x(¢+ h) at some
future time ¢ + h is given by the Taylor Series:
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x(t+ h) =x(t) + ha(t) + h
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which typically converges fast to z(t + h) as the terms in the
series become small after a few terms. The Taylor Series is
at the base of many integration algorithms. These algorithms,
also known as ODE solvers, rely on the truncation of the
Taylor Series to estimate the new value z(t + h) in finite
time. To increase performance without sacrificing precision,
variable step size techniques are used. These methods allow
the user to specify an acceptable error rate and adjust the
step size h so that each step introduces error at no more than
that rate. The higher-order terms may be used to estimate the
error. When the error due to the truncation is not acceptable,
a smaller step size h’ < h is adopted. This approach allows
larger steps to be taken when the error is small relative to
current step size, which can yield a significant reduction in

computational effort. For an overview of these techniques,
see [4].

A commonly used category of ODE solvers is the Runge-
Kutta (R-K) methods. An explicit R-K solver does not only
use a variable step size, it also requires the evaluation of
fx(t),u(t),t) at multiple time instants between ¢ and ¢ + h
to improve accuracy. A third-order Runga-Kutta, for example,
uses the inputs at ¢, ¢ + 0.5h and ¢t + 0.75h. The local
truncation error (incurred by one integration step) is of the
order O(h¥*+1) where k indicates the order of the R-K method.
To know the inputs at each stage, the solver typically needs to
evaluate the outputs of other components in the model at the
corresponding time instants. In practice, in a computer-based
model, such evaluation involves the execution of software
functions that return, each for a particular component in the
model, the value of the output signals of that component based
on its internal state and provided inputs.

In modern modeling and simulation languages like Simulink
E] (The MathWorks) and Ptolemy II [5] (UC Berkeley), the
output evaluation function is free of side effects, meaning
that its invocation does not alter the internal state of the
component. These languages indeed have separate functions
for the evaluation of the output variables and the commitment
to a new state. In FMI, on the other hand, both the evaluation
of an FMU’s outputs and the computation of its new state
are performed inside the same API function called doStep.
The input values at time ¢ are provided to the FMU before
doStep is invoked, and during the integration step from ¢
to t + h, an R-K solver can only estimate later input values
using extrapolation. Similarly, during doStep, a ZCD does
not have access to the input value at time ¢+ h, and hence can
only guess whether a zero crossing occurs during the interval
by extrapolating its input.

B. Models of Computation

The chief challenge in co-simulation is the orchestration
of interactions between multiple concurrently operating com-
ponents, each of which is driven by its own simulator. The
specific coordination rules that a simulation follows, which
make components synchronize a certain way or exchange
inputs and outputs between components in a certain order,
determine its results. In other words, these rules assign a
semantics to the concurrent execution of the components that
partake in a simulation — they constitute what is commonly
referred to as a Model of Computation (MoC). In Ptolemy
II, concurrent components are referred to as actors and a
simulation is coordinated by a director, which implements a
particular MoC [5]. In Simulink, the components are called
blocks and the simulation engine behaves much like the
Ptolemy II Continuous director. In FMI, the components are
called FMUs and the simulation is orchestrated by a master
algorithm (MA).

Hybrid systems — particularly common in the modeling
and simulation of CPS — require the integration of two

! www.mathworks.com/simulink



different MoCs as they exhibit both discrete behaviors (e.g.,
a controller based on an Finite State Machine (FSM))
and continuous semantics (e.g., a model of a physical plant
described by an ODE). The discrete transitions of an FSM
may yield discrete events or cause discontinuities. A discrete
event is present only at a precise time instant and is absent
otherwise. A discontinuity is an instantaneous change in a
continuous signal.

C. Continuous-Time Simulation in Ptolemy II, Simulink, FMI

Tools that simulate continuous-time systems typically pro-
vide different ODE solvers because one solver may outperform
another depending on the particular simulation dynamics at
hand. Ptolemy II, for example, provides a third-order and
a fourth-order R-K explicit solvers with variable step size.
Simulink has a greater variety of ODE solvers, and also
features the third- and fourth-order R-K.

A simulation run in Ptolemy II is split between an initializa-
tion, execution, and wrapup phase. In the execution phase, the
director is able to call two functions on each actor: fire and
postfire.In fire the output of a component is computed.
It is required that the implementation of fire is free of side
effects. The state of a component may only be updated with
the invocation of postfire.

The Continuous director estimates the simulation step size
according to its solver (e.g., to keep the local truncation error
below a predefined tolerance) as well as possible discrete
events reported by actors through the callback fireAt. The
process of refining the step size can require multiple firings
of the model with different values of the step size. Only
when a sufficient accuracy is reached, the director invokes
postfire that finally commits the state. This two-phase
execution scheme guarantees that no revision of the step size
is needed.

The Simulink S-function (i.e., a simulation block written
in MATLAB, C, C++, or Fortran) is executed in a split-
phase fashion, similar to how actors are executed in Ptolemy
II. Simulink further divides a simulation step into a major
step and a minor step. In a major step, the simulation en-
gine executes the functions mdlOutputs (output update)
and md1lUpdate (state update) exactly once per simulation
step. A periodic Simulink block for example, is executed
at the major-step. As opposed to the simulation engine, the
integration process executes in minor steps. In each minor
step, the solver first computes the outputs with md1Outputs
and then updates the state calling mdlDerivatives if the
step size is accepted. The evaluation of mdlOutputs and
mdlDerivatives in minor steps can occur multiple times
depending on the solver. At every execution of the minor
step (called integration stage), the state is updated and the
simulation time moved forward. The size of the minor steps
depend on the solver, like in Ptolemy II. At each minor step,
the Simulink engine performs zero-crossing detection through
the functions mdlOutput and mdlZeroCrossing. For
the detection of a zero crossing, Simulink first computes the
outputs by invoking mdlOutputs and then checks whether
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Fig. 1: Example of timed events.

a zero crossing has occurred by invoking mdlZeroCrossing.
Once detected, the solver uses a bisection search to determine
the point in time when the zero crossing occurred.

The FMI standard does not provide a two-phase API similar
to ones of Ptolemy II or Simulink. Hence, fmi2DoStep is
not free of side effects. The inputs to the FMU are supplied
before each integration step. In this way, a third-order R-K
algorithm embedded into an FMU for example, can only use
extrapolation to estimate the inputs at ¢, t4+-0.5h and t+0.75h.
Extrapolation (except in the special case of some quantized
state systems [6]) yields an approximation to the values of
inputs past ¢, and the extrapolation error will factor into the
integration error. Another disadvantage of R-K algorithms
using extrapolation is that they are extremely inefficient. The
IEX4 algorithm described in [4] for example, is a 10-stage
algorithm while a classical R-K of the same order can be
constructed with only two stages [4].

An alternative to input extrapolation would be to accept time
advancement to t + h in order to evaluate the inputs at that
time, and then perform the integration using a classical R-K
algorithm. Note that given ¢t and h, input values at intermediate
time instants needed for the R-K algorithm can be obtained
now through interpolation. If the error of the integration
performed at t+ h happens to be too large, then the committed
state of all FMUs in the co-simulation must revert back to ¢.
In other words, this approach would require step revision.

D. Combining Continuous Time with Discrete Events

When talking about discrete events, it is useful to distinguish
between two different classes, namely, state events and time
events [4]. The main difference between the two is that time
events can be predicted, meaning that the time at which they
occur is known in advance. State events are not known in
advance and require evaluation of the state in order to be
detected.

Consider for example the Ptolemy model in Figure of
a periodic discrete event signal generator and its output in
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Fig. 2: Example of state events.

Figure @} For this model, it is known a priori at what time
the discrete clock will generate discrete events. From the
beginning of the simulation at time ¢t = 0, an event is generated
every second. These events thus are time events. Behind the
scenes, the discrete clock provides a hint to the Continuous
director as to when the next event will occur by requesting
the director to fire it at a particular time. If the same model
is implemented in FMI, the execution is slightly different. At
any time ¢, the master may propose to the discrete clock FMU
a step size h. Suppose an FMU wants to generate an event at
t+h' and b/ < h, then the FMU will only advance its time to
t+ h'. The master will notice partial progress on behalf of the
FMU and rolls back any other FMUs that ended up accepting
step size h. After having moved all FMUs to ¢+’ (assuming
there are no earlier events to process), the simulation state is
updated, and the event is generated.

An example of a state event is the determination of the
level crossing of a continuous-time signal, implemented by the
model in Figure 2] The input of the level crossing detector is
continuous, its output discrete. Hence, this is a hybrid system.
In this case the level is 0, so we refer to it as ZCD. A
zero-crossing function g(x(t), z(t + h)), often called a guard
function, determines when the level crossing occurs [[7] by
evaluating to true when sign(x(t)) # sign(x(t + h)). When
the function g(z(t),z(t + h)) evaluates to true, a discrete
event is generated at £ + h. An example developed in Ptolemy

I is shown in Figure [2a] the output signals are depicted in
Figures [2b] and

The finite precision of arithmetic in digital computers im-
poses an upper bound on the practically feasible accuracy of
a ZCD. In a continuous-time simulation the situation is less
than ideal. Since the simulation progresses stepwise, the mere
detection of a zero crossing does not actually reveal where in
time the zero crossing exactly took place. All that the detector
indicates is that a crossing happened some time between ¢ and
t + h. Suppose that the zero crossing actually occurs at ¢ + A’
where h' < h. Then depending on the difference between h’
and h, the crossing might not be detected with the required
precision (i.e., it is detected too late). In such case, the step
size has to be revised in order to detect the zero crossing with
the required precision. Importantly, the occurrence of a zero
crossing and the error of its detection can only be evaluated
after the input to the ZCD at ¢ + h is known. This means that
the components upstream of the ZCD need to be evaluated at
t+ h first, and might then have to revert to ¢+ h’ after having
already accepted the step to ¢ + h.

Techniques to revise the step size in order to more accurately
identify the time at which a zero crossing occurred are usually
based on bisection search algorithms described by Cellier [4]
and Zhang [7]. At each iteration of a bisection search, the
output update functions of all components must be evaluated.
Therefore, much like the ODE solvers we discuss in Section|[I]
step size revision may require components to recompute their
output multiple times per simulation step. In Ptolemy II, a
component can be evaluated using the £ire function without
affecting its state; multiple calls to fire can follow each
other up before, finally, postfire is called to commit the
component to a new state. Hence, a model like the one in
Figure ] does not pose a problem in Ptolemy II. However,
if the evaluation of signals is not free of side effects (like in
the case of FMI), step size revision involves restoring each
component to its last know valid state and then re-evaluating
all outputs at the time of the event.

In previous work [3]], we presented FIDE, an FMI Integrated
Development Environment. FIDE uses Ptolemy II and its
graphical user interface to allow a user to import FMUs,
arrange them in a model, and generate a simulator in C code
based on a template that implements an MA. The resulting
code can then be compiled and executed outside Ptolemy II.
FIDE implements the algorithm specified by Broman et al.
in [2].

Figure (3| shows a model, also a hybrid system, from [2].
In this figure, the integrator integrates a constant signal with
value 1, which feeds into an adder. The resulting ramp signal
feeds into a ZCD which generates a discrete event as soon
as its input exceeds the value ul = 0. The event resets the
integrator. The resulting signal at the output of the integrator
is the sawtooth wave in Figure [3b]

Importantly, and not shown in the figure, the ZCD in this
model is supplied with a derivative of its input signal, based on
which it predicts the approximate time at which the next zero
crossing will occur. The ZCD performs input extrapolation to



avoid stepping too far past the zero crossing. In this particular
scenario, there is no need for multiple iterations of evaluating
the output functions and adjusting the step size in order to
converge to a step size that allows the crossing to be detected
within given error bounds. Given the nature of the signal, that
it is piecewise affine, its first-order derivative suffices to predict
when it crosses zero. For this to work, however, the following
requirements must be satisfied:

i The MA must be able to propagate derivatives provided
by the FMUs;

ii Each FMU in the path from a signal source to the
component that wants to extrapolate its input signal must
be able to propagate the derivatives.

Only then will the extrapolation strategy work. In [2] it is
assumed that components that require knowledge about future
inputs in order to compute their current output (e.g., implicit
solvers) would use extrapolation to approximate their future
inputs. The authors, however do not provide alternatives for
the scenario where extrapolation cannot be performed.

In a model-based design chain [8]], and in the spirit of FMI,
FMUs may be designed by different teams, unaware of the
particular context in which a component will be used. In our
example, the propagation of the derivatives from the integrator
up to the ZCD requires a particular design of Adder so that
it accepts an input derivative and also performs the “add”
operation on the value of that derivative before propagating
it. The integrator must also propagate the derivative. Support
for derivatives is optional in FMI; no FMU can be designed
to rely on other components implementing it without breaking
the modularity that FMI is precisely intended to provide.

Now suppose that the ZCD in our example cannot use
derivatives to predict its step size, perhaps because its upstream
adder does not have the optional capability to propagate a
derivative. Instead, we let the ZCD report a fixed maximum
step size. It will then take steps of at most that size, yet the
master may decide to take smaller steps, which will happen
in case other FMUs report a smaller maximum step size. If
the maximum step size of the ZCD is chosen very small
the simulation will become inefficient, but if it is chosen
too large the detector may overshoot zero crossings due to
undersampling. In order to strike a sensible balance between
accuracy and performance, one has to take into consideration
the dynamics of the system, which are often not so predictable
(if they were, the system would not be a very interesting one
to model).

Clearly, using a fixed maximum step size for an FMU like
our ZCD is problematic, and reliance on the availability of
derivatives stands in the way of composability with general-
use components. As an alternative, we propose an MA that
supports step size revision triggered by state events. The ability
to revise the step size allows a ZCD to solely rely on the
simple guard function g(z(t), z(t+h)) which does not require
derivatives. Such a ZCD is more generally composable as it
can work on inputs from components that, like probably most
FMUs, do not supply derivatives.
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Fig. 3: Hybrid System with zero-delay feedback.

E. Related Work

The topic of hybrid co-simulation has seen several contribu-
tions and on-going research efforts in the recent years. Apart
from the work already mentioned above, we would like to
highlight the following projects.

DACCOSIM [9] is a co-simulator developed by the RISEG-
rid institute that can co-simulate FMUs in parallel on different
nodes in a cluster. Although DACCOSIM claims to handle
mixtures of continuous and discrete signals, its implementation
offers merely an approximation of event handling. Following
the definition in [10]], discrete events are instantaneous. In-
stead, in DACCOSIM, events are present over the duration of
a time interval, not at a precise time instant.

Another approach to co-simulation of hybrid systems with
FMI is presented by Denil et al. [[11]. The authors describe a
semantic adaptation mechanism that uses state event detection
to extract events from continuous signals in causal block
diagrams and interfaces them with Statecharts though FMI.
The pre- and post-conditions of events are specified in a
“semantic adaptation model” and a wrapper that implements a
corresponding state event detector FMU is then generated. The
resulting style of event handling is similar to DACCOSIM.

Camus et al. [12]] present a Discrete EVent System Spec-
ification (DEVS) [13]] wrapper for hybrid co-simulation with
FMI. Their approach is, instead of augmenting FMI with the
capability to handle discrete events, to leverage an execution
engine based on the DEV&DESS hybrid system formalism
(which interfaces DEVS with the Differential Equation System
Specification) and co-simulate FMUs with other components.
The authors report only having successfully co-simulated a
single FMU, which explains why they were able to do so
mostly within the operational constraints of FMI 2.0. However,
Camus et al., too, rely on the FMU’s capability to perform
rollback in order to conduct bi-sectional searches for the
localization of state events.
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III. STEP DETERMINATION & STEP REFINEMENT

The ZCD in our example can only detect the sign switch
and evaluate the error only affer having committed to a step
size and having received a new input. When it overshoots and
exceeds the error margin, the correct course of action would
be to undo the previous step and try again with a smaller
step size. The MA in [2] has no provisions for such action.
It does, however, employ a similar but different mechanism
in its step determination routine. Specifically, rollback is used
in the presence of one or more FMUs that do not support
fmi2GetMaxStepSize and need to be stepped in order to
find out whether they accept some proposed step size.

Step determination can be summarized as follows. The
algorithm supposes that some (or none), but not all FMUs can
report their maximum step size. First it interrogates those that
can report their maximum step size and finds the minimum
of the reported values, call it h. Then it speculatively lets
those that cannot report a maximum step take a step of h
(see (1) in Figure EI) to find out what their maximum step
size is. Specifically, an FMU can accept or reject a proposed
time step h by returning different codes when doStep is
called. The next simulation step is determined by taking the
minimum of all obtained maximum step sizes. All FMUs
that are speculatively executed during step determination must
be rolled back to their previous state (transition (2)) before
all FMUs can be moved forward by the determined step
(transition (3)).

Step revision, on the other hand, involves moving the entire
simulation back in time before moving it forward again. This
procedure is necessary in FMI in order to support co-simulated
FMUs that implement numerical approximation algorithms
that suffer an error that is dependent on the simulation step
size which they can only estimate after the step has already
been taken. Both the R-K solver and the ZCD we discussed
belong to this class of components. In order to keep the
error of such FMU within limits, it must in principle be
possible to revise each last-taken step in case an FMU exceeds
those limits. An FMU can indicate its need for step revision
simply by returning an appropriate error flag in doStep or
in getMaxStepSize.

The procedure of step revision is illustrated by the sequence
in Figure [5 and can be broken down as follows:

(D save the state of all FMUs at the current time, say, ¢,
determine h, and attempt to advance time to to = tg+ h

7time
Fig. 5: The procedure of step revision.

if all FMUs can move forward, by calling doStep(h)
on all FMUs;

@ if any FMU ended up in an invalid state
(getMaxStepSize or doStep returned an error
flag [[1]), then proceed to otherwise, repeat (1)} now
with to being the current time (in this case, no rollback
is performed).

(@ restore all the FMUs’ state to time ¢y and try with a
smaller step size s.t. t1 =tg+h' <tz ;

(@) advance the simulation time to ¢; by calling doStep(h’)
on all FMUs;

(3 if all FMUs arrive in a valid state, then go to and
repeat the above sequence, now with ¢; being the current
time, otherwise, repeat with yet a smaller /'

Step revision is complementary to step determination. In
fact, our MA presented in Section |V| features both. After a
step has been determined that is acceptable by all FMUs, some
may still end up in an invalid state, demanding the step be
revised. Both are techniques that involve speculative execution
and rollback, but with step revision the speculation reaches
further, namely, until after the speculative step has concluded.
Also notice that step determination is guaranteed to succeed
in one iteration, whereas step revision may require several
iterations. Step revision, however, is not recursive; it will only
go back and forth between ¢+ h and ¢, each time with a smaller
h until the simulation can successfully move past t + h.

A. Support for Rollback in FMI

FMI 2.0 specifies the following functions to save and restore
the internal state of an FMU [14], respectively:

e fmi2GetFMUstate saves the internal state of the
FMU. It takes as a input a pointer to a FMU state, and
copies the current FMU state into it.

e fmi2SetFMUstate restores the internal state of the
FMU. It takes as a input a pointer to a previous copy
of the FMU state, and substitutes the current state of the
FMU with the copy.

Their implementation, however, is optional.

The rollback mechanism used in [2], [3]], and leveraged in
this paper to support step revision, relies on the capability of an
FMU to save its state and restore it in whenever necessary. It is
therefore our suggestion to make the implementation of these
methods mandatory, as they are straightforward to implement
and enable support for an important class of components that
use state events to control the simulation step size and, if



needed, request step size revision. In our opinion it is more
reasonable to rely on rollback abilities than it is to rely on
extrapolation techniques that use derivatives and hence require
each FMU to be able to work with derivatives, even if they
do not use them. As such, the MA we present in Section E
requires all participating FMUs to implement the optional
functions fmi2GetFMUstate and fmi2SetFMUstatel]

IV. EXTENSIONS TO THE FMI STANDARD

The FMI standard — currently at version 2.0 [1] — de-
scribes two distinct techniques for interactions between an
FMU and a host simulator: i) model exchange (FMI-ME),
where the host simulator carries out any numerical integration
required by FMUs, and ii) co-simulation (FMI-CS), where
the FMU implements its own mechanisms for advancing the
values of its state variables. In model exchange, the simulator
has access to the differential equations that describe the
dynamics of the FMU, while in co-simulation, FMUs are
treated as a “black box,” meaning that the master only has
access to the FMU’s inputs and outputs. FMI-ME and FMI-CS,
although their interfaces have a lot in common, are developed
independently as they serve different purposes, and their
evolution is driven by different stakeholders. FMI-CS 2.0 is
optimized for simulating continuous dynamics and lacks provi-
sions for discrete-event semantics or handling discontinuities.
Hence, aside from the mandatory implementation of functions
fmi2GetFMUstate and fmi2SetFMUstate argued for
in Section [[IT} our MA relies on the extensions to FMI-CS that
were proposed in [2] and [3]], which add support for hybrid
co-simulation. The first two extensions we summarize here are
necessary in order to simulate some very common classes of
models, such as hybrid systems and feedback control systems,
the third is a performance optimization that allows to reduce
execution time. All three extensions are leveraged by the MA
we present in Section [V| and are key to our capability to run
the example given in Section Hence, we succinctly explain
them here so as to provide a self-contained description of our
algorithm.

A. Hybrid Co-simulation

To support discrete event signals, i) an FMU should be
able to indicate its output or detect its input to be “absent,”
and ii) it must support zero-duration steps [10]. The second
feature is also necessary in order to support discontinuities.
The following two aspects of FMI-CS 2.0 are incompatible
with these requirements:

1) The step size proposed to an FMU with fmi2DoStep
must be strictly greater than zero;

2) The type system of FMI does not support absent. Signals
are defined in a time continuum, they are never absent.

The standard can be easily extended to support absent signals
by extending the set of values associated with the original

2A slightly less restrictive solution would be to have FMUs indicate their
possible calling for step revision with a capability flag, and only require those
upstream of such FMU to support rollback. For the sake of brevity, our MA
does not feature that optimization.

FMI data types to include an extra value to encode absent,
e.g, for the real numbers: R U {e}. Of course, the machine
representation of FMI data types are ordinary 32-bit integers
and 64-bit doubles that do not have extra bits to encode
“special values.” The solution, as we proposed in [3], is to
augment the FMI functions for getting and setting values to
indicate whether a signal is present or absent.

Zero-duration events or discontinuities can be achieved in
FMI by extending the standard with the superdense model of
time [15[], [16]]. In superdense time, time is represented as a
tuple 7 = (¢,n) with ¢t € Ry and n € Ny. ¢ € Ry represents
time in the Newtonian sense, while n € N represents the
microstep, i.e., the index of the current iteration at the same
Newtonian time ¢t. As proposed in [2], superdense time can be
supported by simply enabling the FMU to accept a step size
h > 0 and interpreting inputs that arrive at a superdense time
index greater than zero as discrete changes. A discontinuity is
characterized by a present value at (¢,0) and a present value
at (t,1), while a discrete event is absent at (¢,n), present at
(t,n + 1), and absent at (¢,n + 2).

B. Feedback Loops

Algebraic loops can occur when an FMU with direct
feedthrough is placed in a feedback loop. An FMU is called
strict if it has one or more outputs that depend on one or more
of its inputs at the same time instant. When a zero-delay path
is created between such output and one of the inputs that it
depends on, direct feedthrough will occur, and the assumed
causal relationship between the FMU’s input and output is
broken. Not all loops are algebraic loops though. Notice that
the possibility of direct feedthrough depends on the particular
dependencies that exist between the input and output variables
within the FMU. A loop that contains strict components may
be falsely identified as an algebraic loop in case the strict
components in fact do not allow direct feedthrough between
the particular ports that connect them in a loop. We call this
an artificial algebraic loop.

Causality can easily be restored by inserting a non-strict
component in an algebraic loop. A non-strict component also
has an input/output dependency, but with a delay. Introducing
a delay, however, may not always be a viable option, and
solving an algebraic loop is difficult and not always possible.
The problem of solving algebraic loops is a deep topic and
is outside of the scope of this paper, but tractable alge-
braic loop solvers, like the one provided by Simulink, based
on the Newton-Raphson technique, generally require smooth
functions and are incompatible with discrete changes. Hence,
particularly in the case of hybrid co-simulation, algebraic loops
should be rejected.

FMI-ME 2.0 permits the use of strict FMUs, and includes a
mechanism for FMUs to specify the inputs on which each of
their outputs depend, so that algebraic loops can be detected
and handled accordingly. In FMI-CS 2.0, on the other hand,
requires FMUs to be non-strict. For this reason, FMI-CS
2.0 FMUs can be connected in a loop with the guarantee
that no algebraic loops will occur. However, the price for



this restriction is high, as it precludes the implementation
of components that react instantaneously to changes in their
input signal, like a Mealy machine does, which, unlike a
Moore machine, produces outputs based on its current state
and current inputs, not just on its current state. We would not,
for instance, want to implement an adder as a Moore machine.
There is no semantic significance to the arbitrary delay that
(depending on the step size) the output of such adder would
incur. Besides, what should the initial output of such adder
be?

A Mealy machine requires separate functions for computing
outputs and transitioning between states. FMI, on the other
hand, prescribes that both output computation and state up-
dates be performed in fmi2DoStep. Alternatively, in [2],
the authors suggest to perform the computation of the outputs
in fmiZGetXX and update the state in fmi2DoStep,
allowing FMUs to be modeled as Mealy machines. Our imple-
mentation in FIDE follows this suggestion. Consequently, the
FMUs in our examples all declare internal variable dependen-
cies conform FMI-ME, so that the master can detect artificial
algebraic loops and will only reject real ones. For FMUs that
do not declare dependencies it is conservatively assumed that
all outputs depend on all inputs. Finally, it should be noted
that we allow the master to perform fmi2GetXXX on strict
components more than once before calling fmi2DoStep,
which is currently prohibited by the FMI-CS standard but
necessary in order to handle feedback.

C. Predictable Step Sizes

The third and last extension proposed in [2] concerns the
ability of an FMU to communicate to the master the size of
the maximum step it is able to take. This extension requires a
function called fmi2GetMaxStepSize, which returns the
maximum step size that is acceptable by the FMU. The reason
for having this function is to increase the efficiency of the
algorithm. Saving and restoring the state of the FMUs is indeed
an operation that takes time and requires memory. Moreover,
it prevents the master from taking small steps if none of the
participating FMUs have an interest in taking such small steps.

V. A MASTER ALGORITHM FOR HYBRID CO-SIMULATION
WITH STEP REVISION

A. A Formalization of FMI

In Figure [6] we provide a formalization of FMI based on
the model given in [2] along with some minor extensions.
Algorithm [I] makes use of this formal model. Each FMU
c € C, the set of all the FMUs in the model, is a black
box with input port variables U., output port variables Y.
and internal state S.. Different from [2], each variable type
defined in FMI has been extended to include the absent value.
V. is a union type that ranges over all possible data types
in FMI, augmented with a value for absent. An example of

3FMI provides different API functions for each variable data type. XXX is
replaced by the data type of the variable.

4V, represents the union of the value set of a particular FMU variable and
the absent value €, V. =V U {e}.

Set of FMU instances in a model C
FMU instance identifier
Set of state valuations for instance c Se
Set of input port variables for instance ¢ = U,
Set of output port variables for instance ¢ Y,
Set of values that a variable may take on
Return status flag for doStep and

getMaxStepSize M = {oxK,
Discard,
Error}
Set of all input variables in a model U= UececUe
Set of all output variables in a model Y =U.ccYe
I/O dependency for instance ¢ D.CU.xY,
Set of all I/O dependencies D =U.cc De
Port variable mapping P:U—=Y
init.: RZO — S,
set.: S, xU,xV,—= S,
get,.: S xY, =V,
doStep.: Se X R>g = Se x Ry x M
getMaxStepSize,: S — Ryo x M

Fig. 6: A formal model of FMI.

an instance of V. is the type fmi2Real U {e}. With respect
to [2] we also introduce M, which denotes the set of all
possible values for the status flag returned by a function call
to fmi2DoStep or fmi2GetMaxStepSize. We are only
interested in three particular values of M: OK, Discard
and Error. fmi2DoStep and fmi2GetMaxStepSize
return OK if the FMU completes an entire step or, in case
of fmi2GetMaxStepSize, the FMU can take a step.
Discard is returned if the FMU cannot perform an entire
step but completes a fraction of it. Finally, Error is returned
when an FMU is unable to continue the simulation based on
its current state and the current value of its inputs.

The function init, performs a sequence of opera-
tions to initialize the FMU c. Typically, this includes calls
to fmi2SetupExperiment, fmi2GetXXXHybrid, and
fmi2SetXXXHybrid [3] to determine initial conditions and
retrieve parameters. init.(¢) returns s, the initial state of
the FMU. get, and set. represent the get and set opera-
tions fmi2GetXXXHybrid and fmi2SetXXXHybrid [3],
respectively. get,.(s,y) returns the value v € V. of output
port y of FMU instance c. set.(s,u,v) assigns the value
v € V. to the input port variable u of FMU instance c
and returns the updated state s € S. of the FMU c. A
call to set.(s,u,v) updates the inputs of the FMU, while
get.(s,y) affects the value of an output variable based
on the FMU’s current state and inputs. Multiple calls to
get.(s,y) based on the same state and the same inputs of
the FMU will return the same output values; get (s, y) does
not alter the state s of the FMU c. doStep,(s, h) abstracts
the functionality of fmi2DoStep, which performs a state
update on the FMU. A call to doStep,(s,h) returns the
tuple (s’,h',m) with the updated state s’, the performed



step size h’/, and the status flag m. Although the real FMI
function fmi2DoStep does not take the FMU’s state as
an input argument and only returns the status flag m, our
abstraction is sound because the updated state can be retrieved
from the FMU with the function fmi2GetFMUstate. Like-
wise, the performed step size h’' can be obtained by record-
ing the “current FMU time” before and after invocation
of doStep using fmi2GetRealStatus. Notice that by
having doStep take the current state as an input argument
and letting it return the new state obtained by completing a
step, we can use it to model rollback without introducing extra
primitives for retrieving and restoring the state. The function
getMaxStepSize,(s) abstracts fmi2GetMaxStepSize.
This function returns a pair (h, m), where h is the maximum
step size that the FMU can perform, and m is the return status
flag. This function has no side effects; its invocation shall not
alter the FMU’s state.

We model each FMU as a Mealy machine with some
internal I/O dependencies D.. If a model, consisting of inter-
connected FMUs, contains an algebraic loop, then we discard
that model. Hence, the graph X corresponding to a valid
model, where vertices are port variables U U Y and edges
are E = DU{(y,u) | v € UA P(u) =y}, must be acyclic.
Graph X can be totally ordered using Kahn’s algorithm [17],
for example. We call the totally ordered acyclic graph X.

B. The Algorithm

Algorithm |1} coordinates the simulation of a model with
a set of FMUs from the initial time ¢ = tgqrt tO teng. At
each simulation step, the algorithm tries to advance from a
time instant to to t3 = t9 + h , where h is the computed
step size. The algorithm has the capability to rollback each
FMU state to its previous known state in case one or more
FMUs return an error status from the invocation of doStep
or getMaxStepSize.

The vectors r and 7’ store the state of all FMUs during
the execution of the algorithm, and s is a vector that denotes
the current state of all FMUs. The current state of the FMU
¢, for instance, is s[c|. In order to perform rollback during
step size determination, r stores the state of all FMUs after
the last I/O port update, prior to a speculative step. Step
refinement requires a snapshot of the collective state after the
last successful execution step, which is stored in 7’.

A simulation consists of four phases:

a) Initialization (lines [3) to [5): The master iterates over
all the FMUs ¢ € C to setup the simulation and set the initial
value of variables and parameters.

b) I/O ports update (lines [/ to [I1): The master iterates
over the totally ordered list of ports. For each input port
u, function P returns the output port y connected to it.
The value of the output is retrieved and used to update
the corresponding input port. After all I/O ports have been
updated, the algorithm saves the state of each FMU in the
state vector r and initializes the errorState flag to false
(lines [12] to [13). The errorState flag will indicate whether
the master needs to perform rollback.

c) Step determination (lines [I4) to [32): The master de-
termines the maximum step size that is acceptable by all
the FMUs. We have so-called predictable FMUs (Cp C
(), which implement getMaxStepSize, and unpredictable
FMUs (Cr C (), which do not. Conform [2], we assume
that doStep with step size argument h returns a step size
h' such that 0 < I/ < h, and doStep will accept any step
less than or equal to that h'. For predictable FMUs, doStep
shall accept any step less than or equal to the size returned by
getMaxStepSize. Partial progress in doStep is indicated
with a status flag Discard while acceptance of the step will
yield OK. In addition, both doStep and getMaxStepSize
may return a status code Error if the FMU is stuck, i.e.,
it cannot continue the simulation given its current state and
inputsE]

The procedure of step determination starts by setting a
default value h = h,,q.. We first iterate over the FMUs
¢ € Cp to retrieve the maximum step that each of those FMUs
is able to accept. The minimum in the set of all reported
values U hyq., Which we store in h, is the maximum step
that all ¢ € Cp are able to accept. We then iterate over
all unpredictable FMUs ¢ € Cr and invoke doStep to test
whether they accept a step of size h. The FMUs that reject
the step will report partial progress. The next simulation step
is determined by taking the minimum of the reported progress
among each ¢ € Cr and our previously computed 5. At this
point, the unpredictable FMUs are unsynchronized and must
be rolled back to the state r. In the algorithm this is denoted
by performing a state update using the FMU state r instead
of s (line @3). If during step determination any of the FMUs
return Error, the variable errorState is set to true, step
determination is canceled (lines [T8] and [28)), and the master
restores all FMUs to their previous state (lines [34] to [38).

d) Step revision (lines to : If errorState is true,
the model must be rolled back to ' (line [35). The current
state s is restored to s := r’, where 7’ is the saved state
from the previous iteration. From here, a smaller step h must
be taken as the previous step h, resulted in an Error. At
line function f(h,) computes h such that 0 < h < hy,.
How h is computed is outside of the scope of our discussion,
and its behavior is left unspecified. However, the interested
reader can find a detailed description of algorithms for the
implementation of f() in [7] and [4]. To finalize this iteration
of step revision, the master backtracks the simulation time to
t := 1t — h;, and saves the computed step size h, := h (with
h := f(hy)) in case that also in the next iteration some FMU
yields an error flag and a further refinement of the step size
is needed.

e) State update (lines[39t0[53): If errorState is false,
the algorithm saves the initial state 7' := r (line and
performs a state update on all FMUs (lines [43] and [48). The
master saves the computed step size h, := h, advances the

SWe assume that doStep, and getMaxStepSize, cannot return m =
Error at the first execution of the algorithm. If this happens, the initial
condition of the FMU prevents the simulation from starting (see Algorithm [T]

at line @I)
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Fig. 7: Simulation output obtained through FIDE.

simulation time ¢ := ¢ 4+ h and resets the step size to its
default h := hy,q,. The states r’ and the step size h, will be
used at the next execution of the algorithm to backtrack the
simulation if needed.

VI. AN EXAMPLE

The QTronic Software Development Kit (SDK) E] contains
an example of a bouncing ball simulated by a fixed-step-size
MA. In this example, the FMU modeling the bouncing ball
enforces no control over the step size and the model suffers
from a tunneling effect (the ball eventually bounces below
the level of the surface). When a zero crossing is caught too
late, the ball changes trajectory after it tunneled through the
surface. In such model the behavior of the simulation is heavily
dependent on the simulation engine, the master, because it
controls the step size.

We now demonstrate our MA using a similar physi-
cal model. Consider an FMU that implements a bouncing
ball and makes use of the FMI extensions for hybrid co-
simulation presented in Section In order to show how
step revision improves the accuracy of the bouncing ball,
the FMU returns a fixed step size h 0.05 sec through
getMaxStepSize. However, before returning the value
of the step size, getMaxStepSize checks the tunneling
condition (the position h of the ball results 1 < —e&) and
returns an error flag when it detects tunneling. This way, if
tunneling occurs, the master will backtrack the simulation and
refine the previous step size until the ball hits the surface with
a precision that is a property not emergent from the simulation,
but defined by the FMU. The result of this simulation is shown
in Figure[7al In addition, Figure [7/b|shows the dynamics of the
ball in more detail as it approaches the surface. First the FMU
overshoots, detecting the zero crossing at 4.5155, and then
the master backtracks to 4.515 and uses a bisection search to
iteratively converge to 4.51549, right before the ball hits the
surface.

Swww.qtronic.de/en/fmusdk.html

Algorithm 1: Co-simulation MA with Step Revision.
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Input: Set of instances C, ordered variable list X, port

mapping P, the maximal step size hnqaz-

t:= tst(m‘t;
h := hpay set the initial value for the step size;
foreach c € C do initialize

end
whi

end

sle] :== init.(t);

le ¢t <tepg dg
foreach u € X in order do 1/0 ports update

y := P(u);

v:=get,, (s[ey],y);

sleu] = sete, (sleul, u,v);
end

r := s save the current state;

errorState := false;

foreach c € Cp do determine the current step

(k',m) := getMaxStepSize.(s|c]);

h := min(h, h');

if m = Error then this is not a valid state
errorState := true;
break;

end

end

if errorState = false then

foreach c € C'r do determine the current step

(s',h',m) := dostep.(s[c], h);

h:= min(h,h');

sle] = ¢';

if m = Error then this is not a valid state
errorState := true;
break;

end

end

end

if errorState then revise the last step

if ¢ = t444,+ then quit due initialization error;
s := r' restore the previous valid state;

h := f(hp) choose a smaller step size h < hy;
t :=t — h,, rollback simulation time;

hp := h save the step size h;

else this is a valid state

r’ .= r save the valid state;

if h < Ry, then roll back and perform step h
foreach c € C' do state update

(s',h',m) := dostep.(r[c], h);

sle] :=¢';

end

else update the predictable FMUs
foreach c € C'p do state update
(s',h',m) := dostep.(r[c], h);
sle] :=¢;

end

end

hy, := h save the step size h;

t :=t + h advance simulation time;
h := hnqe, reinitialize the step size;

end
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Of course, even with step refinement, if we run the sim-
ulation long enough, we will eventually exhaust the finite
precision of the numerical representation of our step size and
are no longer able to represent a step small enough to prevent
the ball from tunneling.

VII. CONCLUSIONS

FMI shows great promise for enabling interoperability be-
tween simulation tools for CPS. However, version 2.0 of
the co-simulation standard is not suited to simulate hybrid
systems. The extensions presented in [3]] and [2] repair most
of the shortcomings responsible for this. In this paper, we
identify an important and common co-simulation scenario that
is still not handled properly without a further extension to the
master algorithm given in [2], namely, one which allows the
simulation to revise any given simulation step immediately
after it has been taken. As we have shown, the necessity of
this feature is rooted in the fact that FMI does not equip
FMUs with a side-effect-free evaluation function along with a
separate function for updating their state.

The proposed step revision technique relies on each FMU
to support rollback by implementing functions to copy and
restore their state, which, so far, have been deemed optional by
the FMI standard. Yet, to support step revision, co-simulation
FMUs must implement these functions. Step revision allows
FMUs to interpolate continuous input signals instead of ex-
trapolating them. FMUs without extrapolation capabilities are
simpler and more composable, and as demonstrated in this
paper, step-size-dependent numerical approximation errors that
may occur in such FMUs can be kept within bounds by a
master that uses step revision.
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