
Modeling and Generation of Secure Component
Communications in AUTOSAR∗

Cinzia Bernardeschi
Department of Information Engineering

University of Pisa, Italy
cinzia.bernardeschi@ing.unipi.it

Marco Di Natale
TeCIP Institute

Scuola Superiore Sant’Anna, Pisa, Italy
marco.dinatale@sssup.it

Gianluca Dini
Department of Information Engineering

University of Pisa, Italy
gianluca.dini@ing.unipi.it

Dario Varano
Department of Information Engineering

University of Pisa, Italy
dario.varano@for.unipi.it

ABSTRACT
The AUTOSAR standard acknowledges the need for im-
proved security in automotive communications by providing
a set of standard modules for encryption and authentica-
tion, to ensure confidentiality and integrity. However, these
modules are not currently matched by corresponding models
for security at the application level, and their use is some-
what in violation of the established AUTOSAR methodology
that relies on code generation from high level specifications
for all the communications and scheduling features. In this
paper we present modeling extensions and code generation
features, developed in the context of the EU project Safure,
that aim at bridging this gap.

CCS Concepts
•Computer systems organization → Embedded sys-
tems; Redundancy; •Networks → Network reliability;

Keywords
AUTOSAR; security;

1. INTRODUCTION
Modern motor vehicles contain an increasing number of Elec-
tronic Control Unit (ECU), executing vehicle functions (in-
cluding automated driving and active safety). ECUs are in-
terconnected by wired networks such as the Controller Area

∗(Produces the permission block, and copyright informa-
tion). For use with SIG-ALTERNATE.CLS. Supported by
ACM.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC 2017,April 03-07, 2017, Marrakech, Morocco
Copyright 2017 ACM 978-1-4503-4486-9/17/04. . . $15.00
http://dx.doi.org/10.1145/3019612.3019682

Network (CAN) or Ethernet, and wireless connectivity is in-
creasingly used for additional flexibility and bandwidth for
features like keyless entry, diagnostic, and entertainment.
This increased connectivity leads to an increasing number
of potential cyber security threats. Stephen Checkoway et
al. demonstrate that remote exploitation is feasible via a
broad range of attack vectors including CD players and Blue-
tooth [9]. Thus security in automotive is becoming increas-
ingly important and should be taken into account from the
early stages of software development. In this work, we fo-
cus on the AUTOSAR standard, which is the standard for
the modeling and development of SW components in the
automotive industry.

AUTOSAR defines a modeling language for automotive ap-
plication components and a set of standard services inte-
grated in a common architecture framework. As part of re-
cent extensions and developments, AUTOSAR now offers a
set of security-related services, including the Crypto Service
Manager (CSM) [5], which provides a set of security func-
tionalities (such as hash function, encryption, MAC compu-
tation) that can be used by software components, and the
Secure On-board Communication (SecOC) component for
the authentication of messages exchanged over networks.

Currently, the steps that the developers have to follow in
order to specify a communication making use of the AU-
TOSAR security mechanisms are complex and error prone.
AUTOSAR does not provide any means to specify high level
security requirements at the level of the application compo-
nent models, but rather requires the application developers
to directly use the standard services of the CSM. This is in
contrast with the AUTOSAR approach for scheduling and
communication. Application components are not allowed to
use the basic software services for communication over net-
work buses or the operating system services. Rather, high
level specifications are provided and, based on them, code is
automatically generated by tools to define the threads and
invoke the appropriate network communication services. In
this work, we propose a similar approach to handle the needs
of confidentiality and integrity, allowing the developers to
specify a security level (confidentiality and/or integrity) for
the communication of the application components (in the
AUTOSAR model). In addition, we developed a prototype

model and code generation tool, which automatically syn-
thesizes the right services to use to achieve the security level
specified by the developers. This work was conducted as
part of the European project SAFURE [3] (Safety And Se-
curity By Design For Interconnected Mixed-Critical Cyber-
Physical Systems).

1.1 Background
Security is increasingly considered in the development of
automotive electronics systems, both by enforcing software
programming standards that prevent software defects that
may enable cyber-attacks, as well as by implementing secu-
rity mechanisms for secure communication.

Several publications demonstrate the possibility of at-
tacks on messages and nodes in embedded automotive net-
works [9][12]. Countermeasures for secure communications
on the CAN bus have been proposed including [13]. Fac-
tors like Required Resources and Required Know-How have
been considered in the SAHARA (Security-Aware Hazard
Analysis and Risk Assessment) method for defining threats
criticality [15].

With respect to modeling, a UML-based approach for se-
curity and engineering processes is MDS [7]: a modular
methodology for combining languages for modeling system
designs with languages for modeling security. It uses trans-
formations on security-enhanced models in order to generate
implementations. SecureUML [14] and umlsec [11] are based
on this approach. SecureUML can be used to model systems
with role-based access control policies. Saadatmand et al.
have proposed and discussed benefits of extending MARTE
(an extension of the UML modeling language for real-time
and embedded systems design) with UML stereotypes to
specify confidentiality properties of message communication
[16]. Later they have proposed concepts and mechanisms
that allow to model confidentiality and authentication re-
quirements at a higher abstraction level and automatically
derive the corresponding security implementations [17]. In
the SeSaMo project, Gashi et al. explore how security and
safety in embedded systems are affected by redundancy and
diversity [10].

In a preliminary version of this work [8] we presented
the main ideas behind our AUTOSAR modeling approach.
Here, we introduce a methodology for the automatic genera-
tion of secure components and Run-Time Enviroment (RTE)
code.

1.2 The AUTOSAR Modeling and Develop-
ment Process

AUTOSAR defines a three-layered architecture consisting
of: Application layer, Runtime Environment (RTE) layer,
and Basic Software (BSW) layer [1]. The application layer
contains the Software Components (SWCs) developed for
the automotive system functions by suppliers. The RTE
layer is a middleware layer, automatically generated by tools
and providing an actual implementation of the communi-
cation services requested by the software components, the
definition of the threads and their scheduling. Finally, the
BSW provides basic platform services (including drivers, the
communication stack and the operating system), and basic

Figure 1: Example of AUTOSAR port interaction.

software modules to software components.

The AUTOSAR application model consists of a set of appli-
cation software components that communicate using ports
that express client-server relationships (in this case the port
is typed by an operation interface) or send-receive data in-
teractions, where the port is typed by a data interface con-
sisting of a set of typed data items. An example of an AU-
TOSAR communication is shown in Figure 1, in which two
components SW-C1 and SW-C2 exchange data over a pair
of send-receive port (indicating a data item that is provided
on one side, required on the other). The internal behav-
ior of AUTOSAR components consists of runnables or func-
tional units, represented by a function entry point. Each
runnable indicates the port is uses. Internally, the runnable
code accesses the ports through a set of standard API for
port communication and port service request (denoted as
RTE services). A set of events triggering the execution of
runnables completes the set of the main modeling entities.

The coder that provides the internal representation of the
runnable behavior has the responsibility of using the stan-
dard API for communication over the ports. This API is
independent from the component placement and translated
by the RTE code into the actual communication mechanism.
An example of RTE function is the API for writing data over
a send-receive port:

Std_ReturnType Rte_Write_<port>_<comp>(..,data,..)

In general, an AUTOSAR software component cannot di-
rectly access BSW modules [1]; software components com-
municate between each other and with BSWs only through
the RTE. The RTE is an abstraction layer that is generated
by tools and provides for communication and scheduling.
The RTE provides the actual implementation of the RTE
port communication primitives (using network services or
direct local communication primitives) and has the respon-
sibility of organizing the execution of runnables in threads.
In the architecture framework, the RTE code uses the ser-
vices of the Basic Software (BSW), that is, the set of the
drivers and the operating system. This model allows soft-
ware components to be developed independently of the un-
derlying hardware, which means that they are transferable
and reusable.

2. SECURITY IN AUTOSAR

The AUTOSAR standard provides a number of mechanisms
and modules that can be used by the software developers to
build safe and secure software.

• Secure On-board Communication (SecOC) [6]: the
purpose of the SecOC module is to allow the trans-
mission of secured data between two or more peers
over a network;

• Crypto Abstraction Library (CAL) [4]: the CAL pro-
vides other BSW modules and application software
components with cryptographic functionalities. As a
library, the CAL is not related to a special layer of the
AUTOSAR Layered Software Architecture.

• CSM: the CSM is an AUTOSAR service which pro-
vides cryptographic functionalities to other software
modules, based on a software library or based on a
hardware module (HSM).

The AUTOSAR CSM and CAL specifications define the
same cryptographic functionalities, including hash calcula-
tion; the generation and verification of message authenti-
cation codes; random number generation; encryption and
decryption using symmetrical and asymmetrical algorithms;
the generation and verification of digital signature and key
management operations.

Figure 2: AUTOSAR standard modules for security.

The Crypto Service Manager [5] is an AUTOSAR service,
part of the AUTOSAR service layer, as shown in Figure 2.
The CSM provides cryptographic services to SecOC for se-
curing/unsecuring data over the network. The CSM offers
also a standardized interface to higher software layers to ac-
cess cryptographic functionalities. The CSM service can be
configured to provide the services that are strictly needed
and the selection of synchronous or asynchronous process-
ing. The CSM also controls the concurrent, multiple and
synchronous/asynchronous access of one or multiple clients
to one or more services (i.e. it performs buffering, queuing,
arbitration, multiplexing).

A sample list of CSM interfaces is: CsmMacGenerate, Csm-
MacVerify, CsmSymEncrypt, CsmSymDecrypt, CsmSym-
BlockEncrypt and CsmSymBlockDecrypt.

Figure 3: Example of the CSM function for the ini-
tialization of the Mac Generation service.

The interfaces specified above are implemented using
the streaming approach of start, update and finish
functions. For example the CsmMacGenerate interface
is: Csm MacGenerateStart(), Csm MacGenerateUpdate(),
Csm MacGenerateFinish().

Figure 3 shows the detailed description of the CSM service
that is supplied for the generation of message authentical
codes (MACs).

The services offered by the CSM can be used locally only. If
remote access is needed, it is up to the provider to specify,
implement and provide some proxy for access to CSM. If the
CSM is used remotely (via a proxy), it must be taken into
account that this raises security implications: any commu-
nication between ECUs is done via unprotected communi-
cation buses (e.g. CAN). Unencrypted data, not yet signed
data, would be transmitted and might become stolen or ma-
nipulated.

CSM services use cryptographic algorithms that are imple-
mented using a software library or cryptographic hardware
modules - both are out of scope and not specified by AU-
TOSAR. Note that there is no user management in place,
which prevents unauthorized access to any of the CSM ser-
vices. This means, that if any access protection is needed, it
must be implemented by the application; access protection
is not target of the CSM.

3. AUTOSAR EXTENSIONS FOR MODEL-
ING SECURE COMMUNICATIONS

The AUTOSAR security model defines the mechanisms that
should be implemented as part of the BSW layers and mostly
disregards the application level, that is, how the designer of
an application with security concerns should specify that
its communications need to be suitably protected. These
requirements should be applicable to the elements of the
model, that is to runnables and any port interaction, of
sender/receiver or client server type, as well as on events.

In this section we summarize the main modeling security
concepts defined in the SAFURE project [3] and realized as
stereotypes extending the AUTOSAR implementation pro-
vided by the IBM Rhapsody tool. The security metamodel
defined in Safure builds upon the results of the EVITA
project [2] and, in particular, its metamodels. The EVITA

project defines a number of models, many of which refer to
basic concepts such as trust and attacks, but essentially fo-
cuses on intra-platform security issues whereas, in contrast,
SAFURE focuses on the security of in-vehicle communica-
tion and its relationship with performance and safety. The
main concepts of the SAFURE security modeling at the
functional level are shown in Figure 4. The project also de-
fines concepts for the in-vehicle secure communication model
that are not relevant for this work.

SAFURE defines two main concepts at the functional level:
the trust level of a functional element and the security re-
quirements of communications between elements. A func-
tional element, either a component or a runnable (an exe-
cutable function), may be associated to a trust specification
which specifies to what extent the element can be trusted
to provide the expected function, or service, with respect to
attacks targeted to compromise its functionality. A trust
specification consists of: i) a trust specification identifier
(trustSpecID), which identifies the specification, and ii) a
trust level (trustLevel) which provides an indication of the
extent to which the element can be trusted. The trustLevel
is an attribute of type trustLevelType that corresponds to
an integer in the range 1 to 5, 1 being the highest trust
level and 5 the basic one. The notion of trustLevel recurs in
other projects. For example, it is similar to the attack po-
tential defined in EVITA as a measure of the effort required
to create and carry out an attack.

In the SAFURE metamodel, security requirements can be
specified on communications among elements at the func-
tional level. The security requirement can apply to an entire
data interface (all the elements in it), to a single data item
within an interface, to all the communications outgoing from
a component, or to an interaction between a sender and a
receiver runnable (possibly further qualified by the commu-
nication interface or data item). A security requirement de-
fines a required amount of trust in terms of a system-specific
criterion and a minimum level of an associated quality met-
ric that is necessary to meet one or more trust policies. SA-
FURE defines a secure communication requirement by four
attributes: i) a security requirement identifier , ii) a secu-
rity level , iii) a confidentiality level indicator (defined as the
required key length), and, iv) an integrity level indicator
(defined as the required tag length).

We defined a Rhapsody implementation of AUTOSAR ex-
tensions for the elements represented in Figure 4. AU-
TOSAR is a closed standard and cannot be extended as
such. However, a prototype implementation of a possible
extension is possible when using the IBM Rhapsody tool.
Rhapsody provides AUTOSAR modeling as a profile exten-
sion of its UML metamodel. If additional UML stereotypes
are defined on top of the base entities that are used to de-
rive the AUTOSAR base entities, then they they will also
be applicable to the AUTOSAR concepts, extending them.
Hence, we provided a prototype AUTOSAR extension im-
plementaion as a profile in Rhapsody. The definition of
stereotypes is the only feature that possibly separates Rhap-
sody from other tools. The processing of the AUTOSAR
model, however, is absolutely general, since it makes use of
the standard ARXML model output format. The ARXML
model output contains full information on all the model fea-

tures (including the use of service calls and their parame-
ters).

The Rhapsody implementation first requires the definition
of stereotypes for trust specifications and security require-
ments.

The security requirements that are added to the communica-
tion are realized by stereotyping a constraint. According to
the abstract metamodel of Figure 4, we defined a stereotype
SecurityRequirement, with the properties of the metamodel
of Figure 4. Similarly, a stereotype TrustSpecification is de-
fined (details on the stereotypes definitions are omitted for
space reasons). Constraints that are stereotyped as Securi-
tyRequirement can be added in the Rhapsody AUTOSAR
model to the communication elements (such as a pair of
sender and receiver runnables) using dependencies. In the
case of a pair of sender and receiver runnables, the (single)
sender needs to be identified by stereotyping the dependency
with the sender runnable.

Of course constraints can also be added to components, in-
terface definitions and ports, realizing the desired flexibility
as in the abstract metamodel. A sample model showing
the applicabiity of the proposed extensions is represented in
Figure 5. It consists of two components with two runnables
accessing as reader and writer a pair of sender and receiver
ports. The ports are typed by a data interface with a data
item. In our example, a TrustSpecification is applied to the
component SWC1 and the runnable run21 (on the left of Fig-
ure 5). In Figure 5, SecureCommunication if, SecureCom-
munication de, SecureCommunication swc and SecureCom-
munication re represent the security requirement applied to
an entire data interface, to a single data item within an in-
terface, to all the communications outgoing from a compo-
nent, and to an interaction between a sender and a receiver
runnable, respectively.

4. CSM LIBRARY IMPLEMENTATION
To support our experimental work and test the execu-
tion of the generated code, we implemented a CSM li-
brary compliant with the AUTOSAR standard. The li-
brary has been implemented in C-language and relies on
OpenSSL. The services implemented are the symmetrical en-
cryption/decryption and the MAC generation/verification,
which allow us to fulfil the confidentiality and integrity se-
curity level, respectively. The CSM supports the processing
of a single instance of each service at a time. Each service
makes use of a configuration structure, where all the infor-
mation regarding the current request are stored. When a
new instance of a service is created, a configuration struc-
ture is allocated. New service requests cannot be served until
the previous instance is completed and the structure deallo-
cated. The CSM is based on the streaming approach with
start, update and finish functions. Although it is possible
to configure synchronous or asynchronous job processing, in
this work only synchronous services are implemented, and
the interface functions immediately compute the result. An
example of implementation of a CSM function is shown in
Figure 6.

Figure 4: The Safure metamodel of extensions for the definition of communication security.

Figure 5: Example of use of the Safure extensions.

5. AUTOMATIC GENERATION OF COM-
PONENTS FOR SECURITY

The definition of an AUTOSAR model with security exten-
sions applied to communication links or to the ports involved
in the communication results in the production (by model
export) of a model description file in the standard ARXML
(XML) format.

In our prototype implementation, developers can insert the
security specification by using an AUTOSAR-compliant tool
like Rhapsody, and then export the system as ARXML; or
insert the security tag directly in the ARXML file.

In the ARXML, the security levels are expressed as a tag in
the form of a pair [name; value] within the description field
of the two ports involved in the communication and they
can assume the following values:

• SecurityNeeds=INTEG, which stands for ”integrity”: in
a communication between two entities (A and B), if
A sends a message to B, B is able to verify that the
received message was not altered by an external entity;

• SecurityNeeds=CONF, which stands for ”confidential-
ity”: in a communication between two entities (A and
B), a third (non-authorized) entity (C), is not able to
understands the content of the message exchanged be-
tween A and B;

• SecurityNeeds=BOTH, which means that both (in-
tegrity and confidentiality) are required.

Our tool consists of a Python script that parses the ARXML
file and automatically generates the required elements based
on the specified security level. The security requirements are
fulfilled by using the services provided by the CSM. Client
ports and interfaces to the CSM services are generated auto-
matically. The script allows the developers to choose if these
elements are added directly within the component, which
requires a specific security level, or if they are to be added
within a new purposely generated component, which acts as
a proxy or filter. For this purpose, we define an additional
tag in the description field of the component:

• NewComponent=TRUE: for each secure component the
script adds a new filter component, which transpar-
ently encrypts and decrypts sent and received data.
This is useful when dealing with legacy components
that cannot be modified.

• NewComponent=FALSE: (default value) the required se-
curity elements are added directly within the compo-
nent which requires security services.

We show an example of automatic generation applied to
a sample model of an active safety system, as outlined in
Figure 7.

Std_ReturnType
Csm_SymEncryptStart (Csm_ConfigIdType cfgId, const Csm_SymKeyType *keyPtr,

const uint8* InitVectorPtr, uint32 InitVectorLength) {
// Check parameters;
// Initialize configuration structure;
// call the underlying cryptographic primitive
return_value = Cry_SymEncryptStart((const void *)csm_encrypt->PrimitiveConfigPtr,

keyPtr, InitVectorPtr, InitVectorLength);
return return_value;

}

Figure 6: A sample function of CSM library

Figure 7: Braking system model overview.

The system consists of a portion of an active safety subsys-
tem, in which multiple sensor components are feeding infor-
mation on the environment around the car to subsystems
dedicated to the detection of objects and the road profile.
Following the sample model of two active safety functions
(Lane departure warning and Lane keeping) and a Path
planning component, a subset of the typical actuation sys-
tems of a car is represented (braking, steering, and throttle).

Confidentiality and integrity requirements are added to the
communications between the GPS and the PathPlanning
components, and between the latter and all the actuators,
by the means of security tags. Other communications are
only characterized by integrity requirements.

After the system is modelled using Rhapsody, as shown in
Figure 8, the ARXML file exported by Rhapsody, is pro-
cessed by our script, which generates a new ARXML file.

Consider the subsystem composed by GPS, PathPlanning
and actuators (components below the red line in Figure 7).

If NewComponent=TRUE, the resulting model is shown in
Figure 9 where filters are shown in grey.

To outline the filter automatic generation process, consider
the PathPlanning component and the corresponding Path-
PlanningFilter (in Figure 9).

To ensure security for the communication through the
receiver port pathRec3 the filter adds a Receiver port
pathRec3 r and a Sender port pathRec3 s. The filter re-

ceives secured data from pathRec3 r, decrypts and forwards
it to PathPlanning through the sender port pathRec3 s.
Similarly, for port pathSend1 the PathPlanning filter adds
a receiver port pathSend1 r and a sender port path-
Send1 s. The filter receives unsecured data from PathPlan-
ning through the port pathSend1 r, encrypts, and forwards
it to (the filter of) Braking component, through port path-
Send1 s. The filter has client ports to call the CSM functions
for integrity (MAC) and confidentiality (symmetric encryp-
tion), shown on the right hand side of the filter component.

If NewComponent=FALSE, the resulting model is shown in
Figure 10. Client ports are added as shown in the figure.
The component uses these ports to call cryptographic func-
tionalities through the CSM interfaces and implement the
security level.

6. AUTOMATIC GENERATION OF SE-
CURE RTE CODE

Consider the sender-receiver transmission of data elements
over the GPS - PathPlanning communication in the sample
model.

Depending on the allocation of the components on the sys-
tem processor, specified in the AUTOSAR model allocation,
the implementation of the RTE communication API can be
of different types.

In the case of intra-ECU communication, the data trasmis-
sion is performed by a write on a global variable (shared
memory), no encryption is required (we assume the ECU is
trusted), and no security elements are added by our script.
For inter-ECU communications, the data transmission oc-
curs over a communication bus (in our example, a CAN
bus, but this does not affect the generated code), and se-
curity statements are added by the script in the prototype
implementation of the RTE write.

To show an example of a code generated for the automatic
call of the encryption functions, we operate on a configura-
tion in which the GPS and PathPlanning subsystems reside
on different ECUs. The example only details the code gen-
eration features that are added to satisfy the confidentiality
requirements (encryption). The integrity requirements are
satisfied by the internal implementation of the AUTOSAR
COM function, by invoking the services of the SecOc. The
code generated for the runnable operation that writes into
the gpsPort in case of NewComponent=FALSE is:

Std_ReturnType

Figure 8: Braking system modeled on IBM Rational Rhapsody.

Figure 9: Braking system after security tags pro-
cessing (NewComponent=TRUE).

Rte_Write_gpsPort_GPS(uint32 datum) {
...
Csm_SymEncryptStart(cfgId, ..., sizeof(uint32));
Csm_SymEncryptUpdate(cfgId, datum_buf, ...);
Csm_SymEncryptFinish(cfgId, ...);
res = Com_SendSignal(sigID, datum_buf);
... // AUTOSAR COM

Figure 10: Braking system after security tags pro-
cessing (NewComponent=FALSE).

return res;
}

The code implementation of the RTE function performs,
transparent to the user, the encoding of the data value and
then its transmission using the higher level communication
functions prescribed by AUTOSAR (in its COM layer).

In the case the user specifies NewComponent= TRUE a filter

component is automatically added. In this case the code
generated for the RTE Write function performs a simple
copy into the buffer variable that is shared with the filter
component

Std_ReturnType
Rte_Write_gpsPort_GPS(uint32 datum) {

...
Rte_RxBuf = datum;
Rte_Write_Port0_GPSFilter(Rte_RxBuf);
...
return RTE_E_OK;
}

The encryption code in this case is added to the communica-
tion outgoing from the filter, as shown below for the function
Rte_Write_Port0_GPSFilter(...):

Std_ReturnType
Rte_Write_Port0_GPSFilter(uint32 datum) { ...

Csm_SymEncryptStart(cfgId, ..., sizeof(uint32));
Csm_SymEncryptUpdate(cfgId, datum_buf, ...);
Csm_SymEncryptFinish(cfgId, ...);
res = Com_SendSignal(sigID, datum_buf);
... // AUTOSAR COM
return res;
}

This approach enhances the security of AUTOSAR design
because it is in the direction of security by design. On a
security annotated AUTOSAR model, security formal prop-
erties can be proved and security components can be auto-
matically generated so alleviating the developer’s task and
reducing software vulnerabilities.

7. CONCLUSIONS
In this paper we present a methodology for the specifica-
tion and the automatic generation of security features for
the communication between AUTOSAR components. The
framework consists of modeling extensions that allow AU-
TOSAR designers to add a security specification to the
model of the communication among components and a code
generation tool. The modeling extensions have been imple-
mented (in prototype form) in Rhapsody, and the code gen-
eration tool takes as input the model export and generates
filter components that perform the required encryption or
an implementation of the communication API that encrypts
the data automatically, without manual coding by the user.

8. ACKNOWLEDGMENTS
This work has been developed under the framework of the
European project SAFURE (Safety And Security By Design
For Interconnected Mixed- Critical Cyber-Physical Systems)
under grant agreement No. 644080.

9. REFERENCES
[1] AUTOSAR, (http://www.autosar.org/).

[2] EVITA - E-safety vehicle intrusion protected
applications, Seventh Research Framework
Programme of the European Community, Project
reference: 224275. http://evita-project.org/.

[3] SAFURE - Safety And Security By Design For
Interconnected Mixed-Critical Cyber-Physical
Systems, horizon 2020, project reference: 644080.
https://safure.eu//.

[4] AUTOSAR. AUTOSAR Specification of Crypto
Abstraction Library: AUTOSAR Release 4.2.2.

[5] AUTOSAR. AUTOSAR Specification of Crypto
Service Manager: AUTOSAR Release 4.2.2.

[6] AUTOSAR. AUTOSAR Specification of Module
Secure Onboard Communication: AUTOSAR Release
4.2.2.

[7] D. Basin, J. Doser, and T. Lodderstedt. Model driven
security for process-oriented systems. In Proceedings of
the eighth ACM symposium on Access control models
and technologies, pages 100–109. ACM, 2003.

[8] C. Bernardeschi, G. Del Vigna, M. Di Natale, G. Dini,
and D. Varano. Using autosar high-level specifications
for the synthesis of security components in automotive
systems. In Intl. Work. on Modelling and Simulation
for Autonomous Systems, pages 101–117. Springer,
2016.

[9] S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham, S. Savage, K. Koscher, A. Czeskis,
F. Roesner, T. Kohno, et al. Comprehensive
experimental analyses of automotive attack surfaces.
In USENIX Security Symposium. San Francisco, 2011.

[10] I. Gashi, A. Povyakalo, L. Strigini, M. Matschnig,
T. Hinterstoisser, and B. Fischer. Diversity for safety
and security in embedded systems. In Proceedings of
the IEEE Intl. Conf. on Dependable Systems and
Networks, pages 1–2, 2014.

[11] J. Jürjens. UMLsec: Extending UML for secure
systems development. In UML 2002—The Unified
Modeling Language, pages 412–425. Springer, 2002.

[12] K. Koscher, Czeskis, et al. Experimental security
analysis of a modern automobile. In 2010 IEEE
Symposium on Security and Privacy, pages 447–462.
IEEE, 2010.

[13] C.-W. Lin and A. Sangiovanni-Vincentelli.
Cyber-security for the Controller Area Network
(CAN) communication protocol. In 2012 International
Conference on Cyber Security, pages 1–7. IEEE, 2012.

[14] T. Lodderstedt, D. Basin, and J. Doser. SecureUML:
A UML-based modeling language for model-driven
security. In UML 2002–The Unified Modeling
Language 2002, pages 426–441. Springer, 2002.

[15] G. Macher, M. Stolz, E. Armengaud, and C. Kreiner.
Filling the gap between automotive systems, safety,
and software engineering. e & i Elektrotechnik und
Informationstechnik, 132(3):142–148, 2015.

[16] M. Saadatmand, A. Cicchetti, and M. Sjödin. On the
need for extending MARTE with security concepts. In
International Workshop on Model Based Engineering
for Embedded Systems Design (M-BED 2011), 2011.

[17] M. Saadatmand and T. Leveque. Modeling security
aspects in distributed real-time component-based
embedded systems. In Information Technology: New
Generations (ITNG), 2012 Ninth International
Conference on, pages 437–444. IEEE, 2012.

