
Generation of Simulink Monitors for Control
Applications from Formal Requirements

Alessio Balsini Marco Di Natale
Scuola Superiore Sant’Anna

Pisa, Italy
Email: alessio.balsini marco.dinatale @santannapisa.it

Marco Celia Vassilios Tsachouridis
UTRC Research

Cork, Ireland
Email: CeliaME TsachoV @utrc.utc.com

Abstract—The increasing complexity of embedded systems re-
quires an improved capability of detecting and fixing errors. The
availability of a modeling environment like Simulink allows the
verification by simulation or model checking of system properties
and of the correct behavior of the design. This verification is
possible upon condition that the requirements are expressed in
a formal way.

Test and verification in Simulink is often a time-consuming
process that requires the systems developers to translate require-
ments in model blocks for the verification. The capability of
performing such translation is seldom available and prone to
translation and interpretation errors.

We present in this paper a monitor generation tool and
a Simulink library that enable a methodology to translate
requirements in structured natural language into formal Signal
Time Language (STL) constraints, leading to the automatic
generation of Simulink monitors that check at run-time the
desired properties. The tool automatically creates and connects
the monitor blocks to a target Simulink model.

I. INTRODUCTION

Model-based development of embedded systems is today
an established industrial practice. The use of models allows a
precise and formal definition of the behavior with respect to
time and also allows to raise the level of abstraction of the
controller logic allowing verification by model checking and
by simulation.

Simulink by the Mathworks [1] is among the most pop-
ular modeling environments. The Simulink models used for
the representation of cyber-physical systems are based on a
synchronous reactive semantics. The model of the controlled
(physical) system is defined by a system of differential equa-
tions, integrated in continuous time, while the model of the
controller is typically discrete-time.

Simulink allows for model verification of discrete-time
models using formal proofs through the Simulink Design
Verifier add-on (which is internally based on the Prover engine
[2]) and supports checking asssertions at simulation time using
a simple library with basic assertion blocks.

This leaves the system developers with the task of bridging
the gap between the requirements (often expressed in natu-
ral language) and the definition of monitors that check the
requirements constraints at simulation time and possibly also
at run-time. This process can be divided in steps. First, the
requirements need to be translated from the natural language
into a formal language. To ease this translation, the natural

language can be constrained to be semantically as close as
possible to a suitably selected formal language. Once the
requirements are expressed formally, the language can be used
to verify the correctness of the system model offline by model
checking or theorem proving, or the constraint formulas can
be parsed to automatically generate monitors that check them
on-line (while the simulation is running) or off-line on the
execution traces.

A temporal logic is a language in which formal specifica-
tions can be written for computer systems. In the late 70s,
Amir Pnueli [3] introduced temporal logic to reason formally
about the temporal behaviors of reactive systems. In the Linear
Temporal Logic LTL [3] and the Computation Tree Logic
or CTL [4], time is implicitly represented as an enumerated
sequence of reaction steps occurring in a discrete time space.
These temporal logics were developed to check properties
in (typically hardware) systems with boolean, discrete-time
signals and focused on the verification, specification, and
synthesis of concurrent systems.

Other models and languages were later developed [5], [6] to
improve the expressive power of LTL and CTL and to define
and verify properties in real (continuous) time as applied to
hybrid systems.

Today, there are several examples of temporal logic, differ-
ing in the model of time, the semantics of reactions and the
language that can be used to define properties and constraints.
The Property Specification Language PSL [7] is an extension
of LTL in which constraints are composed of boolean expres-
sions written in the host language (often VHDL or Verilog)
together with temporal operators and sequences to describe the
relationship between states over time. The Metric Temporal
Logic (MTL) [5] allows reasoning over Boolean signals over
dense-time domains and the Signal Temporal Logic (STL)
[6] was proposed in the context of analog and mixed-signal
circuits as a specification language for constraints on real-
valued signals defined in continuous time.

The verification of timed properties using these languages
has been studied in depth and so the possibility of using
techniques for monitoring the properties off-line on system
traces or on-line using monitors at simulation time. The
general verification problem is discussed in several surveys
and books such as [8]. Other works discuss the application of
formal verification (by model checking) to systems with STL

constraints. A recent work on this subject is [9].
A formal language like STL also offers the option of

generating monitors for checking the properties of a simulated
system. Offline techniques for monitoring STL properties on
execution traces are discussed in [10]. This is an example of
timed pattern matching, which consists in finding all segments
of a continuous-time boolean signal that match a pattern
defined by a timed regular expression. This problem has been
formulated and solved in [11] via an offline algorithm that
takes the signal and expression as inputs and produces the set
of all matches.

Another possibility is the automatic generation of monitors
that can be used to check properties at run-time, that is,
while the simulation is running. In the context of timed
regular expressions [12] an online matching algorithm has
been presented in [13], but an on-line monitor generation
technique is still not explicitly available for STL.

Finally, while the use of a formal temporal logic allows in
principle the use of automatic verification techniques, bridging
the gap between informal requirements and formal statements
is not an easy task. Libraries and automatic implementation
techniques can be used to ease the use of STL formulas in
designs. In [14] Kapinsky et al propose the use of STL to
verify typical control constraints in automotive applications
modeled in Simulink, However, despite the title of the work,
a library implementing the sample STL constraint presented
in the paper is not described, nor it is available.

As for the problem of translating informal requirements
into formal (possibly STL) constraints, several approaches
are possible. It is possible to parse the natural language to
extract formal predicates (as in [15] or [16], with a more
recent discussion of the possible approaches in [17]), or to
restrict the natural language (using editors or forms) in such a
way that only a readable form of formal statements (typically
constructed by replacing the formal language operators with
natural language tokens) is allowed. A comparison of the two
approaches is presented in [18].

An example of controlled composition of natural language
tokens is described also in [19], in which the requirements for-
mulation approach is coupled with the proposal of a contract
language for the expression of requirements.
Paper contributions.

The purpose of this work is not to provide a formal language
or a formal extension of existing methods, but rather to provide
a usable tool and library to improve the applicability of
existing langages, methods and techniques.

This paper presents an open source tool that generates
Simulink monitor blocks for the validation at simulation time
of a given models against constraints expressed according to
a restriction of the STL language. The blocks are generated
according to rules expressed as STL formulas and the monitor
generation makes use of a set of library blocks that provide an
implementation of the STL operators and an implementation
of the typical control constraints described in [14].

Thanks to the availability of the source code and the
modular structure of the project, the user can customize the

tool and the library by directly accessing the software classes.
It is thus possible to modify or improve the tool to extend the
supported formal languages, or support other environments in
addition to Simulink.
Paper organization. The remainder of this paper is organized
as follows. Section II presents the proposed methodology from
the requirements editor to the generation of the monitors.
Section III introduces the STL language and the restriction
of the language currently supported by the generation tool.
Section IV provides an overview of the tool, from a high level
user perspective to some of the internals and implementation
details. This section also presents the typical user interaction
with respect to a given model in order to (i) define the STL
constraints, (ii) create Matlab code for the generation of the
monitor blocks, (iii) add the monitor blocks to the model and
connect them to the model signals. Section VI provides a
description of the Simulink library developed as a support for
the generation of monitors and finally, Section VII provides
a discussion of a simple example to show the applicability
of the proposed tool. Section VIII concludes the paper and
highlights some future work.

II. FROM REQUIREMENTS TO MONITORS

The work described in this paper is part of a general
framework that is meant to improve the quality of the require-
ments and automate their translation into runtime Simulink
monitors. A graphical description of the methodology is shown
in Figure 1 The framework is centered on the availability of
STL specifications (actually using a restriction of the STL
language) that express the constraints to be verified on the
system. From the STL specifications, a tool automatically
generates monitors that are automatically connected to the
model signals to check the correct behavior of the system at
simulation time. The monitors are generated using elements
from a purposely developed Simulink library (freely available
from [20]), that provides, among other things, a practical
implementation of the library proposed in [14].

The following sections describe the methodology and the
tools to generate the monitors from STL statements. However,
in this section we provide a short description of the other
stages of the process to provide some context to our work.
These stages and tools (currently under development) are a
first step to address the problem of bridging the gap from
natural language requirements to the generation of monitors
in Simulink.

To restrict the scope of the work to a manageable size, we
are initiall targeting typical control requirements, of the type
presented in [14]. A typical requirement expressed in natural
language (for a control application) is the following.

The Driver Subsystem (DRV) shall accelerate the motor
from zero to x1 rpm in less than t1 sec, with an overshoot
of less than x2 rpm.

We developed a customized Eclipse editor that supports the
user in writing structured requirement by separating assump-
tions from assertions. The editor provides syntax highlighting,
context help and direct access to a library of symbols (of

Figure 1. The framework for monitor generation from requirements.

signals, subsystem and parameter identifiers) in an attempt to
enforce the definition of requirements in a structured language
with predefined natural language sentences or tokens, and the
use of names from a data dictionary.

The informal requirement shown as an example then be-
comes.
R1. Acceleration bound and overshoot
Assumption:
The system inertia sys_inertia is less than or equal to
i1 and reference is a step with amplitude A.
Assertion:
Inside the Driver Subsystem (DRV), the speed (spd) signal
shall rise from 0 to x1 in less than t1 and
the overshoot shall be less than x2.

In the new requirement formulation, the fixed size font
indicates names of signals or parameters, the fixed size font
in bold indicates macros; the italics bold indicates operators
(logic and comparison) and the bold sans serif indicates a
scoping operator. Finally, with limited additional reasoning or
processing, the requirement can be rewritten using macros as
in the following (DRV/spd indicates the signal with name spd
defined inside the subsystem DRV).
R1. Acceleration bound and overshoot
Assumption:
UPPERBOUND(sys_inertia, i1);
STEP(reference, 0, A).
Assertion:
RISETIME(DRV/spd, 0, t1, 0, x1) and
OVERSHOOT(DRV/spd, 0, x2).

At this point the macros expressing the specification can
either be translated into STL or, for simplicitly, be directly
transformed into signal generator or assertion checker blocks.
For example, the signal generator macro
STEP(signal_name, start_time, step_amplitude)

could be implemented with the library source subsystem of
Figure 2.

Similarly, the macro
OVERSHOOT(sig_name, start_time, oversh_bound)

can be easily translated in STL or implemented using the
library blocks described in section VI.

Figure 2. Step signal generator.

III. THE STL LANGUAGE

This section introduces the restriction of the STL language
that is used as a backbone of our generation tool.

A. The STL Language

In STL, a formula φ is evaluated on a sequence of inputs
X = (x1, x2, . . . , xn) at a (continuous) time instant t, resulting
in the evaluation of (X , t) pairs.

An STL formula φ can be:
• p: a proposition that evaluates a state variable.

(X , t) |= p⇔ p [t] = TRUE.

• ¬φ (Negation): the logical negation of φ.

(X , t) |= ¬φ⇔ ¬ ((X , t) |= φ) .

• φ1 ∧ φ2 (And): the logical and between φ1 and φ2.

(X , t) |= φ1 ∧ φ2 ⇔ (X , t) |= φ1 ∧ (X , t) |= φ2.

• ©φ (Next): a temporal operator that evaluates φ at the
subsequent input value.

(X , t) |=©φ⇔ (X , t+ 1) |= φ.

• φ1Uφ2 (Until): a temporal operator that is satisfied if φ1
holds until φ2 becomes true.

(X , t) |= φ1Uφ2 ⇔
∃t′ ≥ t : (X , t′) |= φ2 ∧ ∀t′′ ∈ [t, t′) , (X , t′′) |= φ1.

From the previous primitive operators, it is possible to
derive other temporal operators:
• 3φ = TRUE Uφ (Eventually): the condition is verified

at least once.

(X , t) |= 3φ⇔ ∃t′ ≥ t : (X , t′) |= φ.

• 2φ = ¬ (3¬φ) (Globally): the condition is always
verified.

(X , t) |= 2φ⇔ ∀t′ ≥ t : (X , t′) |= φ.

In STL, temporal operators may be bounded inside an
implicit [0,+∞) or explicitly specified time interval. The Until
operator with an interval bound has the meaning

(X , t) |= φ1U[a,b]φ2 ⇔
∃t′ ∈ [t+ a, t+ b] : (X , t′) |= φ2 ∧ ∀t′′ ∈ [t, t′] , (X , t′′) |= φ1,

from which is possible to obtain the following relations.

3[a,b]φ = TRUE U[a,b]φ.

2[a,b]φ = ¬
(
3[a,b]¬φ

)
.

B. Language Implementation

Each STL formula or STLFormula, can be one of the
following:
• BoolExpr: an expression resulting in a boolean value.
• !STLFormula: the logical negation of an STLFormula.
• { STLFormula } AND { STLFormula }: a logical AND

operation between two STLFormulas.
• STLUntil: the Until temporal operator.
• STLGlobally: the Globally temporal operator.
• STLEventually: the Eventually temporal operator.

Temporal Operators. The STL temporal operators can be
written in a parsable text syntax.

The Until operator is expressed in the following ways:
• { STLFormula } U_TimeExpr { STLFormula }: timed

Until.
• { STLFormula } U { STLFormula }: untimed Until.
On the other hand, the Globally and Eventually temporal

operators, is expressed as follows:
• [] { STLFormula }: untimed Globally.
• []_TimeExpr { STLFormula }: timed Globally.
• <> { STLFormula }: untimed Eventually.
• <>_TimeExpr { STLFormula }: timed Eventually.

Expressions. The previously mentioned TimeExpr defines the
time interval in which the temporal operator is evaluated. It
can be any kind of interval: closed [Expr,Expr], left open
(. . .], right open [. . .), or open (. . .).

The Expr keyword identifies an expression with integer or
floating point value:

BoolExpr is an expression with true or false evaluation, and
can be one of the following,
• Expr CmpOp Expr: a comparison expression.
• BoolExpr BoolOp BoolExpr: a logical expression.
• BoolFunction: a function that returns a logical value.
• BoolVal: a constant logical value.

Operators. The operators recognized by the tool can be the
basic mathematical, comparison, or boolean operators:
Values. Val or BoolVal represent values that can be either a
variable defined by the user, the name of a signal or parameter
belonging to the Simulink model or a constant value:
Functions. The language also allows using predefined func-
tions such as:
• abs(Expr): the absolute value of Expr.

• diff(Expr): the left-derivative of Expr.
• step(Expr , Expr): returns true when the first ex-

pression is recognized to be a step function with a height
of at least the value defined by the second expression.

Timed Behaviors.
In STL, timed formulas can be nested such as, for example,

<>_[0, T] { q AND []_[a, b] { p } }.

The proposition p is nested one level deeper than proposition
q. The meaning is that there has to be one time instant t in
[0, T] (the outer Eventually condition) such that q is satisfied
in t and for all the system evolutions starting from time t, the
condition p is verified at some time between t+ a and t+ b.

In a runtime monitor implementation, the evaluation of the
global condition with p depends not only on the time range
of its temporal operator, but also on the time t in which q is
satisfied. If tq is the time at which q is satisfied, the time range
in which p is evaluated becomes [a+ tq, b+ tq]. The nested
time interval [a, b] is therefore not an absolute time, but is
relative to the time instant identified by the outer clause.

C. Language Restriction

In order to generate online monitors, we introduce the
following restrictions to the STL language.

• The maximum level of nesting for temporal operators is
two.

• If there is a nested temporal operator, the condition on
which the outer operator is evaluated must be a conjunc-
tion and at least one of the terms of the conjunction must
be a proposition (not a temporal operator).

• If Tb is the maximum value for all the endpoints of the
intervals defined in the inner (nested) temporal operators,
then the terms of the conjunction that are not temporal
operators can only be true at time instants that are
separated by a time interval always greater than Tb.

For example, in

<>_[0, T] { q AND []_[a, b] { p } }.

The outer temporal operator is defined on the conjunction q
AND [] [a, b] { p }. In order to correctly generate a monitor
from this formula, the proposition q can only be true at time
instants that are separated by more than b time units.

The purpose of the restrictions is to simplify (or make
altogether possible) the online monitor definition and genera-
tion. However, despite these restrictions the language is still
powerful enough to handle the typical control requirements
defined for the library in [14].

D. Examples

The following examples show how it is possible to express
some simple system constraints using the (restricted) STL
language. The language is used to express the condition result-
ing in the violation of the constraint (and the corresponding
activation of the assertion block).

/* Doors must never be open while the
* elevator is moving */

<> {doorOpen == TRUE AND elevatorSpeed != 0} ;

/* The elevator must never exceed given
* speed and acceleration limits */

<> {abs(elevatorSpeed) > maxSpeed OR
abs(diff(elevatorSpeed)) > maxAccel} ;

/* If the elevator is called at the fourth
* floor, it must reach the destination in
* less than 100 time units */

<> {floorRequest == 4 AND
[]_[0,100] elevatorFloor != 4 } ;

Other examples of typical control specifications in STL can
be taken from [14] and are used for the synthesis of the control
monitor blocks described in Section VI.

IV. THE MONITOR GENERATION TOOL

The tool presented in this paper consists of a MAT-
LAB/Simulink front-end, implemented as scripts in the Matlab
language, and an STL parser and Monitor code generator,
implemented in C++.

As shown in Figure 3, the parser and generator tool takes
as input two files, one containing the list of requirements
and a Data Dictonary description containing (among others)
information about all the subsystems, signals, and parameters
defined in the requirements and having a corresponding defini-
tion in the Simulink model. The Data Dictionary file (currently
a .csv Excel file) can be automatically synchronized with the
definitions in the Simulink model by one of the Matlab scripts
in the framework.

The tool parses the two files and outputs a new file con-
taining the Matlab code that is used to generate the Simulink
Monitor blocks for the runtime validation of the STL rules in
the requirements.

Matlab

Data Dictionary
STL

Requirements

Scanner and Parser

Generator

Data Dictionary Synchronizer

Tool

C
or

e
To

ol

Simulink

Model

Monitor
Blocks

Monitor
Blocks

Monitor
Blocks

Monitor Creation
Code

Figure 3. Block diagram representing the elements involved in the project.

This section provides a high-level description of the main
tool subsystems and the input/output files by following the
logical flow that the user follows to generate the monitors.

A. Data Dictionary File and Requirements File

The tool provides a Matlab function called syncDD(), that
takes as input parameters the name of the Simulink model to
be synchronized and the name of the Data Dictionary file.
The function ensures that all the Simulink names of signals,
subsystems and parameters are in the DD file and, if not, it
updates the DD. The DD also contains the definition of all
the constants (with values possibly computed as expressions
of other constant values).

The requirements file (from the editor or written manually
by the user) is composed by a sequence of STL formulas to
be monitored.

A label can be associated with each STL formula to ease the
identification of the constraint that is checked by each monitor,
as in:

maxExceeded : <> { x > maxValue };

Moreover, the tool accepts single-line and multi-line code
comments expressed using the C language syntax.

B. Monitor Block Code Generator

When the STL requirements are parsed by the tool all the
identifiers encountered in the requirements are checked to be
valid constant values or signals as defined in the DD file.

When the the parsing of the requirements is completed, the
tool generates in an output file the Matlab code containing the
instructions to generate the Simulink monitor blocks.

C. Monitor Block Creation

The Matlab code generated by the parser is finally used
to create the Simulink monitor blocks. The tool provides a
Matlab function called addMonitorBlock(), which takes
as parameters the name of the Simulink model in which the
block will be added and the position where the monitor block
is located.

The function creates the monitor block in the model and
connects its inputs to the signals in the model using pairs of
From/Goto blocks.

D. Model Validation

After the creation of the monitor blocks, the model can be
validated by launching a Simulink simulation. In the default
monitor creation process, each output port of a monitor is
connected to an assertion block. Whenever a requirement is
violated, the simulation is aborted and an error showing the
violated condition is prompted to the user.

V. PARSING AND GENERATION TOOL

This section describes the implementation details of the
subsystems described in Section IV.

A. STL Requirements Parser

The requirements file is first processed by the Flex (The Fast
Lexical Analyzer) [21] Flex passes every STL language token
detected in the source file to the syntax parser, implemented
with the GNU Bison tool [21].

Constant values are computed and replaced, and the variable
names and their values are stored in a (standard library) map
data structure.

Each token recognizable by the parser has a corresponding
C++ class, derived from a pure virtual TreeNode class that
provides the following members and data:
• left, right: pointers to TreeNode classes.
• generate(): pure virtual function that creates the

associated Matlab code.
When the Bison parser identifies a token, it creates an object

from the C++ class representing the associated operator or
expression and, if needed, sets the left, right (or both)
data fields in order to create a binary tree of parsed objects.

Each class derived from TreeNode must provide an im-
plementation of generate() (defined as pure virtual in the
generic parent class). This function generates a Simulink block
container that implements the clause expressed by the associ-
ated language token and then recursively calls generate()
on its children nodes, creating the associated sub-blocks. The
set of recursive calls at all the tree nodes, results in the
generation of the Matlab code for the creation of the hierarchy
of nested Simulink blocks inside the monitor.

The monitor block generated by the tool has a sub-block
for each formula, as shown in the example of Figure 4. Those
sub-blocks output a signal with boolean value representing
the validity of the associated formula (true/1 when verified,
false/0 otherwise). The output of the block is meant to be
connected to the Assertion block provided by the Simulink
standard library after being complemented by a NOT. The
Assertion block takes as input a signal and, as default behavior,
stops the simulation and prompt an error message when it
receives a truth value. The block can be configured also to
continue the simulation but signal the assertion violation with
a prompt.

1

x

x
x_ref OUT

Overshoot

NOT

NOT_Overshoot VALID_Overshoot

2

x_ref

x
x_ref OUT

RiseTime

NOT

NOT_RiseTime VALID_RiseTime

x
x_ref OUT

SettlingTime

NOT

NOT_SettlingTime VALID_SettlingTime

x
x_ref OUT

SteadyState

NOT

NOT_SteadyState VALID_SteadyState

Figure 4. Validation bock content.

In order to make the timed temporal operators valid only in
the time interval that is defined for them, they are provided
with an additional boolean input port. The timed temporal

operator is enabled only when this boolean value is true. This
input port is connected with a time comparison block that
outputs a true value only when the simulation time is in the
given range.

The implementation of timed relationships between STL
formulas is performed by extending the time range structure.
Considering the Timed Behaviors description provided in
Section III-B, the time instant when the untimed terms in the
inner conjunction (q in the example) are all satisfied is stored
in a memory block and added to the blocks containing the
interval edges. See for example, the implementation of the
timed Until monitor of Figure 6.

B. Simulink Functions

In Matlab, the signals and parameters defined inside the
model can be extracted with the getSignalsList() and
getParameterList() functions.

These function open the Simulink model passed as a param-
eter and scan it All the signals and parameters in the model
are searched in the .csv DD file and, if missing, they are added
to it.

Another important Matlab function provided by the tool is
the one responsible for the creation and insertion of the moni-
tor block in the Simulink model. The AUTOGEN testBlock.m
file is created by the parser tool, and used for the generation
of the monitor blocks in the Simulink model by calling the
addValidationBlock() function in Matlab.

The function takes as input parameter:
• The name of the Simulink model in which the validation

block must be added.
• The name to be assigned to the validation block.
• The position of the validation block, expressed as the

coordinates of the edges: left, top, right, bottom.
The function creates an empty block, with the requested

position and name, as a monitor block container and runs the
AUTOGEN testBlock.m script to creates its content and the
connections with the input model signals.

VI. THE SIMULINK LIBRARIES FOR MONITORING STL
AND CONTROL CONSTRAINTS

To simplify the code generator, some of the standard
functions that can be internally used by the validation block
are developed as a Simulink library called STL Library and
implemented in the file STLLib.slx, and a Control Monitor
library in the file CtrlMonitorLib.slx.

A. STL Library

This library provides Simulink blocks implementing the
STL temporal operators and the AND operator: Eventually,
Always, Until, and ANDSTL (shown in Figure 5).

Consider, for example, the timed until block (labelled
as UNTIL in the Figure, the other blocks follow similar
conventions). The block contains an implementation of the
clause φU[SOI,EOI]ψ. The block inputs are: IN INTERVAL
that needs to be set to true if the current time is inside
the interval [SOI,EOI], false otherwise; the EOI value, the

Figure 5. Library for the generation of STL monitors.

current evaluations for the φ and ψ formulas, and a RESET
input.

Figure 6 shows the internals of the timed Until block. All
the monitor blocks keep their output constant after a violation
of the rule is detected. However, to facilitate their use in
simulations concatenating several test cases, a reset input is
also provided. This is implemented by the set-reset block at
the end of the chain, on the far right.

The definition of the timed until φU[SOI,EOI]ψ is (from
section III)

(X , t) |= φU[SOI,EOI]ψ ⇔
∃t′ ∈ [t+ SOI, t+ EOI] : (X , t′) |= ψ∧

∀t′′ ∈ [t, t′] , (X , t′′) |= φ,

with the availability of the signal IN INTERVAL, the con-
dition becomes

∃t′ such that: IN INTERVAL ∧ (X , t′) |= ψ∧
∀t′′ ∈ [t, t′] , (X , t′′) |= φ,

In the model implementation of Figure 6 the top left part is
in charge of the implementation of the first conjunction (high-
lighted in red); whereas the bottom part (in blue) implements
the final clause of the conjunction.

B. Control Monitor Library

To simplify the creation of monitors for typical control
systems, we also defined a library of control monitors (shown
in Figure 7.) The library has blocks for checking overshoot
(undershoot) and rise time (or fall time) constraints on triggers
derived from generic inputs signals (steps, but also ramps).

These conditions are verified on a selected input signal (typ-
ically a system variable or an input/output of the controller)
with respect to another reference or trigger input. The library
is constructed in layers. A set of blocks checks the conditions
upon reception of a generic trigger signal. Other blocks are
built on this set including the logic that detects the trigger
from conditions on a generic signal.

Figure 7. Library for the generation of Control monitors.

Each block of the control monitor library (such as the
overshoot block, shown in Figure 8) is built on top of (using)
the STL library blocks.

Figure 8. Overshoot monitor block internals as defined in the Control Monitor
library.

For the implementation of the Control Monitor library,
we simply used the STL formulations provided in [14]. For
example, the STL encoding of the overshhot condition (with
the corresponding block implementation of Figure 8) is
3[0, T](step(xref , r) ∧3(x− xref > c))

VII. USAGE EXAMPLE

This section presents a simple example model showing how
the tool can be used to generate monitor blocks and what is
the final result. The example system is a Simulink model of

Figure 6. The STL library block for checking the timed Until condition.

a dual pole system controlled in a closed-loop, as shown in
Figure 9.

The model is originally as shown in the bottom side, without
the highlighted monitor blocks that are automatically added by
the framework tool, as described in the next sections.

The function

>>> getSignalsList(’SimulinkModelExample’);

is executed from the Matlab prompt to verify that the signals
in the model are contained in the DD file. The DD file
also contains the constants are parameters used in the STL
constraint formulas. The set of relevant variables and symbols
in the DD file is shown in Table I.

name value
T 10
r 5
c 3
zeta 0.5
mu 0.95
steadyStateValue 10
s 3
beta 0.02
a 0.01

Table I
VALUES IN THE DD FILE FOR THE SIMULINK EXAMPLE WITH THE STL

CONSTRAINTS.

Listing 1 shows the example requirements file with the list
of STL formulas representing the system requirements:
• Overshoot: after the detection of a step in the input signal,

the output value of the system exceeds the reference value
for more than a given quantity.

• RiseTime: after the detection of a step in the input signal,
the system is not able to reach a specified value in a given
time.

• SettlingTime: after the detection of a step in the input
signal, the system is not able to keep the output bounded
in a given range after a given time.

• SteadyState: when the system reaches its steady state
condition, the value it outputs differs from the reference
signal for more than a given value.

Overshoot : <>_[0, T] { step(x_ref, r) AND
<> { x - x_ref > c } };

RiseTime : <>_[0, T] { step(x_ref, r) AND
[]_[0,zeta] { x < mu * steadyStateValue } };

SettlingTime : <>_[0, T] { step(x_ref, r) AND
<>_[s, T] {abs(x - x_ref) > beta * x_ref} };

SteadyState : <>_[T, T] { abs(x - x_ref) > a};

Listing 1. Example of requirements file

The tool executes by passing as a first argument the require-
ments file and as a second argument the path of the folder
containing the DD file.

After the execution of the tool, the AUTOGEN testBlock.m
file is created in the same path of the signals file.

To insert the validation block in the given Simulink model,
the following function can be executed from the Matlab
prompt:

>>> addValidationBlock('SimulinkModelExample',
'STL_TEST', [60,240,90,280]);

The result of the the addValidationBlock() function
is the creation of the monitor blocks highlighted in Figure 3

Input Signal

1

s +s+12

Plant TF
Scope

In1 Out1

Controller

x

x_ref

STL_TEST

[x]

x_SRC

[x]

x_DST[x_ref]

x_ref_SRC

[x_ref]

x_ref_DST

x_ref

x_ref

x

x

Figure 9. Example of Simulink block diagram of a model with a closed loop controller.

and their connection to the specified input and output signals
by means of From/Goto blocks..

VIII. CONCLUSION

This paper presented a framework for the generation of
monitor Simulink blocks for model validation at simulation
time. The STL formal language is used as reference for the
definition of the model requirements. The paper shows an
overview of the tool and the supporting libraries, including
implementation details and a practical example of its usage
on a real model.

As a future work, we plan to extend the tool by integrating it
in a complete environment that supports the user to describe
the model requirements in a formal language with a syntax
closer to the natural languages.

REFERENCES

[1] T. Mathworks., “Simulink user manual,” in Product web page, 2017.
[2] Prover., “Company web page: www.prover.com,” 2017.
[3] A. Pnueli, “The temporal logic of programs,” in Proceedings of the 18th

Annual Symposium on Foundations of Computer Science (FOCS), 1977,
pp. 46–57.

[4] E. C. E. Emerson, “Design and synthesis of synchronisation skeletons
using branching time temporal logic,” in Logic of Programs, Proceedings
of Workshop, Lecture Notes in Computer Science, vol. 131. Springer,
Berlin, 1981, pp. 52–71.

[5] R. Koymans, “Specifying real-time properties with metric temporal
logic,” in Real-Time Systems, vol. 2(4), 1990, p. 255299.

[6] O. Maler and D. Nickovic., “Monitoring temporal properties of con-
tinuous signals,” in Proc. of Formal Modeling and Analysis of Timed
Systems/ Formal Techniques in Real-Time and Fault Tolerant Systems,
2004, pp. 152–166.

[7] C. Eisner and D. Fisman, “A practical introduction to psl,” 2006.
[8] O. Maler, D. Nickovic, and A. Pnueli, “Checking temporal properties

of discrete, timed and continuous behaviors,” in Pillars of Computer
Science: Lecture Notes in Computer Science, vol. 4800. Springer, 2003,
pp. 475–505.

[9] P. S. Duggirala, C. Fan, S. Mitra, and M. Viswanathan, “Meeting a
powertrain verification challenge,” 2015.

[10] Donze, T. Ferrere, and O. Maler, “Efficient robust monitoring of stl
formula,” in Proceedings of the CAV 13 Conference, 2013.

[11] D. Ulus, T. Ferrre, E. Asarin, and O. Maler, “Legay, a., bozga, m. (eds.)
timed pattern matching,” in FORMATS 2014. LNCS, vol. 8711, vol.
8711. Springer, Heidelberg, 2014, pp. 222–236.

[12] P. C. E. Asarin and O. Maler, “Timed regular expressions,” in The
Journal of the ACM, vol. 49, 2002, pp. 172–206.

[13] D. Ulus, T. Ferrre, E. Asarin, and O. Maler, “Online timed pattern
matching using derivatives,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems TACAS 2016:
Tools and Algorithms for the Construction and Analysis of Systems,
2016, pp. 736–751.

[14] J. Kapinski, X. Jin, J. Deshmukh, A. Donze, T. Yamaguchi,
H. Ito, T. Kaga, S. Kobuna, and S. Seshia, “St-lib: A
library for specifying and classifying model behaviors,” in SAE
Technical Paper. SAE International, 04 2016. [Online]. Available:
http://dx.doi.org/10.4271/2016-01-0621

[15] J. Flores, “Semantic filtering of textual requirements descriptions,” in
Natural Language Processing and Information Systems, 2004, pp. 474–
483.

[16] S. Gnesi, G. Lami, and G. Trentanni, “An automatic tool for the analysis
of natural language requirements,” in CSSE Journal, vol. 20(1), 2005,
pp. 53–62.

[17] S. L. Obispo, “Parsing of natural language requirements,” in Thesis
presented to the Faculty of California Polytechnic State University, Oct.
2013.

[18] K. Deemter, V. E. Krahmer, and M. Theune, “Real versus template-
based natural language generation: A false opposition?” in Computer
Linguist, vol. 31(1), 2005, pp. 15–24.

[19] L. Mangeruca and O. A. F. Ferrante, “Formalization and completeness
of evolving requirements using contracts,” in 8th IEEE International
Symposium on Industrial Embedded Systems (SIES 2013), 2013.

[20] A. Balsini, “Repository,”
https://github.com/balsini/SignalTemplateLibraryAutogen/.

[21] J. Levine, “Flex and bison,” in O’Reilly Media, August 2009.

