Using AUTOSAR high-level specifications for
the synthesis of security components in
automotive systems

Cinzia Bernardeschi!, Gabriele Del Vigna!, Marco Di Natale?, Gianluca Dini',
and Dario Varano!

! Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1,
56122 Pisa, Italy
2 Scuola Superiore Sant’Anna, Piazza Martiri della Liberta 33, 56127 Pisa, Italy
{cinzia.bernardeschi,gianluca.dini}@ing.unipi.it
{g.delvigna88,dario.varano}@gmail.com
{marco.dinatale}@sssup.it

Abstract. The increasing complexity and autonomy of modern automo-
tive systems, together with the safety-sensitive nature of many vehicle in-
formation flows require a careful analysis of the security requirements and
adequate mechanisms for ensuring integrity and confidentiality of data.
This is especially true for (semi-)autonomous vehicle systems, in which
user intervention is limited or absent, and information must be trusted.
This paper provides a proposal for the representation of high-level secu-
rity properties in the specification of application components according
to the AUTOSAR standard (AUTomotive Open System ARchitecture).
An automatic generation of security components from security-annotated
AUTOSAR specifications is also proposed. It provides for the automatic
selection of the adequate security mechanisms based on a high-level spec-
ification, thus avoiding complex and error-prone manual encodings by the
designer. These concepts and tools are applied to a paradigmatic example
in order to show their simplicity and efficacy.

Key words: Security, modelling, AUTOSAR

1 Introduction

Robots, unmanned aerial vehicles (UAVs) [1], self-driving cars, and unmanned
underwater vehicles (UUVs) [2] are examples of complex networks of autonomous
systems that were considered just fiction a few decades ago [3]. They share the
common technological denominator of being a networked embedded and control
system composed of many sensors, actuators and embedded computers [4]. As
with many of these complex networked systems, external intruders can inten-
tionally compromise the proper operation and functionality of these systems.
Modern cars are not exempt from these threats. Currently, automotive sys-
tems integrate an increasing number of features aiming at providing active safety

2 Cinzia Bernardeschi et al.

and then full autonomy [5], [6]. These functions execute on a distributed archi-
tecture of embedded computers, or Electronic Control Units (ECUs), with the
final objective of controlling the vehicle actuation systems, such as steering,
braking, acceleration, lights. ECUs are interconnected by wired networks such
as the Controller Area Network (CAN) and Ethernet with the integration of
wireless capability, e.g., keyless entry and diagnostic, entertainment systems.
This increased connectivity leads to an increasing number of access points and
potential cyber security threats. Koscher et al. [7] demonstrate that an attacker
who is able to infiltrate any Electronic Control Unit (ECU) can leverage this
ability to completely circumvent a broad array of safety-critical systems. Fur-
thermore, Stephen Checkoway et al. [8] demonstrate that remote exploitation is
feasible via a broad range of attack vectors including CD players and Bluetooth
sub-system. The impact of these cyber security threats is getting more and more
relevant as cars are getting more and more autonomous and interconnected. It
follows that cyber security is a requirement that has to be addressed since the
early stages of the project.

In this paper, we provide a set of modelling extensions to address cyber-
security requirements at design stage in the AUTOSAR (AUTomotive Open
System ARchitecture), an open industry standard for automotive software ar-
chitectures [9]. AUTOSAR provides a component-based system design and a
development approach based on a three-layered architecture: the Application
layer, that contains the Application Software Components providing system spe-
cific functionality; the Run Time Environment layer, an auto-generated layer
providing for the implementation of application functions in concurrent threads
and the implementation of communication; and, finally, the Basic software layer,
that contains standardised operating system, IO and other services, including
libraries and communication services [10].

In AUTOSAR, safety and security services are being standardised with re-
spect to the set of basic services that may be required by the application, such
as the basic cryptographic functionalities provided by the Crypto Service Man-
ager (CSM) or the definition of integrity-related message authentication codes
(MACs) in messages (SecOC component) [11], [12].

With reference to the AUTOSAR component-based methodology, we show
how:

i) to annotate a component diagram by means of cyber security concepts during
the modelling phase; and,

ii) to automatically synthesize AUTOSAR-compliant security components from
such an annotated component diagram.

This introduces the following advantages. First, this allows designers to take
into account security aspects in the early phases of system design. In-vehicle
communications among components over the internal buses can be protected
from cyber threats such as eavesdropping, integrity and spoofing. Next, the
automated synthesis of security components allows a designer to handle cyber
security concepts at a high level without being an expert of security and so

Security components in AUTOSAR 3

avoiding errors and inaccurate selections of methods and algorithms. Finally,
the synthesized security components are AUTOSAR~compliant and thus they
can readily be plugged into an AUTOSAR application.

With respect to the modelling extensions, we define two sets of elements
aimed at the specification of: the trust level of a functional component, which
gives an indication of the effort required to compromise the component; and, the
security requirements of a communication between components, which specifies
the demand in terms of confidentiality and authenticity on such a communica-
tion.

As an example showing the result of the application of our methodology,
models and tools, we discuss a set of application components as a typical repre-
sentative of active safety or autonomous driving subsystems, with communica-
tions that are characterized by integrity and/or confidentiality requirements.

Our work can be placed in the research thread about enriching modelling for-
malisms with security requirements and constraints. Relevant examples are those
based on UML such as UMLSec, MDS and MARTE [13], [14], [15], [16], [17].
These proposals tend to address general application domains, i.e., distributed
applications or embedded, real-time applications. In contrast, our proposal has
been conceived for the automotive domain and to extend the AUTOSAR mod-
elling and development methodology.

The rest of the paper is organised as follows. Section 2 summarizes the AU-
TOSAR concepts of interest for this work. Section 3 presents the modelling
extensions that are required for the specification of application-level security
requirements. Section 4 presents our synthesis tool. Section 5 illustrates the
application of our methodology, models and tools to an autonomous driving
subsystem, a typical representative of active safety which requires integrity and
confidentiality of communications. Finally, Section 6 draws final conclusions and
illustrates future works.

2 AUTOSAR in a nutshell

The objective of the AUTOSAR consortium and standard (www.autosar.org)
is to create an open and standardised software architecture for automotive sys-
tems allowing for the exchange and integration of software components on a
standardised platform. AUTOSAR provides a set of specifications that apply
to the software architecture, including the definition of port-based component
interfaces and a methodology for the development process.

A fundamental concept in AUTOSAR is the separation between application
and infrastructure. With reference to Figure 1, AUTOSAR Software Components
(SW-Cs) encapsulate application functionalities that run on the AUTOSAR in-
frastructure. Each software component is represented by a model that consists
of a structural representation of the component interfaces, described by ports
for data-oriented or client-service interoperability. Each port is typed by a data
or operation interface and defines the points of access for the component. In
addition, the behaviour description of each component includes the component

4 Cinzia Bernardeschi et al.

Sw-C
Description

dvsoLny

Virtual Functional Bus

- =

ECU System
Description |:> Deployment tools <::| Constraint
Description

- =

ECU1 ECU1 ECU1
> > > >
28 28 || 28 28
ol nQ 69 63
> N> w > s 2>
= = = =
| RTE [l RTE | [RTE |
| Basic Software | | Basic Software | | Basic Software |
. : Gateway :

Fig.1. AUTOSAR architecture

functions (or runnables) and the set of events that trigger the execution of those
functions. The Virtual Functional Bus (VFB) is the set of all the connections
that the designer defines between the components’ ports to specify the interop-
erability of components in an automotive system. These connections are defined
in AUTOSAR at an abstract level.

From an architectural standpoint, AUTOSAR consists of three layers (see
Figure 2): the Application layer, the Runtime Environment (RTE) layer, and
the Basic Software (BSW) layer. The Application Layer contains the application
implementation in terms of software components. The RTE layer is a middleware
that provides for the implementation of components’ behaviour (executing the
runnables by threads and the related scheduling configuration) and the imple-
mentation of the communication among components. Finally, the Basic Software
provides basic services and software modules on each ECU, i.e., including the op-
erating system, the communication stack and all drivers. Approximately eighty
BSW modules are defined and grouped into service modules, such as System ser-
vices, Memory Services, Communication Services, and so on. According to the
AUTOSAR methodology, software components can access BSW modules only
through the RTE. So, thanks to the RTE abstraction layer, software components
can be developed independently of the underlying hardware, which means that
they have the transferability and reusability property.

In order to provide the actual implementation of software components and
their VFB communications over a network of ECUs, AUTOSAR requires the
designer to specify the execution platform in terms of network topology and
configuration of the ECUs (see ECU Description and System Constraints De-

Security components in AUTOSAR 5

M m Application Layer

AU':I'OSAR Runtime Environment (RTE)

CsM

Basic
Driver Basic Crypto
- Routines (SW) Software

Layer

Microcontroller

Crypto HW (optional)

Fig. 2. AUTOSAR layers

scription in Figure 1) as well as the mapping of software components to ECUs.
Each instance of a software component is statically assigned to one ECU. Then,
based on the platform description and mapping, a set of synthesis tools generate
the appropriate RTE and provide for the configuration of the Basic Software
(BSW) modules on each ECU.

Figure 3 shows an example of sender-receiver application which comprises
two interconnected software components, SWC1 and SWC1. The input data port
in1 of SWC1 is connected to output data port out2 of SWC2. The two data ports
have an interface type interfacel. In addition, the input data port in2 of SWC2
is connected to the output data port outl of SWC1. The two data ports have
interface type interface2. The two software components have also two CSMport
client-server ports that we introduce in the next section. The application has
been developed using Rational Rhapsody, a modelling tool by IBM. Rhapsody
builds AUTOSAR concepts on top of UML and allows us to define extensions
for them by leveraging the typical extension mechanisms of the UML language,
namely, profiles and stereotypes.

2.1 Security as a service

Within the BSW layer, AUTOSAR makes security mechanisms available to
the developers in three different modules: a) the Secure On-board Communica-
tion (SecOC) module [18], which routes IPDUs (Interaction layer Protocol Data
Units) with security requirements; b) the Crypto Abstraction Library (CAL) [19],
which implements a library of cryptographic functions; and, finally, ¢) the Crypto

6 Cinzia Bernardeschi et al.

Fd viBinvi* x
Entire Model View v «CompositionSwComponentType»

{9 Safure_security ~ C P P ttype_2
=3 ARPackages
=57 Interfaces
#- G CsmSymBlockDecrypt
= i1 CsmSymBlockEncrypt
& CsmSymBlockEncryptFinish(
&= CsmSymBlockEncryptStart)
{5 CsmSymBlockEncryptUpdate()
- B interf1
- B interf2 1 «SwComponentProtot 1 «SwComponentProtc
57 swct itsSWC1:SWC1 itsSWC2:SWC2
=450 SWC2
gvzucz 8 —1 inl:interfl out2:interfl
59 sweservicedependency_0
=9 assignedPort
“ CSMport outl:interf2 in2:interf2
@ cryptoserviceneeds_0
#-[@] run21
o ‘z‘,&:’;ﬁz CSMport:CsmSymBlockEncrypt CSMport:CsmSymBlockDecrypt
@ in2
B out2
@57 Types
57 ViB
() Packages
@ Profiles
BLIDR il v

Fig. 3. Sender-Receiver application in Rhapsody

Service Manager (CSM) [20], which provides software components with crypto-
graphic functionalities implemented in software or hardware. The cryptographic
functionalities of the CSM include hash calculation, generation and verification
of message authentication code, random number generation, encryption and de-
cryption using symmetric and asymmetric algorithms, generation and verifica-
tion of digital signature, and, finally, key management.

In AUTOSAR, services can be seen as an hybrid concept between BSW mod-
ules and software components. Software components that require AUTOSAR
services use standardised service interfaces. The dependency of a software com-
ponent from an AUTOSAR service is modelled by adding ports (hereinafter re-
ferred to as “service ports”) to the software component. The interface for these
ports needs to be one of the standardised service interfaces defined in the AU-
TOSAR documentation. A port interface has a single attribute called isService,
that is set to true if the interface is actually provided by AUTOSAR services
instead of another application component. Furthermore, the internal behaviour
of the software component shall contain a SwcServiceDependency, which is used
to add more information about the required service (a more detailed explanation
of this element can be found in Section 4).

The Crypto Service Manager CSM provides an abstraction layer, with a
standardised interface of cryptographic functionalities to higher software layers.
The services offered by the CSM can be used locally only: it is not possible to
access them from a different ECU.

In Figure 3, the software components SWC1 and SWC2 include two service
ports of type CsmSymBlockEncrypt and CsmSymBlockDecrypt, respectively, to
use the encryption/decryption service of the CSM respectively.

As shown on panel in the left hand-side of the fig-
ure, the functions available at the interface are, respectively,
functions SymBlockEncryptStart (), SymBlockEncryptUpdate ()

Security components in AUTOSAR 7

and SymBlockEncryptFinish() for CsmSymBlockEncrypt, and
functions SymBlockDecryptStart (), SymBlockDecryptUpdate ()
SymBlockDecryptFinish() for CsmSymBlockDecrypt. Furthermore, the
description of each software component includes the SwServiceDependency on
CryptoServiceNeeds (left hand side of the figure).

This is the typical use of CSM functions by application components according
to AUTOSAR. However, there are two drawbacks to this approach. Component
developers are responsible for the selection and use of the right cryptographic
functions for guaranteeing an adequate level of integrity and confidentiality to
the data they exchange. In addition, the AUTOSAR model does not show on
which component communication(s) the encrypted information is supposed to
be used. This information is hidden inside the component implementation and
disappears completely from the model.

3 Extending AUTOSAR for security

In terms of security, AUTOSAR models focus on the mechanisms that should
be implemented as part of the BSW layers and are therefore to be considered
as architecture patterns. However, AUTOSAR mostly disregards the application
level, that is, for instance, how the designer of an application with security issues
should specify that its communications need to be suitably protected.

We define a possible extension to AUTOSAR consisting of two types of mod-
elling elements, defined in Rhapsody by means of stereotypes:

— the trust specification of a functional component and
— the security requirement specification of a communication between compo-
nents.

3.1 Trust specification of functional components

A functional component, either a software component or a port, may be asso-
ciated to a Trust Specification which specifies to what extent the element can
be trusted to provide the expected function, or service, with respect to attacks
targeted to compromise the functionality of the element (a metamodel view of
the extensions is shown in Figure 4).

A trust specification consists of:

— a trust specification identifier (trustSpecID), which identifies the specifica-
tion, and

— a trust level (trustLevel) which provides an indication of the extent to
which the element can be trusted. The trustLevel is an attribute of type
trustLevelType that corresponds to an integer in the range 1 to 5, being 1
the highest trust level and 5 the basic one.

It follows that a trust specification is formally defined as:

8 Cinzia Bernardeschi et al.

H securityRequirements H Dataitem
T securitylevel : securitylevelType = INTEGRITY [0..7] secureSignal
= secRgmtID : EString
o develndicator : EInt = 128
o ilevelindicator : Elnt = 64 [0..1] securelnterface
l [0..%] itsDV
[0..1] secureReceiver [0.#]its
[0..*] secureSender [0..*] secureSenderComponent _ &
B Functionalinterface
FunctionalExecu FunctionalCompo B FunctienalPort
B table B nent
[0..%] itsPort [0.1] itsIF
[1..7] itsExecutableq -
[0..1] itsTrust [0..1] itsTrust
| Q TrustSpecification 2 cecuritylevelType
= trustSpecID : String = NONE
7 trustlLevel : EInt = 3 — CONFIDENTIALITY
= INTEGRITY
= BOTH

Fig. 4. The metamodel with the proposed AUTOSAR extensions

TrustSpecification = (trustSpecID: String,
trustLevel: trustLevelType)

The trust specification is a measure of the effort required to create and carry
out attacks to the element. An high trust level corresponds to a low probability
of successful attack. The notion of trust specification is similar to attack potential
in [21].

The trust level attribute is intended to be used in the mapping phase, upon
defining the allocation of software components to ECUs. Components with high
trust level should be assigned to high secure ECUs. As the mapping of software
components to ECUs is outside the scope of this paper we are not going to refer
to trust specification any further.

3.2 Security requirement specification of communications

With reference to Figure 5, a security specification on a communication consists
of four attributes:

— a security requirement identifier (secRqmtID), which uniquely identifies the
requirement;

— a security level (securityLevel), which specifies the desired secure com-
munication options. It is of type securitylLevelType, an enumerated that
contains four self-explicative values that codify: no security, confidentiality,
integrity, and, both confidentiality and integrity;

— a confidentiality level indicator (cLevelIndicator) and

— an integrity level indicator (iLevelIndicator).

Security components in AUTOSAR 9

dent | [swciinswer | [swezinswe ' [viBinviB x vl =
~ | Requirement : secure_communication in VfB. - &
«CompostionSwComponentTypes General Description Relations Tags Properties
compositionswcomponenttype_2 0 =
SH=D
= Safure_security
= SecurityRequirement
SecRegqmtld
1 <SwComponentPrototype 1 <SwComponentPrototy cLevellndicator
itsSWC1:SWC1 itsSWC2:SWC2 iLevellndicator
CoNF v
outl:interf2] in2:interf2 NONE
i 3 CONF
. INTEG
int:interf1 i outZinterf1 5] BOTH
: Quick Add
Name Value Add

Locate oK

BIgY:
ririggerPort
prtiggerPort
pModeSwitchPort
prModeSwitchPort

o ‘o : o

0 secure_communication o

BEQEqH

o o o
v

Fig. 5. Secure communication.

A security requirement is formally defined as:

SecurityRequirement = (secRqmtID: String,
securitylLevel: securityLevelType,
cLevelIndicator: EInt,
iLevelIndicator: EInt)

where

securityLevelType = { CONF,INTEGR, BOTH, NONE }
cLevelIndicator = { 128,}

iLevellIndicator = { 64, }

The attributes confidentiality level indicator and integrity level indicator pro-
vide a quantitative indication of confidentiality and integrity, respectively, of
communication. A confidentiality level indicator cLevelIndicator equal to 128
means that the computation complexity necessary to break the communication
confidentiality should not smaller than O(2!%%). This requirement can be fulfilled
by using the AES-128 cipher, for example. Analogously, an integrity level indica-
tor iLevelIndicator equal to 64 means that the computation complexity nec-
essary to break the communication integrity (i.e., to find a collision) should not
be smaller than O(2%4). According to AUTOSAR Secure On-Board Communica-
tion, this requirement can be fulfilled by using a 64-bit Message Authentication
Code (MAC), or larger.

The definitions in the metamodel of Figure 4 allow for a security requirement
to be applicable to any of the following.

— Selected data items exchanged between two ports by two components.

— All the data items exchanged between a specified pair of sender and receiver
runnables.

— All the data produced by a component.

10 Cinzia Bernardeschi et al.

— All the data belonging to a given interface specification.

4 Automatic generation of security components

Given an AUTOSAR specification with secured communications, a script, writ-
ten in Python, has been developed to automatically add security software com-
ponents to the system according to the security properties defined for the com-
munication in the AUTOSAR model.

The security requirements are implemented by using the services provided by
the CSM. In order to use these services, components must have suitable elements
(client ports, interfaces, and so on), and perform the following actions. On the
sender side, the component: 1) identifies the data to protect as input; 2) invokes
the CSM service to secure the data; 3) sends the secured data on the specified
communication channel/RTE call. On the receiver side, the component invokes
the CSM service to extract the secured data.

The script allows the user to choose between two possibilities. The first is
to extend the already existing sender or receiver components of the secured
communication. Alternatively, new components can be added, acting as filters.

Technically, this procedure has been implemented in the model, by extending
the AUTOSAR description field of the ports involved in the communication (tag
desc) by two additional tags: the tag SecurityNeeds, which specifies the secu-
rity level (none, confidentiality, integrity or both), and the tag NewComponent,
which indicates if a new (filter) software component must be added.

The standardised format for exchanging data between different AUTOSAR
compliant tools is AUTOSAR XML (ARXML). The input parameters of the
script are the name of the input ARXML file and, optionally, a name for the
output file. If no name is specified for the output file, the script use a default
name for it.

Suppose that we are interested in confidentiality. Therefore, a message should
be encrypted by the sender and decrypted by the receiver. For this purpose, the
CSM offers the Symmetrical Block Encryption (and Decryption) service, which
guarantees confidentiality of the received data, under the condition that the key
used for computation is not compromised by an external entity.

The steps in order to specify that a software component wants to use the
Encryption/Decryption service, are the following:

— The software component that wants to use the Encryption/Decryption ser-
vice needs to have a client port.
— The interface of such a port has to be named (all the names of all the
interfaces provided by the CSM are defined by the AUTOSAR standard):
e CsmSymBlockEncrypt if the software component is a sender, or
e CsmSymBlockDecrypt if, otherwise, it is a receiver.
— isService, a flag of the port interface, specifies whether communication
occurs between a software component and an AUTOSAR service (true) or
not (false).

Security components in AUTOSAR 11

— serviceKind, an attribute of the port interface, provides further details
about the nature of the applied service. In our case it must be set to
criptoServiceManager.

— The internal behaviour element of the software component must contain a
SwcServiceDependency, which makes it possible to associate ports defined
for a software component to a given AUTOSAR service.

— SwcServiceDependency must contain both the required AUTOSAR service
(cryptoServiceNeeds) and one or more RoleBasedPortAssignment, which
is a container for references to the service client ports of the software com-
ponent (defined at the first point).

a [F] Modeit x
Entire Model View «CompositionSwComponentType»
@ Project VfB: itionswe pe_2
=03 ARPackages
#-[7 Interfaces
=-E3 swa
=-E3 SWCIFilter
=] swC1Fitt
=[] SWCHFiter_1B il CELET] 1 «SwComponentProt
5-0 swesenicedependency itsSWC1:5WC1 itsSWC2:SWC2
#-® assignedPort
@ assignedPort ini:interfl i,
@ cryptoserviceneeds out2:interfl
@ port1
e o t1:interf2
©B portd outl:intes o
o-B swe in2:interf2
w9 SWC2Fitter
& %Twes
=5 viB " "
% (3 Packages port2:interf2 port0:interf2
& ";S:é“‘d 1 «SwComponentPrototype,Apg 1 «SwComponentPrototype,Appic
G- Sctings itsSWC1Filter:SWC1Filter itsSWC2Filter:SWC2Filter
: il‘:’; ?:fgt:vave(omponents Diagrams port0:interf2 ———
port1:CsmSymBlodkEncrypt port1:CsmSymBlockDecrypt

Fig. 6. Model with security components.

If we specify SecurityNeeds=CONF and NewComponent=TRUE for both the
sender and the receiver of the secured communication in Figure 5, then executing
the script on the ARXML representing the system in Figure 3 results in the
system shown in Figure 6. Notice that the modified ARXML file is AUTOSAR-
compliant and so can be imported in Rhapsody. Thus all the elements added by
the script are visible in the graphical representation of the system. As it turns
out, the script generated two components (SWC1Filter and SWC2Filter). On
the sender side, the filter component SWC1Filter takes the data produced by the
sender component SWC1, encrypts and sends them out to the filter component
SWC2Filter. On the receiver side, this component receives the encrypted data,
decrypts and sends them to the receiver component SWC2Filter.

5 A simple example

There are many instances of AUTOSAR communications that are sensitive to
security issues and require support for guaranteeing the confidentiality and in-
tegrity of the exchanged information.

12 Cinzia Bernardeschi et al.

Many active safety and autonomous driving applications make use of infor-
mation coming from sensory input devices, such as lidars, radars and cameras
in order to sense the surrounding environment and detect the roadmarks and
objects (vehicles, pedestrians) on and around the street.

To improve the precision in the detection of the vehicle position and to assist
in the navigation, these data are typically integrated with information coming
from the GPS system. GPS information can also be considered as not only
characterized by integrity, but also confidentiality requirements.

Position information coming from the GPS, together with object and road
position information coming from sensors are typically forwarded to several nav-
igation and active safety functions, including, for example, Path planning, Lane
keeping and Lane Departure warning. These functions, in turn, produce com-
mands for the actuation systems (steering, throttle and brakes) for which in-
tegrity must be preserved. The low-level control systems for throttle, brakes and
steering proceed to arbitrate among these incoming requests and determine the
final actuation commands that go to the low-level control software.

The corresponding AUTOSAR model with sensors and actuators as
SensorActuatorsSwComponentType and ApplicationSwComponentType ele-
ments is shown in Figure 7.

Confidentiality and integrity requirements are added to the communications
between the GPS and the PathPlanning components, and between the latter
and all the actuators. Other communications are only characterized by integrity
requirements. The security tag has been added to the desc tag of the corre-
sponding ports before exporting the ARXML file.

After the system is modelled using Rhapsody, we export the ARXML file.
The file is processed by our generation script, which provides for the synthesis
of the security mechanisms and the generation of a new ARXML file. Figure 8
shows the part of the model related to the GPS software component and its
communication with other components obtained as a result of this step.

The figure shows the original elements and the newly generated ones. The
generated filters components have client ports to call the CSM functions for
integrity (MAC) and confidentiality (symmetric block encryption).

The automatic generation of the security components allows the developers
to work at a high level of abstraction in a completely transparent way, without
requiring knowledge of the details of the CSM and the cryptographic routines in
it. In addition to filters, our script also generates the RTE calls for reading and
writing over sender /receiver ports. The RTE calls for the PathPlanningFilter
software component are shown below.

#if (!defined RTE_PathPlanningFilter_H)
#define RTE_PathPlanningFilter_H
#include <Std_types.h>

#ifdef __cplusplus

extern "C" {

#endif /* __cplusplus */

)

Std_ReturnType
Std_ReturnType

Std_ReturnType

)

Std_ReturnType
étd_ReturnType
étd_ReturnType
étd_ReturnType

Std_ReturnType
Std_ReturnType
Std_ReturnType
Std_ReturnType
Std_ReturnType
Std_ReturnType
Std_ReturnType
Std_ReturnType
Std_ReturnType
Std_ReturnType
Std_ReturnType
Std_ReturnType
Std_ReturnType
#ifdef

Security components in AUTOSAR

Rte_Read_portO_data(int data);

Rte_Write_port9_data(int data);
Rte_Read_port10_data(int data);
Rte_Read_portll_data(int data);
Rte_Write_port8_data(int data);
Rte_Write_port12_data(int data);
Rte_Write_port7_data(int data);
Rte_Write_port8_data(int data);

Rte_Call_port3_CsmMacGenerateFinish() ;
Rte_Call_port3_CsmMacGenerateStart();
Rte_Call_port3_CsmMacGenerateUpdate() ;
Rte_Call_port4_CsmMacVerifyFinish() ;
Rte_Call_port4_CsmMacVerifyStart();
Rte_Call_port4_CsmMacVerifyUpdate() ;
Rte_Call_port5_SymBlockEncryptFinish() ;
Rte_Call_port5_SymBlockEncryptStart();
Rte_Call_port5_SymBlockEncryptUpdate() ;
Rte_Call_port6_SymBlockDecryptFinish();
Rte_Call_port6_SymBlockDecryptStart() ;
Rte_Call_port6_SymBlockDecryptUpdate() ;

cplusplus

} /* extern "C" *x/

#endif /*
#endif

cplusplus */

13

The names of the RTE functions have a standard format. For each port, the
call for the RTE is composed by four parts. The first part is the return type,
which is Std_ReturnType. The second one is defined by the port’s interface. In
case of a SenderReceiver interface, it is Rte_Write for sender ports and Rte_Read
for receiver ones. In case of a ClientServer interface it is Rte_Call. The third
part is the name of the port. Finally, the fourth one is defined again by the
interface. In case of SenderReceiver interface, it is the name of the data related
to the interface, whereas in the case of ClientServer interface it is the name of
the operation related to the interface.

14 Cinzia Bernardeschi et al.

«CompositionSwComponentType»
Vfb::System
]: «SwC totype 1 «SWCt rototyp 1 «SwComponentPrototyf 1 «SwComponentPrototyp
itsCamera:Camera itsRadar:Radar itsLidar:Lidar itsGPS:GPS
cameraPort2
cameraPort1 radarPort1 radarPort2 lidarPort1 lidarPort2 gpsPort
I
objDetRecl objDetRec2 | objDetRec3 roadDetRecl roadDetRec2 roadDetRec3
«SwComponentPrototype, ApplicationSwCompc 1 « mponenthtotWe.AppﬁcatiorL\SJwComponen
i i ion:0bi ion itsRoadDetection:RoadDetection
objDetSend roadDetSend
IaneDepWarnRec% laneKeepRec pathRecl pathRec2 pathrec3
1 «SwC oto Applicati “ompr 1 «SwC ApplicationSwC 1 «SwC Applicati 7o

itsLanDepartureWarning:LanDepar!

itsLaneKeeping:LaneKeeping

itsPathPlanning:PathPlanning

laneDepWarnSend1 laneDepWarnSend2 | laneKeepSend1 laneKeepSend3 | pathSend1 pathSend2 pathSend3

™M |

laneDepWarnSend3 laneKeepSend2

throttlePort2
brakingPort2 prakingport3 eeringPort2 steeringPort3 throttlePort1 throttlePort3

brakingPort1 steeringP

1 «SwComponentPrototype 1 «SwComponentPrototype, 1 «SwComponentPrototype,

itsBraking:Braking itsSteering:Steering itsThrottle:Throttle

Fig. 7. AUTOSAR specification of the sample model.

Security components in AUTOSAR 15

«CompositionSwComponentType»
VfB::system

1 «SwComponentPrototype,Sensor/

itsGPS:GPS
1 «SwComponentPrototype,ApplicationSw
itsGPSFilter:GPSFilter
gpsport [T L) C
=
[N4]

1 «SwComponentPrototype,ApplicationSw
itsPathPlanning:PathPlanning

£
1 «SwComponentPrototype,ApplicationSwCompol
itsPathPlanningFilter:PathPlanningF

pathSend3

pathSend2 C

pathSend1
pathRec3

K
|l

1 «SwComponentPrototype,Ser
itsBraking:Braking

brakingPort3 [f]—@f]

1 «SwComponentPrototype,Ser
itsSteering:Steering

Y,
1 «SwC Applicati

YP€,/

itsBrakingFilter:BrakingFilter

N[INNN

M
1 «SwComponentPrototype,ApplicationSwC

itsSteeringFilter:SteeringFilter

steeringPort3 H

1 «SwComponentPrototype,Se
itsThrottle:Throttle 1 «SwComponentPrototype,ApplicationSy
itsThrottleFilter:ThrottleFilter
throttlePort3 [} ﬁu
C

Fig. 8. Part of the sample model with security components.

16 Cinzia Bernardeschi et al.
6 Conclusions

This paper advocates the modelling of security issues in the early phases of
system design. Extensions to AUTOSAR for expressing the trust level of com-
ponents and the security requirement of communications has been introduced. A
tool has been implemented that automatically generates filters that implement
the security issue on communications by using the CSM services. The tool is
intended to be used to ease the work of system designers and to avoid oversight
caused by the complexity of the AUTOSAR standard.

This paper is focused on security requirements specification, leaving verifica-
tion of achievement of security goals to further work.

More in general, modeling should be not limited to just the communication
aspect. Rather, modeling should address security as much as possible. For in-
stance, well-known security engineering best-practices make it possible to harden
the software components. These include, for example, using safe string libraries,
diligent input validation, and checking function ”contracts” at module bound-
aries. Modeling should allow the designer to require the employment of these
practices. For instance, a class diagram, possibly extended by means of proper
stereotypes, may mandate the use of a SecureString class instead of a custom-
ary String library.

In a similar fashion, modeling should address other aspects of the system.
According to the ”defence in depth” principle, just hardening the software com-
ponents is in general not sufficient. Another design countermeasure consists in
reducing the attack surface. Consider the Bluetooth vulnerability documented
by Checkoway et al. [8], for example. Using a safe strcpy library function would
certainly harden the Bluetooth implementation component. However, further
security improvements could derive from requiring that, in contrast to current
procedures, the Bluetooth component will respond to pairing requests only after
user interaction.

Acknowledgement

This work has been developed under the framework of the European project
SAFURE (Safety And Security By Design For Interconnected Mixed-Critical

Cyber-Physical Systems) under grant agreement No 644080. B

References

1. Simone Martini, Davide Di Baccio, Francisco Alarcén Romero, Antidio Viguria
Jiménez, Lucia Pallottino, Gianluca Dini, and Anibal Ollero. Distributed motion
misbehavior detection in teams of heterogeneous aerial robots. Robotics and Au-
tonomous Systems, 74:30-39, 2015.

2. Andrea Caiti, Vincenzo Calabro, Gianluca Dini, Angelica Lo Duca, and Andrea
Munafo. Secure cooperation of autonomous mobile sensors using an underwater
acoustic network. Sensors, 12(2):1967-1989, 2012.

11.
12.
13.
14.

15.

16.

17.

18.

19.

20.

21.

Security components in AUTOSAR 17

Alexander M Wyglinski, Xinming Huang, Taskin Padir, Lifeng Lai, Thomas R
Eisenbarth, and Krishna Venkatasubramanian. Security of autonomous systems
employing embedded computing and sensors. Micro, IEEE, 33(1):80-86, 2013.

A. Sangiovanni-Vincentelli and Marco Di Natale. Embedded system design for
automotive applications. 10:42-51, October 2007.

Erico Guizzo. How Google’s self-driving car works. IEEE Spectrum Online, Octo-
ber, 18, 2011.

Arman Barari. GM Promises Autonomus Vehicles by
End of Decade. http://www.motorward.com/2011/10/
gm-promisesautonomous-vehicles-by-end-of-decade, October 17 2011.

Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,
Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, et al. Experimental security analysis of a modern automobile. In Security
and Privacy (SP), 2010 IEEE Symposium on, pages 447-462. IEEE, 2010.
Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, Ta-
dayoshi Kohno, et al. Comprehensive experimental analyses of automotive attack
surfaces. In USENIX Security Symposium. San Francisco, 2011.

AUTOSAR, (http://www.autosar.org/).

. Marco Di Natale and A. Sangiovanni-Vincentelli. Moving from federated to in-

tegrated architectures in automotive: The role of standards, methods and tools.
98(4):603-620, April 2010.

AUTOSAR. Specification of Safety Extensions: AUTOSAR Release 4.2.1.
AUTOSAR. Specification of Security Extensions: AUTOSAR Release 4.2.1.

Jan Jiurjens. Umlsec: Extending uml for secure systems development. In UML
2002—The Unified Modeling Language, pages 412-425. Springer, 2002.

Jan Jirjens. Towards development of secure systems using umlsec. In Fundamental
approaches to software engineering, pages 187-200. Springer, 2001.

David Basin, Jiirgen Doser, and Torsten Lodderstedt. Model driven security for
process-oriented systems. In Proceedings of the eighth ACM symposium on Access
control models and technologies, pages 100-109. ACM, 2003.

Mehrdad Saadatmand, Antonio Cicchetti, and Mikael Sjédin. On the need for
extending marte with security concepts. In International Workshop on Model
Based Engineering for Embedded Systems Design (M-BED 2011), 2011.

UML MARTE — The UML Profile for MARTE: Modeling and Analysis of Real-
Time and Embedded Systems. http://www.omgmarte.org/.

AUTOSAR. AUTOSAR Specification of Module Secure Onboard Communication:
AUTOSAR Release 4.2.2.

AUTOSAR. AUTOSAR Specification of Crypto Abstraction Library: AUTOSAR
Release 4.2.2.

AUTOSAR. AUTOSAR Specification of Crypto Service Manager: AUTOSAR Re-
lease 4.2.2.

EVITA. Deliverable D2.3: Security requirements for automotive on-board net-
works based on dark-side scenarios. EU FP7 Project no. 224275, “E-safety vehicle
intrusion protected applications,” (www.evita-project.org), 2009.

