
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems (2021) 35:12
https://doi.org/10.1007/s10458-020-09492-5

1 3

Real‑time multi‑agent systems: rationality, formal model,
and empirical results

Davide Calvaresi1 · Yashin Dicente Cid2 · Mauro Marinoni3 ·
Aldo Franco Dragoni4 · Amro Najjar5 · Michael Schumacher1

Accepted: 29 December 2020 / Published online: 19 February 2021
© The Author(s) 2021

Abstract
Since its dawn as a discipline, Artificial Intelligence (AI) has focused on mimicking the
human mental processes. As AI applications matured, the interest for employing them into
real-world complex systems (i.e., coupling AI with Cyber-Physical Systems—CPS) kept
increasing. In the last decades, the multi-agent systems (MAS) paradigm has been among
the most relevant approaches fostering the development of intelligent systems. In numerous
scenarios, MAS boosted distributed autonomous reasoning and behaviors. However, many
real-world applications (e.g., CPS) demand the respect of strict timing constraints. Unfor-
tunately, current AI/MAS theories and applications only reason “about time” and are inca-
pable of acting “in time” guaranteeing any timing predictability. This paper analyzes the
MAS compliance with strict timing constraints (real-time compliance)—crucial for safety-
critical applications such as healthcare, industry 4.0, and automotive. Moreover, it elicits
the main reasons for the lack of real-time satisfiability in MAS (originated from current
theories, standards, and implementations). In particular, traditional internal agent sched-
ulers (general-purpose-like), communication middlewares, and negotiation protocols have
been identified as co-factors inhibiting real-time compliance. To pave the road towards
reliable and predictable MAS, this paper postulates a formal definition and mathemati-
cal model of real-time multi-agent systems (RT-MAS). Furthermore, this paper presents
the results obtained by testing the dynamics characterizing the RT-MAS model within the
simulator MAXIM-GPRT. Thus, it has been possible to analyze the deadline miss ratio
between the algorithms employed in the most popular frameworks and the proposed ones.
Finally, discussing the obtained results, the ongoing and future steps are outlined.

Keywords Real-time multi-agent systems · RT-MAS · Timing predictability · Timing
reliability

 * Davide Calvaresi
 davide.calvaresi@hevs.ch

1 University of Applied Sciences and Arts Western Switzerland (HES-SO), Sierre, Switzerland
2 University of Warwick, CV4 7AL Coventry, United Kingdom
3 Scuola Superiore Sant’Anna, Pisa, Italy
4 Università Politecnica delle Marche, Ancona, Italy
5 University of Luxembourg, Esch sur alzette, Luxembourg

http://orcid.org/0000-0001-9816-7439
http://orcid.org/0000-0001-7742-5363
http://orcid.org/0000-0002-7041-9777
http://orcid.org/0000-0002-3013-3424
http://orcid.org/0000-0001-7784-6176
http://orcid.org/0000-0002-5123-5075
http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-020-09492-5&domain=pdf

 Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

12 Page 2 of 37

1 Introduction

Since their inception, multi-agent systems (MAS) [59] and Agent-Oriented Program-
ming (AOP) [63] emerged as prominent results in Distributed Artificial Intelligence
(DAI) [69] which, in turn, raised as an Artificial Intelligence field dealing with groups
of intelligent entities interacting by cooperation, coexistence, and competition. Along
this mainstream, the underlying idea was to flank the “single-reasoner” perspective with
a “multi-reasoner” one, however, having more interacting agents taking “autonomous
decisions” opened multiple and wide research horizons, from Distributed Comput-
ing [2] to Distributed Problem Solving [71], from Swarm Intelligence [11] to the fasci-
nating and multidisciplinary visions of a Society of Minds [49].

However, along the branches of this big Oak, from both technical and technologi-
cal viewpoints, a critical issue has been almost neglected (with a few noticeable excep-
tions), which is the central theme of this article: the embodiment in time of MAS.

Since its dawn, AI has focused on simulating and reproducing human-like mental
processes using formal structures, chasing the logical aspects of reasoning. Neverthe-
less, nowadays, a fast-pace evolving technology challenges AI to take into account con-
crete and real “timing performances”. In particular, in addition to the formal reasoning
“about” time, reasoning “in” time must be ensured—essential in real-world applications.

Since enforcing the compliance of strict timing constraints over the interactions
between the agents is becoming increasingly crucial from an engineering point of view,
it also concerns DAI applications.

At the beginning of the nineties, among the rare attempts to deal with the concept of
“reasoning in time” (and not just reasoning “efficiently” or, totally different, reasoning
“about time”), Hayes-Roth with the article “Architectural Foundations for Real-Time
Performance in Intelligent Agents” [34] and Holt et al. with the article “An Architecture
for Real-Time Distributed Artificial Intelligent Systems” [35] seemed to grasp the heart
of the matter.

In particular, in [34], the author first glimpsed the need to bring cognitive agents into
the real world and make them able to exploit their enormous potential in a temporally
effective way. However, the author claims, almost sadly:

Because an intelligent agent is almost always in a state of perceptual, cogni-
tive, and action overload, it generally cannot perform all potential operations in
a timely fashion. While faster hardware or software optimization may solve this
problem for selected application systems, they will not solve the general prob-
lem of limited resources or obviate its concomitant resource-allocation task. ... An
agent must use knowledge of its goals, constraints, resources, and environment to
determine which of its many potential operations to perform at each opportunity.

Although this observation revealed a vein of pessimism, among many others, we attrib-
ute to this paper the merit of having highlighted the need for predictability:

Predictability. The environment is orderly enough to permit probabilistic predic-
tion of some future events.

Holt [35] stated first that (i) it is not possible to conceive the interaction between agents
if not organized in time, and (ii) each agent must be aware and conscious of the flowing
of the time:

Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

Page 3 of 37 12

The issue of real-time is often neglected or glossed over by researchers. Its importance,
however, cannot be ignored. In simple terms, the processes (or objects) of attention in
any process automation system are essentially real-time in nature—as a result, any asso-
ciated AI systems must be designed to be real-time-conscious.

Finally, Holt highlighted the unquestionable relevance of reliability:

Reliability is unquestionably the most important feature of any control system.

In [29], the authors defined a Real-Time Agent (RTA) as a process whose correctness depends
not only on the soundness and completeness of the code it executes (w.r.t. a certain I/O trans-
fer function), but also on its response time, which is the interval between the moment at which
it starts to be “executed” and the instant at which its execution is completed. Moreover, they
have elaborated on this idea from a philosophical point of view, focusing on the ontological
differences between the concepts of “code” and “process” acting in the real world. Moreo-
ver, they presented the following concrete and basic requirements for a “piece of code” to be
embodied as RTA in a Cyber-Physical System (CPS):

1. to deal explicitly with Memory and Time
2. to sense-and-measure Time with a Clock
3. to deal explicitly with deadlines, precedence and, resources constraints, in order to

dynamically establish priorities
4. to implement “scheduling” algorithms to be sound (from a Real-Time perspective).

Finally, the authors expressed two desiderata for the future, such as:

1. “Real Agents ” design would be more inspired by “Control Theory”;
2. “Multi-Agents Systems” conception would align with “Real-Time Systems” design.

The implicit claim of that paper was that, in order to be “real” (and “reliable”) a “piece of
software” needs not only to simply “run” over a hardware, but it also needs to “run and inter-
act” over a specific and well-known Real-Time Operating System (RTOS), in order to be “in-
time”, somehow in the spirit of Lewis Carroll’s White Rabbit: not to be “too late” (and not be
“too early” too).

In this paper, we would go ahead, trying to give substance to that implicit claim, especially
focusing on what should be the requirements for a “Real-Time Agent” to behave in a Multi-
Agent scenario.

1.1 Objective

This paper aims to enforce the capability of complying with strict-timing constraints in MAS
to enable their employment in the real world, especially in safety-critical scenarios. In other
words, the ultimate goal is to have reliable and predictable MAS—henceforth called real-time
multi-agent systems (RT-MAS).

 Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

12 Page 4 of 37

1.2 Contributions

Achieving such a challenging objective requires a thorough study composed of several
steps, each involving several milestones. Therefore, the main contributions of this paper
can be organized as follows:

(i) the state of the art is analyzed producing an understanding of what and how things
are, and what and how they need to be updated or redefined;

(ii) a formal model for RT-MAS is proposed;
(iii) real-time scheduling models, to be adopted and adapted according to the MAS pil-

lars, is identified and studied;
(iv) a negotiation protocol able to comply with strict-timing constraints and to operate

accordingly with the agent local scheduler is developed and included in the RT-
MAS model;

(v) the relevance of employing a communication middleware with bounded time delays
for the successful development of the model is discussed.

The rest of the paper is organized as follows: Section 2 presents the need for real-time
compliance in MAS, introducing pillars and fundamental theories of Real-time systems
and multi-agent systems, existing attempts of complying with strict timing constraints in
MAS, and discusses their limitations. Section 3 postulates the real-time agent definition
and presents the RT-MAS model. Section 4 details the empirical tests and results. Sec-
tion 5 discusses the lesson learnt, and finally Sect. 6 concludes the paper, presenting ongo-
ing and future works.

2 Towards real‑time multi‑agent systems

This section moves towards the formalization of RT-MAS. It includes the (i) motivations
that reinforce the still unmet need for the timing compliance in the modern cyber-physical
systems particularly interconnected with the contemporary (real) society, (ii) Real-time
system discipline and its foundations, which are crucial for the modelization and imple-
mentation of RT-MAS, (iii) MAS characterization and (iv) limitations and misconceptions
of the early scientific attempts of introducing real-time concepts in MAS.

2.1 Motivations

Enforcing the compliance of strict timing constraints in AI applications is becoming
increasingly crucial since the advent of pervading CPS in people’s daily lives. The employ-
ment of such systems has profoundly revolutionized customs in modern society, and human
beings are irrevocably coupled with uncountable distributed and interconnected CPS. This
still ongoing process is providing new application scenarios, also raising new scientific
challenges.

CPS refer to systems seamless integrating physical components and their cyber mod-
els and elements (e.g., computation and communication) [56]. They span from minuscule
intra-corporeal medical devices (e.g., pacemakers) or wearable systems (e.g., motion detec-
tion and monitoring) to geographically distributed systems (e.g., national power-grids).

Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

Page 5 of 37 12

The design and implementation of a CPS require a thorough understanding of the applica-
tion domain, regarding both its users and operating environments. However, it has been
noticed that the dynamics of the physical processes should better be abstracted from real
scenarios, but the resulting models should be integrated at design time while analyzing the
performance of the comprehensive CPS [9]. Remembering the old lesson, building intel-
ligent systems and letting them loose in the real world with “real” sensing and “real”
acting, provide anything less than a candidate to delude ourselves and our customers [12].
Back to AI, we claim that the verdicts produced by intelligent systems based on the con-
cept that “the machine will provide a correct result sooner or later”, would be worthless
(possibly dangerous) if not provided in/on time. In real-world applications, this problem
has been dealt just with massive adoption of heuristics to cut the response time and tailor
the system on the related scenario/setup. However, most systems developed for commercial
purposes are expected to carry out extremely specific jobs with certainty, precision, and
considerable speed. Such jobs often consist of repeating identical series of operations over
and over again. Therefore, the employment of “pure” intelligent systems unable to deal
with them is still hampered (or makes little sense yet).

2.2 Real‑time systems

According to [14], a Real-time system (RTS) is defined to be any information processing
system which:

• has to respond to externally generated input stimuli within a finite, specified, and pre-
dictable response time;

• correctness depends not only on the logical result but also on the time it was delivered;
• failure to respond in time is as bad as (or worse than) giving the wrong response.

A possible mapping of such concepts on the name identifying this discipline is:

• real component: the environmental time (external time) and the system’s time (internal
time) must be aligned.

• time component: the correctness implies both correct logical computation and delivery
in time.

This definition belongs to the holistic notion of rationality. Over the years, the study of
RTS focused on the search for real-time Scheduling Algorithms to be adopted by the rising
Real-Time Operating Systems (RTOS). RTS propelled the implementation of a new gen-
eration of CPSs employing both single- and multi-core CPUs.

Such studies identified three kinds of constraints characterizing the processes
interaction:

1. timing constraints;
2. prerequisites among the processes (e.g., precedencies);
3. mutual exclusion (when accessing a common resource).

Among those, the most relevant and determinant constraint is the first (i.e., the notion of
deadline). The RTS community defined two classes of deadline-related priority among the

 Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

12 Page 6 of 37

processes: a fixed priority (related to a deadline relative to the time of the activation) and a
dynamic priority (related to the absolute deadline) [14].

Furthermore, the value (utility function) assumed by the result of a process, and its
delivery time can be classified as follows:

• Non real-time process: missing the concept of deadline, the outcomes of a general-pur-
pose process is not affected by any change (Fig. 1a);

• Soft real-time process: its result has a decreasing utility after the deadline occurred
(Fig. 1b);

• On-time real-time process: its result maximizes its value around the deadline (Fig. 1c);
• Firm real-time process: its result has no utility after the deadline (Fig. 1d);
• Hard real-time process: its result has no utility after the deadline, and missing its dead-

line may result in catastrophic consequences (Fig. 1d).

The most-relevant real-world scenarios belong to the hard and soft real-time categories.
For example, domains that require a strict (hard real-time) timing-reliability are known as
safety-critical scenarios (e.g., chemical and nuclear power plant control, control of com-
plex production processes, railway switching systems, automotive applications, flight con-
trol systems, telecommunication systems, medical/healthcare systems, industrial automa-
tion, and robotic systems).

Domains characterized by a moderate (soft real-time) timing-reliability are classified as
non-critical, such as virtual reality applications, internet telephony, and desktop audio and
video management for entertainment.

Although the term “real time” clearly refers to the system capability of responding to
external/internal stimuli within a bounded amount of time, some researchers, developers,
and technical managers have misconceptions about real-time computing [66]. A common
erroneous interpretation depicts real-time systems as “able to respond quickly (as fast as

Fig. 1 Examples of utility functions different classes of real-time processes

Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

Page 7 of 37 12

possible)”. Although RTS usually operate in the order of milli/micro-seconds, computa-
tional speed must not be confused with predictability, which is the main requirement of an
RTS. Unfortunately, most of today’s real-time control systems are still designed to respond
“as fast as possible” using ad-hoc techniques and heuristic approaches. Control applica-
tions with stringent timing constraints are frequently implemented by writing large portions
of code in assembly language, programming timers, writing low-level drivers for device
handling, and manipulating tasks and interrupts priorities. Although the code produced by
these techniques can be optimized to run efficiently, this approach is almost scratch (dif-
ficult programming, code understanding, software maintainability/compatibility, and code
verification).

A major consequence of this approach is that the control software produced by empiri-
cal techniques has an unpredictable response time. Hence, if all critical timing constraints
cannot be verified/guaranteed a-priory and the operating system does not include specific
mechanisms for handling real-time tasks, the system (“apparently” operating “properly”)
may collapse. A sudden and unexpected failure can occur in rare, unknown, or unclear-but-
possible situations just by missing a deadline.

Moreover, additionally to classical faults due to code failures, hardware failures, and
conceptual errors in the design phase, a real-time software may be subject to timing errors:

Definition 1 Timing errors are caused by the misalignment between “real” time evolving
in the environment and its “representation” in the internal (virtual) clock.

No matter how short the average response time of a given system can be, without a
scientific methodology, compliance with individual timing requirements in all the possible
circumstances cannot be guaranteed. In the case of several computational activities with
different timing constraints, common metrics such as speed and average performance have
been identified as irrelevant for RTS. Vice-versa, it is crucial to be able to investigate a
given multi-process application at every stage (from design to testing), thus ensuring the
following properties:

• Timeliness: the results have to be correct both in terms of value and response time;
• Predictability: the system must be observable and analyzable to predict the conse-

quences of any scheduling decision1;
• Efficiency: most of RTS might run into small devices with severe constraints (e.g.,

space, weight, energy, memory, and computational power); thus, optimizing the effi-
ciency is essential;

• Robustness: RTS have to be load-independent (e.g., no collapse in peak-load condi-
tions);

• Fault-tolerance: hardware and software failures of some processes should not cause the
overall system to crash;

• Maintainability: modular RTS should ensure feasible and easy system updates.

In such multi-process RTS the two fundamental “numbers” are:

1 All timing requirements should be guaranteed off-line.

 Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

12 Page 8 of 37

• Deadline: the time within which a given task in a system must complete its execution2.
• Worst case execution time (WCET): the maximum amount of execution time a given

task can take to complete its execution on a specific hardware/software configuration.
Depending on the criticality of the real-time applications, the WCET is computed
using static analysis tools, providing a strongly pessimistic evaluation, or approximated
empirically (i.e., executing such a task a significant number of times, getting the maxi-
mum execution time measured and enlarging it by a sufficient amount to account for not
evaluated execution cases).

It is worth to recall that a real-time task (�k)—see Fig. 2—is characterized as follows [14]:

• Arrival time: (ak) is the time at which a task k becomes ready for execution (also
referred as request time or release time and indicated by rk) ;

• Starting time: sk is the time at which a task starts its execution;
• Computation time: (Ck) is the maximum time necessary (WCET) to the processor for

executing the task k without interruption;
• Finishing time: (fk) is the time at which a task finishes its execution;
• Period: (Tk) is the interval of time between two consecutive activations of a given task

k;
• Absolute deadline: (dk) is the time before which a task should be completed;
• Relative deadline: (Dk) is the difference between the absolute deadline and the arrival

time: (Dk = dk − ak);
• Utilization factor: (Uk) is the fraction of processor time spent in the execution of the

task k.

Depending on the values assumed by the features mentioned above, a task can be asso-
ciated to different task models [14]. According to Calvaresi et al. [23], the more interesting
models (more suitable to be mapped on the agent behaviors) are:

• periodic: a task (�k) which repeats indefinitely every Tk starting from a given ak;
• periodic in an interval: a task (�k) which repeats a l number of times every Tk starting

from a given ak;
• aperiodic: a task (typically event-driven) which its ak cannot be predicted / estimated.

A classic approach to handle such an uncertainty is to “allocate” the execution of such
a task within the artifact named server (explained below).

 Although disregarding theoretical models, it is worth to recall that managing
possible failures when executing the tasks is delegated to safety measures, strictly

Fig. 2 Typical parameters of a real-time task [14]

2 It can vary among different tasks in the same system as well as among same tasks in different systems.

Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

Page 9 of 37 12

dependent on the specific application and safety mechanisms. For example, if a
failed task must be re-executed, the utilization of both instances must be accounted
for. Due to the variety of safety solutions available, dealing with this issue is outside
the scope of this paper and requires a dedicated dissertation. Hence, in the context of
this paper, all tasks are considered not affected by failures.

 To handle the execution of tasks belonging to the models mentioned above, there
is the need for real-time schedulers. In this context, scheduling means assigning a
set of tasks to a processor to be completed under specified constraints [10]. A great
variety of scheduling algorithms for real-time tasks can be grouped according to the
following classes:

• Preemptive: the running task can be interrupted at any time to assign the proces-
sor to another active task, according to a predefined policy.

• Non-preemptive: In this case, all the scheduling-related decisions are taken when
a task has completed its execution. Indeed, once started, a task is executed by the
processor until completion.

• Static: the scheduling decisions are based on fixed predetermined parameters
assigned to the tasks before their activation.

• Dynamic: the scheduling decisions depend on parameters that might change
dynamically at run time.

• Off-line: the scheduling is entirely generated before starting the execution of the
first task.

• Online: the scheduling depends on decisions taken at run-time every time a new
task is introduced into the system or when the execution of the running one is
completed.

• Optimal: the scheduling aims at minimizing a cost function defined over the task-
set. If no cost function is defined, the algorithm is said optimal if it achieves a
feasible schedule (if it exists).

• Heuristic: the scheduling decisions are driven by a heuristic function. Heuristic-
based schedulers can find the optimal scheduling, but it cannot be guaranteed.

 The most adopted scheduling algorithm is named Rate Monotonic (RM) [14].
It relies on a simple rule that assigns to a task a priority based on its request rate
(period). In other words, tasks with shorter period have higher priority. Since the
tasks’ periods are intended to be constant, RM can be classified as fixed-priority and
intrinsically preemptive (i.e., if a task with a shorter period of the one being pro-
cessed is released, it will preempt the running task). Moreover, Liu and Layland [46]
proved that RM is optimal among all fixed-priority scheduling algorithms (i.e., no
other fixed-priority algorithm can schedule a task-set if RM cannot). Despite its
simplicity and optimality, due to the dynamic nature of the MAS, RM cannot serve
our investigations. Therefore, let us introduce a still optimal and preemptive, but
dynamic-priority scheduler name Earliest Deadline First (EDF) [14]. Its scheduling
rule selects the task to be executed according to its absolute deadline (i.e., the earli-
est deadline has the max priority). Moreover, recalling that such a scheduler can pro-
vide guarantees only for periodic tasks, let us briefly present the concept of server
which is used in combination with EDF to process aperiodic tasks.

 A server is a periodic task whose purpose is to service aperiodic requests as soon
as possible. Like any periodic task, a server is characterized by a period Ts and a
computation time Cs , called server capacity, or server budget. In general, the server
is scheduled with the same algorithm used for the periodic tasks, and, once active,

 Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

12 Page 10 of 37

it serves the aperiodic requests within the limit of its budget. The ordering of aperi-
odic requests does not depend on the scheduling algorithm used for periodic tasks,
and it can be done by arrival time, computation time, deadline, or any other param-
eter [14]. The servers can have fixed or dynamic priority. Among the most relevant,
we can mention:

• Fixed priority servers:

Polling server (PS): At regular intervals equal to the period Ts , PS becomes active
and serves the pending aperiodic requests within the limit of its capacity Cs .
If no aperiodic requests are pending, PS suspends itself until the beginning of
its next period, and the budget originally allocated for aperiodic service is dis-
charged and given periodic tasks [41].

Deferrable server (DS): As the PS, the DS algorithm creates a periodic task (usually
having a high priority) for servicing aperiodic requests. However, unlike polling,
DS preserves its capacity if no requests are pending upon the invocation of the
server. The capacity is maintained until the end of the period so that aperiodic
requests can be serviced at the same server’s priority at any time, as long as
the capacity has not been exhausted. At the beginning of any server period, the
capacity is replenished at its full value [67].

Sporadic server (SS): The SS algorithm creates a high-priority task for servicing
aperiodic requests and, like DS, preserves the server capacity at its high-priority
level until an aperiodic request occurs. However, SS differs from DS in the way
it replenishes its capacity. Whereas DS periodically replenishes its capacity to
full value at the beginning of the server period, SS replenishes its capacity only
after it has been consumed by aperiodic task execution [64].

• Dynamic priority servers:

Dynamic sporadic server (DSS): DSS is characterized by a period Ts and a capac-
ity Cs , which is preserved for possible aperiodic requests. Unlike other server
algorithms, however, the capacity is not replenished at its full value at the begin-
ning of each server period but only when consumed. The times at which the
replenishment occur are chosen according to a replenishment rule, which allows
the system to achieve full processor utilization. The main difference between the
classical SS and its dynamic version consists of how the priority is assigned to
the server. Whereas SS has a fixed priority chosen according to the RM algo-
rithm (that is, according to its period Ts), DSS has a dynamic priority assigned
through a suitable deadline [65].

Total bandwidth server (TBS): The main idea behind the TBS is to assign a possible
earlier deadline to each aperiodic request. The assignment must be done in such
a way that the overall processor utilization of the aperiodic load never exceeds a
specified maximum value Us . Each time an aperiodic request enters the system,
the total bandwidth of the server is immediately assigned to it, whenever pos-
sible [65].

Constant bandwidth server (CBS): It efficiently implements a bandwidth reservation
strategy. As the DSS, the CBS guarantees that, if Us is the fraction of processor
time assigned to a server (i.e., its bandwidth), its contribution to the total utiliza-
tion factor is no greater than Us , even in the presence of overloads. Note that this
property is not valid for a TBS, whose actual contribution is limited to Us only
under the assumption that all the served jobs execute no more than the declared

Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

Page 11 of 37 12

WCET. With respect to the DSS, however, the CBS shows a much better perfor-
mance, comparable with the one achievable by a TBS. The idea behind the CBS
mechanism can be explained as follows: when a new job enters the system, it is
assigned a suitable scheduling deadline (to keep its demand within the reserved
bandwidth), and it is inserted in the EDF ready queue. If the job tries to execute
more than expected, its deadline is postponed (i.e., its priority is decreased) to
reduce the interference on the other tasks. Note that by postponing the deadline,
the task remains eligible for execution. In this way, the CBS behaves as a work
conserving algorithm, exploiting the available slack in an efficient (deadline-
based) way [14].

 To date, among the several types of servers developed, the constant bandwidth
server (CBS) is the most used in RTS given its efficiency in implementing a bandwidth
reservation strategy [14]. Besides research activities, its implementation (EDF+CBS),
namely SCHEDEADLINE [43], is part of the mainline Linux kernel since 2014.

Once identified and understood elements and properties characterizing an RTS, the next
step is to map them on MAS (i.e., from “processes” to “agents”). Thus, what has been
proved to be valid for sets of processes (e.g., RTOS), must also be valid for societies of
agents (MAS). To support the understanding of such a mapping, the next section quickly
overviews the MAS pillars and their current/expected contributions to modern IoT and
CPS (time and resources constrained domains).

2.3 MAS: a DAI expression

An intelligent agent can be rationalized as an autonomous entity observing the surrounding
environment through sensors and possibly interacting with it using effectors (see Fig. 3).
Self-developed or induced goals (both pre-programmed and dynamic decisions) drive the
agent choices while trying to maximize its performance. Such an intelligent agent is also
able to extend/update its knowledge base, thus renewing its plans to achieve the desired
goals [59]. Recently, the agent-oriented programming has been invoked to face technologi-
cal challenges in the Internet of Things (IoT) and cyber-physical systems (CPS).

In a world where more than one behavior might often be appropriated in a given
situation, the agent aims at being a human alter ego in its essence and interactions. The
natural abstraction of MAS in ecological and societal terms supports the robustness of
their mechanisms and behaviors. For example, [73] asserts the affinity of ant foraging

(a)
(b)

Fig. 3 Agent characterization: a Functional decomposition; b Behavior-based decomposition, adapted
from [60]

 Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

12 Page 12 of 37

and the agents’ mobility in finding information within a distributed P2P network, and
the similarity of social phenomena like the information propagation in social networks
and routing algorithms. Social and natural phenomena with negotiation-based interac-
tions [39] and social conventions [26, 51] have been exploited extensively shaping the
MAS paradigm. Moreover, it has also associated physical phenomena such as virtual
gravitational fields to the orchestration of the overall movements of a vast number of
distributed mobile agents/robots [47].

The complexity range of such agents is notably broad. Observing one or more agent
communities operating in IoT and CPS scenarios can unveil an apparently unlimited
potential. For example, the application domains that received more contributions are
healthcare [25, 27, 31, 52, 61, 62], smart environments (e.g., office, home city [4, 6,
44, 58]), smart cities (e.g., mobility [32, 44], urban safety [73], water distribution [4,

Table 1 MAS’ feature adopted in IoT and CPS [24]

Feature Contribution Source

Enable lightweight device coop. Partial [6]
Increase dependability Partial [4, 42]
Increase interoperability Partial [4, 42]
Optimize energy consumption Partial [58]
Enable repetability Partial [42, 58]
Facilitate development (various systems’ complexity) Partial [45, 72, 73]
Reducing communication (Agent Migration) Partial [6, 72]
Facilitate understanding system model Partial [44]
Enable self-healing Partial [54]
Handling variability and resources scarcity Partial [6]
Enabling self-adaptation Partial [73]
Simplify software development/extension Partial [6]
Ensure robustness Partial [54]
Facilitate components evolution and reuse Partial [6]
Face unpredictable scenarios Partial [73]
Support security (cyber and physical layers) Partial [75]
Maximization of resources utilization Partial [4]
Reduce redundancy Partial [44]
Proactiveness and intelligent behaviors Full [42, 45, 54, 58, 72, 73]
Ensure scalability Full [4, 42]
Reactivity Full [54, 58, 72]
Social-able Full [54, 58]
Increase autonomy (e.g.: failures, resources) Full [4, 45, 54, 58, 72]
Ensure modularity and encapsulation Full [42, 73]
Support contex awareness Full [6, 45, 58, 73]
Ensure flexibility Full [42, 45, 58, 73]
Increase systems integration Full [4, 42, 58]
Support fault-tolerance Full [44, 45, 75]
Enable high-level protocols and langs Full [68, 73]
Ensure reconfigurability Full [4, 42, 73]

Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

Page 13 of 37 12

45], transportation [13], and energy [13, 54, 73]), industrial scenarios (e.g., manufactur-
ing [4], workflow and process management [13, 73]) and assisted living [6, 20, 21, 58].
See [70] for a recent survey of MAS applications.

Investigating primary studies which already tried to employ MAS in IoT and CPS
in resources constrained domains, Calvaresi et al. [24] identified and collected the
MAS characteristics recurring the most used platforms in the literature (see Table 1).
Although scenarios and application domains might differ, the authors of the primary
studies identified features supporting (either partially or fully) by the various adoption
of MAS in IoT and CPS (full support indicates that MAS provide means to satisfy such
a feature, while partial support indicates that MAS’ contribution, although positive, has
been assessed as unable to ensure the complete satisfaction of such a feature).

The proactiveness and the possibility of performing dynamically intelligent behav-
iors with a high degree of autonomy are the most important MAS features. Further-
more, MAS resulted in being particularly appreciated in the case of failure handling or
resource optimization where required [6]. Finally, although broadly appreciated, MAS
autonomy and flexibility still generate minor concerns about possible evolution in unde-
sired behaviors of inferences and plans.

Nevertheless, MAS are increasingly involved in concrete systems, such as the con-
trol of physical devices in smart environments (e.g., water provisioning [45]), energy
negotiation, management [74], and system security [75]. Moreover, in IoT and CPS
solutions, the agents have been associated with real-time related services/tasks, repre-
senting a fascinating cross-domain class to be analyzed in more depth. For example, in
“smart” and other relevant domains, several applications require features compliant with
real-time-like constraints, such as sharing information [45], awareness of environmental
changes [13], decision support [45], perception of provided energy [54], information
sharing in manufacturer processes [4], security controls [75], and on time activities exe-
cution in production lines [42]. Such services are receiving increasing scientific atten-
tion, and the MAS, if extended with the above-mentioned real-time services, represent a
notable overlap among the IoT and CPS systems.

2.4 Previous attempts to bring real‑time in MAS

Kravari and Bassiliades [40] proposed a detailed and comprehensive study of multi-
agent frameworks (referred to as Agent Platforms) and simulators. The most relevant
in the community are Jade, Cormas, Swarm, Gama, Mason, Jason, Madkit, NetLogo,
RePast, Janus, and Jadex.

Real-time compliance in MAS is a well-known need and a priceless milestone. Nev-
ertheless, current MAS still fail in dealing with real-time properties. The main driver of
such a failure is the misconception about the meaning of real time, which too often is
interpreted as “fast” (e.g., answering as fast as possible - low latency, and operating in
the order of microseconds) which has nothing to do with the time predictability. Indeed,
all the agent platforms mentioned above (and many more) typically adopt best-effort
approaches under which the system behavior in worst-case scenarios cannot be handled,
nor guaranteed in advance [7].

Among the most relevant attempts of achieving the timing compliance in MAS, it can
be mentioned the study of Julian and Botti [37]. The authors evolved their earlier con-
tribution (named Message [30]) developing a messaging system (named rt-Message),

 Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

12 Page 14 of 37

aiming at reducing network and communication uncertainty. According to their analy-
sis, the message protocol [30] cannot guarantee the aimed real-time requirements for the
following reasons:

• the protocol was operating in a framework that was not meant for facing real-time
needs;

• its low-level layer required an ad-hoc design tailored for any specific situation;
• several extensions were required to incorporate all the temporal aspects; and
• diverse criticalities had to be considered.

Nevertheless, as acknowledged by the authors in the same work, this single step is not
enough to ensure the actual real-time compliance of a MAS. The proposed methodol-
ogy introduced concepts such as worst-case execution time (WCET) and schedulability
analysis, trying to cope with the overall process of developing a real-time MAS. How-
ever, although they have foreseen important aspects to be included in such a process, a
complete framework matching all the required features is still missing.

Aligned with the previous approach, several studies tried to approach the challenge
from the “middleware” perspective. The outcome of these studies is Common Object
Request Broker Architecture (CORBA), which is a standard developed by the Object
Management Group (OMG), consequently evolved in Real-Time CORBA [33].

Real-time CORBA extends the standard specification to comply with real-time enti-
ties’ needs. It takes into account soft and hard real-time requirements and components’
end-to-end predictability under the assumption of fixed priority [14]. However, in sce-
narios characterized by a non-negligible dynamicity and uncertainty (not handled by
RT-CORBA), the presence of any non-predictable component can hamper the reliabil-
ity of the entire system. Thus, the employment Real-Time CORBA cannot satisfy the
timing-compliance in MAS for the following reasons:

1. it only provides a means to build a communication middleware;
2. it does not provide specifications for the single entities (e.g., real-time agents must

also have internal mechanisms compliant with real-time mechanisms);
3. although it provides specifications for the communication layer, RT-MAS cannot rely

on a fixed-priority approach because of their dynamic nature.

Another architecture worth to be mentioned is named SIMBA [38]. It is the natural
evolution of the Artis agent architecture [7]. Based on the concept of the blackboard
model [28], such an approach tries to model a community of agents with only claimed
real-time capabilities. However, it is only theoretical and subject to constraints too
strong and inapplicable to real-world scenarios (e.g., assuming an off-line schedulability
analysis and having a static set of interactions). Moreover, this approach relies on the
key role of an agent mediator, which impedes the scalability of the solution (bottleneck).

In [50], the authors employ a Beliefs–Desires–Intentions (BDI) architecture and lev-
erage on timed automata to verify if their goals could be achieved at the design phase,
meeting deadlines “when possible”. Besides the sole concept of deadline, the authors do
not use any real-time construct. Considering that the underlying framework is JADEX
and that it does not offer real-time compliant mechanisms to schedule and negotiate
tasks, the timing predictability of the system cannot be ensured. Moreover, JADEX adds
inherited technological factors such as the Java Virtual Machine (JVM), which impede

Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

Page 15 of 37 12

any guarantee of complying whit strict timing constraints. In fact, application scenarios
requiring strict real-time compliance do not use standard JVM. Conversely, dedicated
solutions based on Real-Time Specification (RTSJ) are employed [36].

Still in the context of BDI, Alzetta et al. [5] presented a revision of the BDI model
exploiting RT mechanisms named RT-BDI. The main contribution of this paper is the
integration of RT mechanisms into the BDI reasoning cycle. In particular, constructs and
mechanisms typical of a dynamic priority preemptive (i.e., EDF) are applied to choose
a feasible set of intentions to be executed, and then (to ensure their correct execution)
an adapted version of EDF handles the correct execution of the actions composing such
intentions. Although the granularity of the model needs to be enhanced and finalized, this
approach opens to promising developments and calls for an RT-BDI simulator to allow
verification and validation.

Overall, besides some attempts which only partially address the real-time compliance
of MAS, there is still no viable solution (not rearranging existing protocols or method-
ologies nor proposing dare new novelties) guaranteeing the compliance of MAS with
time-bounded constraints. Table 2 details the main components characterizing the existing
multi-agent platforms.

Analyzing the agent-based platforms used by most to realize MAS (mainly in the sci-
entific environment with a few isolated attempts in the industrial world) [39], we can high-
light that their characterizing mechanisms (e.g., negotiation protocols and local schedulers)
are solely General Purpose [23] or hybrid with isolated RT-components [7].

Unfortunately, none of those approaches enables to ensure the timing reliability of the
whole agent community. Indeed, to achieve the real-time compliance of the whole agent
community, all the fundamental mechanisms and algorithms adopted by the agents in a
given community must be aware of and able to handle strict-timing constraints (i.e., dead-
lines) [24]. However, although these are crucial aspects to be included in a real-time frame-
work, they are not enough to fully comply with strict-timing constraints.

In our prior studies, we identified in the local scheduler, communication middleware,
and negotiation protocol, the MAS pillars whose incapability (even if of a single one) of
dealing with strict timing constraints hampers the real-time compliance [18, 22–24]. In
particular:

Agent internal scheduler In MAS literature, the notion of scheduling refers mainly to
mechanisms to distribute and allocate tasks/resources among the agents. By doing so, the
execution of the behaviors and the compliance with the agreements negotiated are given
for granted. In safety-critical applications, such assumptions are too naive and optimistic,
thus unacceptable. Investigating further the actual implementations of the existing plat-
forms, we identified that they can allocate one or more agents per hardware component.
This means that in several cases, the scheduler of the agent behaviors is only “virtual”
and it runs over general-purpose (so non-real-time compliant architectures). The schedul-
ers employed to process agent tasks (known as Behaviors) are mainly Round-Robin (RR),
first-come-first-served (FCFS), and revised versions of those [23]. A few studies proposed
to impose fixed priority settings on the existing local scheduler. However, by doing so,
preemption is not allowed. Thus, hampering flexibility and dynamicity (so not valuable for
multi-agent applications). Moreover, none of the scheduling algorithms employed in MAS
implements the concept of deadline, crucial for any real-time mechanism [23].

Agent communication middleware With the introduction of the next generation of
internet connectivity, IoT devices will transmit and trigger in real-time. Given their social
nature, agents interact and negotiate tasks/resources over heterogeneous networks. The for-
mat and semantic of the packets over those networks must be defined and shared to satisfy

 Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

12 Page 16 of 37

Ta
bl

e
2

 M
ai

n
fe

at
ur

es
 o

f t
he

 m
os

t r
el

ev
an

t a
ge

nt
-b

as
ed

 p
la

tfo
rm

s

Pl
at

fo
rm

Pr
og

ra
m

m
in

g
la

ng
ua

ge
A

ge
nt

 a
rc

h
N

et
w

or
k

In
te

ra
ct

io
n

m
ec

ha
ni

sm
Lo

ca
l s

ch
ed

ul
er

La
st

up
da

te
RT

-r
ea

dy

Ja
de

Ja
va

Re
ac

tiv
e,

 C
og

ni
tiv

e,
 H

yb
rid

FI
PA

, C
O

R
BA

M
es

sa
ge

s
N

o-
pr

e
R

R
 (F

C
FS

)
06

/1
7

N
o

Ja
de

x
Ja

va
C

og
ni

tiv
e

(B
D

I)
FI

PA
M

es
sa

ge
s

FC
FS

06
/2

0
N

o
Ja

so
n

Ja
va

, A
ge

nt
Sp

ea
k

C
og

ni
tiv

e
(B

D
I)

Pa
rti

al
ly

 F
IP

A
Sp

ee
ch

-a
ct

, K
Q

M
L

R
R

09
/2

0
N

o
Ja

nu
s

SA
R

L
Re

ac
tiv

e,
C

og
ni

tiv
e,

 H
yb

rid
,

H
ol

on
ic

Ze
ro

-c
on

f w
ith

 H
az

el
ca

st
an

d
Ze

ro
M

Q
. P

ar
tia

lly
 F

IP
A

(in

te
ra

ct
io

n
pr

ot
oc

ol
s)

N
o

re
str

ic
tio

n,
 d

ef
au

lt:

ev
en

t-b
as

ed
 w

ith
 A

C
L

an
d

Ze
ro

M
Q

FC
FS

08
/2

0
N

o

C
or

m
as

Sm
al

lT
al

k
H

yb
rid

FI
PA

M
es

sa
ge

s
no

-d
ef

au
lt

08
/2

0
N

o
Sw

ar
m

Ja
va

 O
bj

-C
H

yb
rid

–
M

es
sa

ge
s

FC
FS

10
/1

6
N

o
G

am
a

Ja
va

H
yb

rid
FI

PA
, .

..
M

es
sa

ge
s

Pr
io

rit
y-

lik
e

06
/2

0
N

o
M

as
on

Ja
va

H
yb

rid
FI

PA
, .

..
M

es
sa

ge
s

pr
io

rit
y-

lik
e

09
/2

0
N

o
M

ad
K

it
Ja

va
H

yb
rid

FI
PA

M
es

sa
ge

s
FC

FS
09

/1
9

N
o

N
et

Lo
go

Lo
go

.d
ia

le
ct

H
yb

rid
FI

PA
M

es
sa

ge
s

N
o-

de
fa

ul
t

09
/2

0
N

o
Re

Pa
st

Ja
va

, c
+

+
H

yb
rid

FI
PA

M
es

sa
ge

s
FC

FS
06

/1
6

N
o

SP
A

D
E

Py
th

on
H

yb
rid

FI
PA

M
es

sa
ge

s
FC

FS
/R

R
05

/2
0

N
o

Ja
C

aM
o

Ja
va

, A
ge

nt
Sp

ea
k

C
og

ni
tiv

e
(B

D
I)

Pa
rti

al
ly

 F
ip

a
Sp

ee
ch

-a
ct

, K
Q

M
L

R
R

07
/2

0
N

o

Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

Page 17 of 37 12

the real-time requirements. For instance, the Foundation for Intelligent Physical Agents
(FIPA) promotes agent-based technology and the interoperability of its standards with
other technologies [1]. However, proposed agent platforms leverage on IP networks lacking
mechanisms to handle network load, messages status, and fairness [23]. In the current state
of our research, we envision to exploit approaches such as software-defined networking and
named-data networking to provide timely reliability and context-aware intelligence to IoT
devices [48]. MAS can support and be supported by those approaches by sharing network
knowledge and providing resources to the edge devices to ensure real-time agents’ com-
munication (RT-MAS).

Agent negotiation protocol Within a community, agents can pursue individual and/or
common goals. Thus, they can seek mutual agreements for the organization and optimi-
zation of activities, efforts, and resources via shared negotiation protocols. Such mecha-
nisms are composed of rules governing the interaction between agents. In the general case,
there can be initiator(s) (i.e., agents demanding task(s)/service(s) with certain conditions)
and contractor(s) (i.e., agent(s) reached out by the initiator(s) who are willing to execute
task(s), henceforth proposing a bid). Flexibility (in terms of the number of agents involved
and capabilities) is crucial in such dynamics. In [18], we systematically reviewed MAS
negotiation protocols available in the literature. Although many algorithms can generate
fascinating and sophisticated high-level reasoning, to comply with strict-timing constraints,
the connection with the other low-level MAS components (agent internal scheduler and
communication middleware) must not be neglected. In particular, accepting a task via a
negotiation impacts the contractor’s workload. Therefore, functional parameters related to
that (e.g., utilization factor, schedulability test, and acceptance ratio) must be (re)evalu-
ated dynamically [17]. Thus, there is the need for a negotiation protocol strongly charac-
terized by features such as WCET, inter-arrival time, activation time, and finishing time
of tasks and behaviors (both shared or not), and a viable communication channel ensur-
ing bounded a time delay for the interactions. Over the years, some studies proposed to
introduce “novel” concepts time-aware. Unfortunately, operating on the singular elements
(e.g., only on the negotiation protocol) still produced MAS unable to fully comply with
the real-time needs. For example, Qiaoyun et al. [55] limited to an arbitrary interval the
bidding-window introducing the concept of timeout. However, this solution is able to over-
come only some limitations (e.g., diverging negotiations). Overall, no current negotiation
protocol takes into account all the identified elements (agent internal scheduler, agent com-
munication middleware, agent negotiation protocol) needed to achieve real-time compliant
negotiations (not theoretically, nor practically).

Summarizing earlier attempts and investigations towards real-time multi-agent systems,
it is possible to conclude that, to date, there is no MAS model nor actual platform recon-
ciling the MAS pillars to ensure compliance with strict timing constraints. Therefore, the
following section formalizes the notation and necessary constraints into the proposed RT-
MAS model.

3 Real‑time multi‑agent systems (RT‑MAS)

Along the years, several communities proposed their formal definition of an agent (some-
times partially overlapping). However, properly adopting and adapting the RTS notions
needed to enable MAS real-time compliance requires a precise formalization in the form

 Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

12 Page 18 of 37

of both a new definition and a related theoretical model, containing and orchestrating both
classical and new elements. Therefore, we propose a formal definition of a real-time agent
(RTA) composing a real-time multi-agent system (RT-MAS):

Definition 2 A real-time agent is a cyber(-physical) entity characterized by amendable
partial knowledge and both reactive and proactive behaviors, capable of sensing and effect-
ing its environment, and negotiating services and resources with other agents in a predict-
able timely fashion to pursue both self-developed and community’s goals.

3.1 The RT‑MAS model

This section introduces the notations and definitions used in this work and formalizes the
theoretical characterization of the RT-MAS model.

Let us define a MAS as a society of agents C defined by

with a
�
 denoting the �th agent, and L denoting the total number of agents in community C.

Each agent a
�
 is able to perform a set of tasks T� denoted by

with ��
k
 denoting the kth task in the agent a

�
 , and K denoting the total number of tasks

executable by the agent a
�
.

To facilitate the understanding of the model, let us introduce a simple example consid-
ering a community of two agents a1 (able to compute the arithmetical mean of values) and
a2 (able to get the environmental temperature). The goal of a1 is to compute the mean of the
environmental temperature. Therefore, it needs to negotiate such values with a2.

The type of negotiation considered in this study involves:

• a pair of interacting agents ai and aj , with agent ai being the initiator and aj being the
contractor.

• an object of the negotiation �i
c
 composed of a triple �, ts, tf , defined as

 with i indicating the agent initiator and c identifying a unique triple composed of: a
task � , its execution starting-time ts , and completion time tf . Hereafter, �i

c
 is referred as

workload, since the execution of the negotiated task � impacts on the load of the con-
tractor aj that will be in charge of its execution.

The negotiation, hereafter referred as Reservation Based Negotiation (RBN), is composed
of three steps:

1. performing the request r for a given workload, from ai to aj , denoted by

2. performing the answer b to such a request, from aj to ai . This step is named bid, and it
is denoted by

(1)C =
{

a1,… , aL
}

,

(2)T
� =

{

�
�

1
,… , ��

K

}

,

(3)�
i
c
∶=(�, ts, tf) ∈ T

i ×ℝ
+ ×ℝ

+,

(4)ri,j
(

�
i
c

)

Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

Page 19 of 37 12

3. performing the acknowledgement h of a given bid, from ai to aj . Such an awarding is
denoted by

Requests, answers, and acknowledgements are subject to the following constraints:

• Each required workload generates at least one request:

• Each submitted request for a given �i
c
 generates one bid. Moreover, among all the bids,

at least one has to be positive. The value of a bid can be available (1) or unavailable (0).
:

• For a given �i
c
 required by an agent ai , among all the possible requested contractors aj ,

only one can receive a positive acknowledgment:

The bid is computed by the contractor performing the schedulability test. The acceptance
of the workload under negotiation is possible if adding it to the contractor’s task-set it
remains feasible [14].

Let us define the starting time of a task 𝜏 under negotiation as ts̄ , and its finishing time
as tf̄ (if the negotiated task is periodic, tf̄ → ∞). To compute the workload necessary to
allocate the negotiated task, it is necessary to execute the schedulability test [14]. Such a
process is computed at the negotiation time (tē) and, with respect to the interval [ts̄, tf̄], it
analyzes the agent’s tasks composing Γj

(

ts̄
)

 , which is defined as

Concerning Eq. (10):
ack

Γj
(

ts̄
)

 is composed of the tasks acknowledged before tē and running at ts̄ by the agent j
(already accepted before tē and, if finishing, it does it after a ts̄).pen

Γj
(

ts̄
)

 is composed of the tasks for which the agent j proposed a positive bid before tē ,
but that are still pending (neither confirmed nor declined yet).

Depending on the model of the task under negotiation and the task(s) under evaluation
for the schedulability test,

ack

Γj
(

ts̄
)

 and
pen

Γj
(

ts̄
)

 assume different connotations.
If the task is periodic, its contribution to the total workload is perpetual. Otherwise, it

must be accounted only for the interval during which it will execute on the specific node.
If the task under negotiation is periodic and the task(s) evaluated for the schedulability

test are either periodic or periodic in an interval

(5)bj,i
(

ri,j
)

(6)hi,j
(

bj,i
)

(7)∀ 𝜔
i
c
, ∃ ri,j

(

𝜔
i
c

)

, with 0 < j ≤ L

(8)∀ ri,j
(

𝜔
i
c

)

, ∃! bj,i
(

ri,j
)

∈ {0, 1} with
∑

j

bj,i
(

ri,j
)

> 0

(9)∀ bj,i
(

ri,j
)

> 0, ∃! hi,j
(

bj,i
)

∈ {0, 1} with
∑

j

hi,j
(

bj,i
)

= 1

(10)Γj
(

ts̄
)

=
ack

Γj
(

ts̄
)

∪
pen

Γj
(

ts̄
)

.

 Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

12 Page 20 of 37

with ts(�) indicating starting time and tf (�) indicating finishing time of the task under eval-
uation � for the composition of Γj

(

ts̄
)

 , and the symbol ∗ indicating all the indexes of the
agents having negotiated a workload with agent j.

If the task under negotiation is periodic in an interval and the evaluated task(s) for the
schedulability test are either periodic or periodic in an interval

Equation (13) and Eq. (14) are also valid if the task under negotiation is aperiodic. How-
ever, the contribution to the utilization factor depends on which server is in charge of han-
dling such a task (see Sect. 2.2).

Summarizing, Fig. 4a,d shows the cases in which a given task �k is part of Γj
(

ts̄
)

 for
Eqs. (11) and (12), and Fig. 4b,c shows the cases in which a given task �k is part of Γj

(

ts̄
)

for Eqs. (13) and (14).

The MAS dynamics are complex and involve several elements and mechanisms. Thus,
applying the bottom-up approach, the formalization of the constraints characterizing the
timing-reliability of the system follows. It is worth to recall that having predictable MAS
implies that inside an agent, whenever a need for the execution of a task �k arises (repre-
sented by �i

c
), it generates a certain number of requests, of which at least one has to be

answered positively [see Eq. (8)]. From the point of view of a single agent ai , it means
extending the validity of Eq. (8) to all its negotiations. It implies that the product of the
sum of all the bids for any given �i

c
 has to be greater than 0, as denoted by

Finally, from the community point of view, Eq. (15) has to be verified for all its agents.
Thus, the Timing Reliability (TR) of a given agent community C is defined by

(11)

ack

Γj
(

ts̄
)

=
{

𝜏 ∈ 𝜔
∗
c
∶
(

∃ h∗,j
(

bj,∗
(

r∗,j
(

𝜔
∗
c

)))

= 1
)

∧

((

ts(𝜏) < tf̄
)

∨
(

tf (𝜏) > ts̄
))

}

(12)

pen

Γj
(

ts̄
)

=
{

𝜏 ∈ 𝜔
∗
c
∶
(

∃ bj,∗
(

r∗,j
(

𝜔
∗
c

))

= 1
)

∧
(

∄ h∗,j
(

bj,∗
(

r∗,j
(

𝜔
∗
c

))))

∧

((

ts(𝜏) < tf̄
)

∨
(

tf (𝜏) > ts̄
))

}

.

(13)

ack

Γj
(

ts̄
)

=
{

𝜏 ∈ 𝜔
∗
c
∶
(

∃ h∗,j
(

bj,∗
(

r∗,j
(

𝜔
∗
c

)))

= 1
)

∧

((

tf (𝜏) > ts̄
)

∨
(

ts(𝜏) > tf̄
))

}

(14)

pen

Γj
(

ts̄
)

=
{

𝜏 ∈ 𝜔
∗
c
∶
(

∃ bj,∗
(

r∗,j
(

𝜔
∗
c

))

= 1
)

∧
(

∄ h∗,j
(

bj,∗
(

r∗,j
(

𝜔
∗
c

))))

∧

((

tf (𝜏) > ts̄
)

∨
(

ts(𝜏) > tf̄
))

}

.

(15)
∏

c

∑

j

bj,i(ri,j(𝜔i
c
)) > 0

(16)TR(C) =
∏

ai

∏

c

∑

j

bj,i(ri,j(𝜔i
c
)) > 0

Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

Page 21 of 37 12

Recalling that the schedulability test is a cornerstone of that class of scheduling algo-
rithms based on the CPU utilization, it is employed to decide whether or not a new task
can be added to a task-set of a given agent, still guaranteeing compliance with strict
timing-constraints.

The characterization of b is defined by

Thus, a task-set of a given agent is feasible if its utilization factor is less (or equal) than the
least upper bound3 (≤ Ulub) of its scheduling algorithm [14].

The utilization factor Uk of a single task �k is computed dividing its computation time
Ck by its period Tk4. Therefore, the utilization factor of a given agent aj at a given time t is
defined by

The computation of bj,i for a given ri,j for a given task �k ∈ �
i
c
 is denoted by

(17)bj,i(ri,j(𝜔i
c
)) =

{

1 if Γj(ts̄) ∪ {𝜏} is schedulable

0 else

(18)Uj(t) =
∑

�k∈Γ
j(t)

Uk with Uk =
Ck

Tk

(19)bj,i(ri,j(𝜔i
c
)) =

{

1 if Uk + Uj(ts̄) ≤ Ulub

0 else

(c) (d)

t t

t t

(a) (b)

τ1

τ2

τ3

τ4

τ5

τ1

τ1

τ1
τ2

τ2
τ2

τ3
τ3

τ3τ4

Discarded taskConsidered taskNegotiated task

ts̄

ττ

ts̄

τ

ts̄

τ

Fig. 4 Graphical examples of the possible conditions expressed in Eqs. 11 to 14. Blue indicates the task
under negotiation (starting at ts̄), green indicates the tasks considered in Γj

(

ts̄
)

 (either acknowledged or
pending), and red indicates the tasks discarded in the computation of the workload. a periodic task negoti-
ated and periodic tasks considered, b task periodic in an interval negotiated and periodic tasks considered,
c periodic in an interval task negotiated and periodic in an interval tasks considered, and d periodic task
negotiated and periodic in an interval task considered

3 For example, in the case of algorithms such as EDF and CBS U
lub

= 1.
4 in the case where the period T

k
 and deadline D

k
 are equal. If D

k
< T

k
 , a safe bound typically used for

computing the utilization factor is U
k
= C

k
∕D

k
.

 Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

12 Page 22 of 37

Summarizing, Eqs. (1)–(6) define a real-time agent, its task-set, and the negotiated work-
load. Equations (7)–(9) define the conditions characterizing the negotiation among
the agents and the constraints necessary to ensure the real-time compliance. Equa-
tions (10)–(14) define the conditions characterizing an agent internally (i.e., acceptance
test). Equations (15) and (16) define the conditions to be verified to have the RT-constraints
satisfied at the community level. Equations (17)–(19) relate the community Eqs. (15) and
(16) to the agent’s Eqs. (1)–(14).

3.2 Heuristics

Designing a MAS according to the model presented in Sect. 3.1 ensures the respect of
strict timing constraints (real-time compliance).

However, although real-time compliant, the system performance can still have a consid-
erable variability, which is subject to parameters such as the (1) nature of the system, (2)
number of involved agents, (3) amount and task distribution, (4) amount and needs distri-
bution, (5) frequency of the negotiations, and (6) decision-making policies. The parameters
(1)–(3) are mostly defined at design time.

While observing the basic constraints formalized in Sect. 3, heuristics can be applied
to balance or optimize the load-distribution according to application-specific needs. For
example, concerning the negotiated workload, defining to which and how many agents aj to
send a request ri,j plays a crucial role on the balance of the network.

Concerning the workload (�i
c
) acceptance, beside the basic schedulability analysis,

other rules might be defined (e.g., limiting the acceptance of given tasks to prevent a quick
saturation or reserving bandwidth to specific tasks):

Concerning the cost function, defining which agent (aj) has to be acknowledged (among
the ones bidding positively) impacts on the load of single agents, representing an important
factor to fairly distribute or saturate given agents:

Summarizing, Fig. 5 represents/schematize the elements and dynamics discussed above.

bj,i(𝜔i
c
) =

{

1 if Γj(ts̄) is schedulable ∧ other rules

0 else
.

hi,j(�i
c
) =

{

1 if j = j∗

0 else
.

Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

Page 23 of 37 12

4 Empirical tests

The implementation of the model presented in Sect. 3.1 has been initially employed in the
study conducted by Calvaresi et al. [17]. The objective of such a study was to evaluate the
timing-reliability of the RBN protocol combined with the Earliest Deadline First (EDF) [14]
as local scheduler with respect to negotiation and scheduling algorithms, which are the core of
currently available agent-based platforms [18, 23] over task-sets composed of periodic tasks.

Fig. 5 Schematic representation
of the RBN negotiation protocol

ωi
1 (τk, ts, tf)

ωi
1 (τk, ts, tf)

ri,j1
aj1bj1,i

h
i,j

1

ajm

ai

ri,jm
bjm,i

h i,j
m

ri,j1
aj1bj1,i

h
i,j

1

ajmri,jm
bjm,i

h i,j
m

 Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

12 Page 24 of 37

4.1 Tests setups

To perform such an evaluation, it has been used MAXIM-GPRT (a multi-agent system sim-
ulator for general-purpose and real-time algorithms) [3]. The tests executed on MAXIM-
GPRT employed task-sets and associated agents-configurations characterized by a broad
set of different parameters (see Table 3). To generate numerous, random, and unbiased
tasks, task-sets, and agents-configurations, it has been used the tool presented in [16]. Such
a tool can generate task-sets and scenarios (a combination of parameters characterizing a
MAS-configuration). In particular, the task-sets are composed of tasks, which are randomly
generated and subject to given statistical distributions applied to user-defined bounds. The
scenarios are characterized by a set of parameters representing the operating conditions
and the selected algorithms (see Table 3 and Fig. 6).

The parameters P4 and P5 (expressed in percentages) indicate the number of services
and needs requiring generation with respect to the number of tasks composing the task-set.
P5 is also characterized by the release time of such needs5. Similarly, P7, P8, and P9 are

Table 3 Configurable parameters

Id Parameter Description

P1 Number of agents Number of agents participating in the simulation
P2 Agent knowledge Set of tasks an agent is able to execute
P3 Agent task-set Set of running tasks
P4 Agent services Set of tasks an agent might execute on demand
P5 Agent Needs Set of tasks an agent needs, but it is unable to execute
P6 Tasks models Typology of running tasks
P7 Agent utilization Load of the agent’s CPU (see Eq. 18)
P8 Tasks utilization Load of a single task (see Eq. 18)
P9 Tasks computation time Computation time of a single task (see Eq. 18)
P10 Negotiation prot. Mechanisms used to negotiate task execution
P11 Local scheduler Algorithm scheduling the agent tasks/behaviors
P12 Heuristics Policies used by agents to select possible contractors

and to award them

Fig. 6 Graphical representation
of a scenario

Agent

Task
P6 P8 P9

P3 P2

P11P10 P12 P7

P1

P5P4

5 It triggers the needs release during the simulation, abstracting the “will” of the agent.

Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

Page 25 of 37 12

generated according to customizable ranges and related statistical distributions (e.g., uni-
form and Gaussian). P1 indicates the number of task-sets to be generated (one per agent).
A task is characterized by: id, executor, demander, computation time6, residual computation
time, arrival time6, relative deadline, period6, number of executions, first activation time,
last activation time, public flag, and server id. P2 indicates the set of tasks that a given agent
is capable of executing. Its elements can be labeled as public, which are services (P4) pos-
sibly demanded by other agents7. P5 are tasks that an agent has to execute at a certain point
in time (needs which might be part of its knowledge (P2) and/or marked public by other
agents). For each agent, the running tasks (within their P1) compose the task-set (P3).

A graphical representation of P2, P3, P4, and P5 is shown in Fig. 7. In particular, such
sets are generated as follows:

1. generation of P3;
2. generation of services (P4)—according to the indicated percentage;
3. when the P4 of all the agents have been generated, a percentage of needs with the

related release time8 is associated to each agent.

In P6, the task models that can be generated are: periodic, periodic in an interval, and
sporadic/aperiodic [14]. Recalling that P7 is the sum of the fractions of processor-time
spent to execute a task-set composed of n tasks, it is calculated according to Eq. (18).

4.2 Tests execution

Using the parameters and scenarios as mentioned in the previous section, the tested algo-
rithms are:

• Schedulers9: First Come First Served (FCFS), Round Robin (RR), and Earliest Dead-
line First (EDF).

• Negotiation protocols: Contract Net protocol (CNET), Contract Net with Confirmation
Protocol (CNCP), and Reservation Based Negotiation Protocol (RBN).

Fig. 7 Graphical representation
of P2, P3, P4, and P5

8 Values subject to given ranges and distributions.
9 FCFS and RR have been chosen as comparison terms since they are employed by the most used multi-
agent platforms (See Table 2). EDF equipped with CBS has been chosen and adapted according to the
model proposed in Sect. 3.

7 The execution of such tasks is subject to negotiation mechanisms.

6 Values computed according to a uniform or Gaussian probability distribution.

 Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

12 Page 26 of 37

• Communication middleware:
 The impact of dynamic delays in the communication channels is not relevant for the

current study. Therefore, it has been imposed a fixed communication delay assumed
equal to the worst case10.

Such algorithms have been combined and tested as shown in Table 4.

All the task-sets employed in the studied scenarios respected the necessary condition
for the schedulability (U ≤ 1). Despite the configurations employing EDF+CBS & RBN
(RT-MAS)—that have not registered any deadline miss (in accordance with what has been
proved by the theory)—FCFS and RR (with either CNET or CNCP) failed in many of the
tested combinations.

The parameters characterizing the simulated scenarios are formally expressed as follow:
P1 (Na) , P7 (Ua) , and P8 (U�).

To better understand the impact of the scenario’s characterization on the deadline
misses, we have tested 90 task-sets (for a total of 243 tasks) over ten agents (Na—Direc-
tory Facilitator—DF excluded 11), with Ua within 3 rages (see Table 5), and, to increase the
granularity of the study, U� have been characterized by 3 levels (see Table 6)—for a total of
810 configurations.

Table 5 Levels of utilization for
single agent

Utilization level Value

Low U
a

l
∈ [0.1, 0.5]

Medium Ua

m
∈ [0.5, 0.8]

High U
a

h
∈ [0.8, 1.0]

11 Concept borrowed from the Jade Framework. The DF is the agent in charge of mapping and exposing a
list of agent(s)-service(s) offered [8].

10 It has been exploited the capability of MAXIM-GPRT [3] to simulate a bounded-time delay—RTPS-
like [53].

Table 4 Scheduling and
negotiation algorithms
configuration

ID Scheduling alg. Negotiation Prot.

GP-MAS1 FCFS CNET
GP-MAS2 RR CNET
GP-MAS3 FCFS CNCP
GP-MAS4 RR CNCP
RT-MAS

(our approach)
EDF + CBS RBN

Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

Page 27 of 37 12

Fig. 8 Percentage of deadline miss for periodic tasks with U�

l
 (low task utilization level, see Table 6) with

respect to the agent utilization Ua for GP-MAS1, GP-MAS2, and RT-MAS (ours). The three colored areas
correspond to the three agent utilization levels defined in Table 5 (low, medium, and high). The percentage
of deadline miss is 0% for all Ua values tested using RT-MAS, while GP-MAS1 and GP-MAS2 get up to
73% and 53% of deadline miss, respectively, at Ua

h

Fig. 9 Percentage of deadline miss for periodic tasks with U�

h
 (high task utilization level, see Table 6) with

respect to the agent utilization Ua for GP-MAS1, GP-MAS2, and RT-MAS (ours). The three colored areas
correspond to the three agent utilization levels defined in Table 5 (low, medium, and high). The percentage
of deadline miss is 0% for all Ua values tested using RT-MAS, while GP-MAS1 and GP-MAS2 get up to
62% and 35% of deadline miss, respectively, at Ua

h

Table 6 Levels of utilization for
single task

Utilization level Value

Low U
�

l
∈ [0.1, 0.3]

High U
�

h
∈ [0.3, 0.6]

Mixed U�

x
= U

�

l
∪ U�

m

4.3 Results

Concerning the configuration of the algorithm presented in Table 4, the performance
obtained by GP-MAS3 and GP-MAS4 are analogue (sometimes worst) to those obtained
by GP-MAS1 and GP-MAS2. Therefore, this section focuses on analyzing the results
of GP-MAS1, GP-MAS2, and the algorithms we proposed (RT-MAS). To assess the
timing-reliability, let us elaborate on the reports produced by the 90 tested task-sets.
Fostering the understanding of the deadline miss distribution, the results have been
organized in 3 different figures (per task model) based on the U� . In particular, the ratios

 Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

12 Page 28 of 37

Table 7 Average percentage (± standard deviation) of periodic tasks with miss deadline for each method.
The values are reported for each combination of U� and Ua intervals (see Tables 5 and 6). Our method pre-
sents a deadline miss percentage of 0.00 (± 0.00) for all the cases

U
a

l
Ua

m
U

a

h

U
�

l
GP-MAS1 4.00 (± 6.32) 8.56 (± 13.28) 41.70 (± 27.36)
GP-MAS2 0.00 (± 0.00) 1.11 (± 3.14) 25.50 (± 19.32)
RT-MAS 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)

U
�

h
GP-MAS1 0.00 (± 0.00) 5.00 (± 5.71) 19.60 (± 18.56)
GP-MAS2 0.00 (± 0.00) 0.29 (± 0.70) 7.70 (± 11.38)
RT-MAS 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)

U�

x
GP-MAS1 0.00 (± 0.00) 13.50 (± 16.01) 25.20 (± 21.80)
GP-MAS2 0.00 (± 0.00) 2.60 (± 4.74) 11.60 (± 17.77)
RT-MAS 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)

Fig. 11 Percentage of deadline miss for periodic and periodic-in-an-interval tasks with U�

l
 (low task utiliza-

tion level, see Table 6) with respect to the agent utilization Ua for GP-MAS1, GP-MAS2, and RT-MAS
(ours). The three colored areas correspond to the three agent utilization levels defined in Table 5 (low,
medium, and high). The percentage of deadline miss is 0% for all Ua values tested using RT-MAS, while
GP-MAS1 and GP-MAS2 get up to 45% and 23% of deadline miss, respectively, at Ua

h

Fig. 10 Percentage of deadline miss for periodic tasks with U�

x
 (mixed task utilization level, see Table 6)

with respect to the agent utilization Ua for GP-MAS1, GP-MAS2, and RT-MAS (ours). The three colored
areas correspond to the three agent utilization levels defined in Table 5 (low, medium, and high). The per-
centage of deadline miss is 0% for all Ua values tested using RT-MAS, while GP-MAS1 and GP-MAS2 get
up to 65% and 53% of deadline miss, respectively, at Ua

h

Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

Page 29 of 37 12

(expressed in percentage) of deadline missed out of deadline checked is represented on
the y-axes, and the Ua is on the x-axes.

• Concerning periodic tasks, Fig. 8 refers to tasks with (U�

l
) , Fig. 9 refers to tasks with

(U�

h
) , and Fig. 10 refers to tasks with (U�

x
) . Finally, Table 7 shows the average per-

centage ± standard deviation of the deadline miss by each configuration.
• Concerning periodic and periodic-in-an-interval tasks, Fig. 11 refers to tasks with

(U�

l
) , Fig. 12 refers to tasks with (U�

h
) , and Fig. 13 refers to tasks with (U�

x
) . Finally,

Table 8 shows the average percentage ± standard deviation of the deadline miss by
each configuration.

Fig. 12 Percentage of deadline miss for periodic and periodic-in-an-interval tasks with U�

h
 (high task utili-

zation level, see Table 6) with respect to the agent utilization Ua for GP-MAS1, GP-MAS2, and RT-MAS
(ours). The three colored areas correspond to the three agent utilization levels defined in Table 5 (low,
medium, and high). The percentage of deadline miss is 0% for all Ua values tested using RT-MAS, while
GP-MAS1 and GP-MAS2 get up to 43% and 3% of deadline miss, respectively, at Ua

h

Fig. 13 Percentage of deadline miss for periodic and periodic-in-an-interval tasks with U�

x
 (mixed task

utilization level, see Table 6) with respect to the agent utilization Ua for GP-MAS1, GP-MAS2, and RT-
MAS (ours). The three colored areas correspond to the three agent utilization levels defined in Table 5 (low,
medium, and high). The percentage of deadline miss is 0% for all Ua values tested using RT-MAS, while
both GP-MAS1 and GP-MAS2 get up to 71% of deadline miss at Ua

h

 Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

12 Page 30 of 37

• Concerning periodic, periodic-in-an-interval, and sporadic tasks, Fig. 14 refers to
tasks with (U�

l
) , Fig. 15 refers to tasks with (U�

h
) , and Fig. 16 refers to tasks with

(U�

x
) . Finally, Table 9 shows the average percentage ± standard deviation of the

deadline miss by each configuration.

Table 8 Average percentage (± standard deviation) of periodic-in-an-interval tasks with miss deadline for
each method. The values are reported for each combination of U� and Ua intervals (see Tables 5 and 6). Our
method presents a deadline miss percentage of 0.00 (± 0.00) for all the cases

U
a

l
Ua

m
U

a

h

U
�

l
 GP-MAS1 0.10 (± 0.30) 8.58 (± 8.76) 16.25 (± 16.54)
 GP-MAS2 0.00 (± 0.00) 1.08 (± 2.02) 5.50 (± 7.07)
 RT-MAS 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)

U
�

h
 GP-MAS1 0.00 (± 0.00) 9.57 (± 11.97) 13.00 (± 15.50)
 GP-MAS2 0.00 (± 0.00) 0.43 (± 1.05) 0.00 (± 0.00)
 RT-MAS 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)

U�

x
 GP-MAS1 0.00 (± 0.00) 11.30 (± 15.45) 24.40 (± 21.68)
 GP-MAS2 0.00 (± 0.00) 0.00 (± 0.00) 16.20 (± 22.77)
 RT-MAS 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)

Fig. 14 Percentage of deadline miss for periodic, periodic-in-an-interval, and sporadic tasks with U�

l
 (low

task utilization level, see Table 6) with respect to the agent utilization Ua for GP-MAS1, GP-MAS2, and
RT-MAS (ours). The three colored areas correspond to the three agent utilization levels defined in Table 5
(low, medium, and high). The percentage of deadline miss is 0% for all Ua values tested using RT-MAS,
while GP-MAS1 and GP-MAS2 get up to 96% and 97% of deadline miss, respectively, at Ua

h

Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

Page 31 of 37 12

Fig. 15 Percentage of deadline miss for periodic, periodic-in-an-interval, and sporadic tasks with U�

h
 (high

task utilization level, see Table 6) with respect to the agent utilization Ua for GP-MAS1, GP-MAS2, and
RT-MAS (ours). The three colored areas correspond to the three agent utilization levels defined in Table 5
(low, medium, and high). The percentage of deadline miss is 0% for all Ua values tested using RT-MAS,
while GP-MAS1 and GP-MAS2 get up to 93% and 96% of deadline miss, respectively, at Ua

m

Fig. 16 Percentage of deadline miss for periodic, periodic-in-an-interval, and sporadic tasks with U�

x
 (mixed

task utilization level, see Table 6) with respect to the agent utilization Ua for GP-MAS1, GP-MAS2, and
RT-MAS (ours). The three colored areas correspond to the three agent utilization levels defined in Table 5
(low, medium, and high). The percentage of deadline miss is 0% for all Ua values tested using RT-MAS,
while GP-MAS1 and GP-MAS2 get up to 94% and 97% of deadline miss, respectively, at Ua

m

Table 9 Average percentage (± standard deviation) of sporadic tasks with missed deadline for each method.
The values are reported for each combination of U� and Ua intervals (see Tables 5 and 6). Our method pre-
sents a deadline miss percentage of 0.00 (± 0.00) for all the cases

U
a

l
Ua

m
U

a

h

U
�

l
 GP-MAS1 0.00 (± 0.00) 48.40 (± 25.64) 86.20 (± 5.06)
 GP-MAS2 0.00 (± 0.00) 49.20 (± 26.24) 79.10 (± 11.35)
 RT-MAS 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)

U
�

h
 GP-MAS1 0.50 (± 0.91) 54.00 (± 24.68) 79.00 (± 6.96)
 GP-MAS2 3.14 (± 5.11) 50.29 (± 28.01) 66.22 (± 19.21)
 RT-MAS 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)

U�

x
 GP-MAS1 7.00 (± 19.39) 53.25 (± 25.27) 78.00 (± 8.12)
 GP-MAS2 8.40 (± 19.70) 53.83 (± 25.84) 62.38 (± 19.03)
 RT-MAS 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)

 Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

12 Page 32 of 37

5 Discussion

Analyzing the results provided in Sect. 4.3, it is possible to understand that:

(i) the implementation of the RT-MAS model presented in Sect. 3.1 confirmed that the
mathematical formulation ensures the compliance with strict-timing constraints,

(ii) according to the recorded behaviors, there is no direct mapping among the GP algo-
rithms tested (CNET, CNCP, FCFS, and RR), and

(iii) in both FCFS and RR, there is a tight connection between the features of the task-
sets and the performance of the schedulers.

Given this strong dependency—see (3)—and the impossibility (given the lack of con-
struct and mechanism) of providing any off/on-line guarantee, the employment of general-
purpose algorithms makes current MAS platforms non-suitable for safety-critical appli-
cations. Nevertheless, such variability of behaviors could be tolerated in soft best-effort
approaches, which would, however, force the system to be over-dimensioned and empiri-
cally tested (if possible) in any expected scenario.

In real-application scenarios, systems operate more commonly in fully/over-loaded con-
ditions [57]. Such conditions can be faced in terms of timing-reliability by a broad set of
approaches [14]. Factors such as high flexibility, dynamism, and unpredictability strongly
characterize current and possible MAS application fields. Thus, the applicability of real-
time approaches in MAS scenarios is quite limited.

Nevertheless, embracing the RT-MAS model presented in Sect. 3.1 guaranteed no dead-
line misses in all the tested setups.

MAXIM-GPRT and the model presented in Sect. 3 have been included in a bigger
project (open source12) named SEAMLESS [15]. In particular, the simulator is now
publicly available13 and free to use thanks to its responsive multi-device web interface.
Moreover, it is worth mentioning that in SEAMLESS, we have introduced components
such as a set of heuristics to select possible executor(s), task-execution awarding poli-
cies, customizable bidding windows, communication delay, and other implementation-
related parameters. Such elements fully comply with the RT-MAS model presented here
and can foster further studies in load balancing or design optimization.

Exploiting such a simulator, we have tested three rehabilitation scenarios. In particu-
lar, we have designed and tested (simulated) several task-sets and agent distribution over
wearable inertial sensors [19]. Such a study aims to show how RT-MAS can perform
over distributed wearable-based scenarios when dealing with real-time data-stream pro-
cessing. Application-specific requirements, together with issues related to current and
future underlying platforms, should produce further constraints that will be added to the
ones presented in the proposed general model.

6 Conclusions and ongoing works

This work pursued compliance with strict timing constraints (timing-reliability) for
MAS. In particular, it elaborated on rationality, the need for systems to be time-aware/
compliant if employed in the real world, the pillars of MAS and RTS, and investigated

12 SEAMLESS Source code link: https ://githu b.com/aisla b-hevs/seaml ess.
13 SEAMLESS link: https ://seaml ess.eheal th.hevs.ch/.

https://github.com/aislab-hevs/seamless
https://seamless.ehealth.hevs.ch/

Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

Page 33 of 37 12

the current state of the art and attempts to enforce the compliance with timing con-
straints in MAS providing a critical analysis. Moreover, the need for a formal model
and definition of RT-MAS has been discussed, filling the gap generated by partial and/
or biased contributions. In turn, given the lack of mathematical methods to study and
compare GP and RT algorithms, it detailed empirical studies (employing the simulator
MAXIM-GPRT) addressing the analysis of deadline miss recorded by several GP and
RT-MAS configurations.

Summarizing, a task can miss its deadlines due to several factors such as the agent
utilization factor, single task utilization factor, and task-set composition. However, com-
plying with RT-MAS and employing the proposed negotiation protocol (RBN) com-
bined with either EDF or EDF+CBS (depending on the task model) as the local sched-
uler, the timing reliability in MAS can be achieved.

Finally, it can be concluded that to employ MAS in scenarios demanding compliance
with strict-timing constraints, the following interventions are compulsory:

(i) the adoption and adaptation of real-time theories and scheduling models,
(ii) the employment of the RBN protocol, and
(iii) the employment of a communication middleware with bounded time delays.

6.1 Ongoing and future works

Confirming the crucial role that the proposed model can play in future studies, the ongo-
ing work is composed of the following steps:

(i) To provide a qualitative evaluation of the response time between GP and RT
configurations,

(ii) To study the impact of decisional heuristics (e.g., bidding, acknowledging, and load
balancing) on the overall performance and timing-compliance of the agency, and

(iii) To develop a framework supporting the design and deployment of RT-MAS based
on the proposed model (with particular emphasis on the compatibility with RTOS).

Acknowledgements The authors would like to thank the AIRTLAB, RETISLAB, AISLAB, and in particu-
lar Meritxell Saez Cornellana and Giuseppe Albanese, who uniquely contributed to the realization of this
manuscript.

Funding Open Access funding provided by Haute Ecole Specialisée de Suisse occidentale (HES-SO).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/

 Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

12 Page 34 of 37

References

 1. Foundation for Intelligent Physical Agents Standard. http://www.fipa.org/. Accessed 24 Sept 2019
 2. Kshemkalyani, A. D., & Singhal, M. (2008). Distributed computing: Principles, algorithms, and sys-

tems. Cambridge: Cambridge University Press.
 3. Albanese, G., Calvaresi, D., Sernani, P., Dubosson, F., Dragoni, A.F. & Schumacher, M. (2018).

Maxim-gprt: A simulator of local schedulers, negotiations, and communication for multi-agent sys-
tems in general-purpose and real-time scenarios. In International Conference on Practical Applica-
tions of Agents and Multi-Agent Systems (pp. 291–295). Springer, Berlin.

 4. Alexakos, C. & Kalogeras, A. (2015). Internet of things integration to a multi agent system based
manufacturing environment. In 2015 IEEE 20th Conference on Emerging Technologies and Factory
Automation (ETFA) (pp. 1–8). IEEE.

 5. Alzetta, F., Giorgini, P., Marinoni, M. & Calvaresi, D. (2020). RT-BDI: A real-time BDI model. In
International Conference on Practical Applications of Agents and Multi-Agent Systems (pp. 16–29).
Springer.

 6. Ayala, I., Amor, M. & Fuentes, L. (2014). Towards a CVL process to develop agents for the IOT. In
International Conference on Ubiquitous Computing and Ambient Intelligence (pp. 304–311). Springer.

 7. Bajo, J., Julián, V., Corchado, J. M., Carrascosa, C., de Paz, Y., Botti, V., et al. (2008). An execu-
tion time planner for the ARTIS agent architecture. Engineering Applications of Artificial Intelligence,
21(5), 769–784.

 8. Bellifemine, F. L., Caire, G., & Greenwood, D. (2007). Developing multi-agent systems with JADE
(Vol. 7). New York: Wiley.

 9. Biondi, A., Di Natale, M. & Buttazzo, G. (2016). Performance-driven design of engine control tasks.
In ACM/IEEE 7th International Conference on Cyber-Physical Systems (pp. 1–10). IEEE.

 10. Blazewicz, J., Ecker, K. H., Schmidt, G., & Weglarz, J. (2012). Scheduling in computer and manufac-
turing systems. Berlin: Springer.

 11. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial sys-
tems. New York, NY: Oxford University Press Inc.

 12. Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47(1–3), 139–159.
 13. Bujorianu, M., Bujorianu, M. & Barringer, H. (2009). A formal framework for user-centric control of

multi-agent cyber-physical systems.
 14. Buttazzo, G. C. (2011). Hard real-time computing systems: Predictable scheduling algorithms and

applications (Vol. 24). Berlin: Springer.
 15. Calvaresi, D., Albanese, G., Calbimonte, J. P. & Schumacher, M. (2020). Seamless: Simulation and

analysis for multi-agent system in time-constrained environments. In International Conference on
Practical Applications of Agents and Multi-Agent Systems (pp. 392–397). Springer, Berlin.

 16. Calvaresi, D., Albanese, G., Marinoni, M., Dubosson, F. & Schumacher, M. A task-sets generator for
supporting the analysis of multi-agent systems under general purpose and real-time conditions. In
Calvaresi et al. (eds) Proceedings of the 1st International Workshop on Real-Time compliant Multi-
Agent Systems co-located with the Federated Artificial Intelligence Meeting, Stockholm, Sweden (pp.
31–44). http://ceur-ws.org/Vol-2156/paper 3.pdf.

 17. Calvaresi, D., Albanese, G., Marinoni, M., Dubosson, F., Sernani, P., Dragoni, A. F. & Schumacher,
M. Timing reliability for local schedulers in multi-agent systems. In Calvaresi et al. (eds) Proceedings
of the 1st International Workshop on Real-Time compliant Multi-Agent Systems co-located with the
Federated Artificial Intelligence Meeting, Stockholm, Sweden (pp. 1–15). http://ceur-ws.org/Vol-2156/
paper 1.pdf.

 18. Calvaresi, D., kevin appoggetti, Lustrissimini, L., Marinoni, M., Sernani, P., Dragoni, A. F. & Schu-
macher, M. (2018). Multi-agent systems’ negotiation protocols for cyber-physical systems: Results
from a systematic literature review. In Proceedings of 10th International Conference on Agents and
Artificial Intelligence.

 19. Calvaresi, D., & Calbimonte, J. P. (2020). Real-time compliant stream processing agents for physical
rehabilitation. Sensors, 20(3), 746.

 20. Calvaresi, D., Cesarini, D., Sernani, P., Marinoni, M., Dragoni, A., & Sturm, A. (2016). Exploring the
ambient assisted living domain: A systematic review. Journal of Ambient Intelligence and Humanized
Computing, 8(2), 1–19.

 21. Calvaresi, D., Claudi, A., Dragoni, A., Yu, E., Accattoli, D. & Sernani, P. (2014). A goal-oriented
requirements engineering approach for the ambient assisted living domain. In Proceedings of the 7th
International Conference on PErvasive Technologies Related to Assistive Environments (p. 20).

 22. Calvaresi, D., Dragoni, A. F. & Buttazzo, G. C. (eds.). (2018). Proceedings of the 1st International
Workshop on Real-Time compliant Multi-Agent Systems co-located with the Federated Artificial

http://www.fipa.org/
http://ceur-ws.org/Vol-2156/paper3.pdf
http://ceur-ws.org/Vol-2156/paper1.pdf
http://ceur-ws.org/Vol-2156/paper1.pdf

Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

Page 35 of 37 12

Intelligence Meeting, Stockholm, Sweden, July 15th, 2018, CEUR Workshop Proceedings (Vol. 2156).
CEUR-WS.org. http://ceur-ws.org/Vol-2156.

 23. Calvaresi, D., Marinoni, M., Lustrissimini, L., kevin appoggetti, Sernani, P., Dragoni, A. F., Schu-
macher, M. & Buttazzo, G. (2017). Local scheduling in multi-agent systems: Getting ready for safety-
critical scenarios. In Proceedings of 15th European Conference on Multi-Agent Systems. Springer,
Berlin.

 24. Calvaresi, D., Marinoni, M., Sturm, A., Schumacher, M. & Buttazzo, G. (2017). The challenge of real-
time multi-agent systems for enabling IOT and CPS. In Proceedings of IEEE/WIC/ACM International
Conference on Web Intelligence (WI’17). https ://doi.org/10.1145/31064 26.31065 18.

 25. Calvaresi, D., Schumacher, M., Marinoni, M., Hilfiker, R., Dragoni, A. & Buttazzo, G. (2017). Agent-
based systems for telerehabilitation: Strengths, limitations and future challenges. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) (Vol. 10685 LNAI, pp. 3–24).

 26. Ciancarini, P., Omicini, A. & Zambonelli, F. (1999). Multiagent system engineering: The coordination
viewpoint. In International Workshop on Agent Theories, Architectures, and Languages.

 27. Claudi, A., Sernani, P., & Dragoni, A. (2015). Towards multi-agent health information systems. Inter-
national Journal of E-Health and Medical Communications, 6(4), 20–38.

 28. Crespo, A., Botti, V., Barber, F., Gallardo, D., & Onaindia, E. (1994). A temporal blackboard for real-
time process control. Engineering Applications of Artificial Intelligence, 7(3), 255–266.

 29. Dragoni, A., Sernani, P. & Calvaresi, D. (2018). When rationality entered time and became a real agent
in a cyber-society (pp. 167–171).

 30. Evans, R., Kearney, P., Caire, G., Garijo, F., Gomez Sanz, J., & Pavon, J., et al. (2001). Message:
Methodology for engineering systems of software agents. In EDIN: EURESCOM (pp. 0223–0907).

 31. Falcionelli, N., Sernani, P., Brugués, A., Mekuria, D., Calvaresi, D., Schumacher, M., Dragoni, A.
& Bromuri, S. (2017). Event calculus agent minds applied to diabetes monitoring. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). In 10642 LNAI (pp. 258–274).

 32. Gürcan, O., Yakymets, N., Tucci-Piergiovanni, S. & Radermacher, A. (2015). Multi-agent optimiza-
tion for safety analysis of cyber-physical systems.

 33. Harrison, T. H., Levine, D. L., & Schmidt, D. C. (1997). The design and performance of a real-time
corba event service. ACM SIGPLAN Notices, 32(10), 184–200.

 34. Hayes-Roth, B. (1990). Architectural foundations for real-time performance in intelligent agents. Real-
Time Systems, 2(1–2), 99–125.

 35. Holt, J., & Rodd, M. G. (1994). An architecture for real-time distributed artificial intelligent sys-
tems. Real-Time Systems, 6(1–2), 263–288. https ://doi.org/10.1007/BF010 88628 .

 36. Hunt, J.J., Brosgol, B., Wellings, A., Nilsen, K. & Blanton, E. (2020). Realtime and embedded
specification for java (RTSJ) version 2.0.

 37. Julian, V., & Botti, V. (2004). Developing real-time multi-agent systems. Integrated Computer-
Aided Engineering, 11(2), 135–149.

 38. Julian, V., Carrascosa, C., Rebollo, M., Soler, J. & Botti, V. (2002). Simba: an approach for real-
time multi-agent systems. In Catalonian Conference on Artificial Intelligence (pp. 282–293).
Springer.

 39. Kephart, J. (2002). Software agents and the route to the information economy. Proceedings of the
National Academy of Sciences, 99(suppl 3), 7207–7213.

 40. Kravari, K., & Bassiliades, N. (2015). A survey of agent platforms. Journal of Artificial Societies
and Social Simulation, 18(1), 11.

 41. Lehoczky, J. P., Sha, L. & Strosnider, J. K. (1987). Enhanced aperiodic responsiveness in hard real-
time environments (pp. 261–270). IEEE.

 42. Leitão, P. (2009). Agent-based distributed manufacturing control: A state-of-the-art survey. Engi-
neering Applications of Artificial Intelligence, 22(7), 979–991. https ://doi.org/10.1016/j.engap
pai.2008.09.005. Distributed Control of Production System.

 43. Lelli, J., Scordino, C., Abeni, L., & Faggioli, D. (2016). Deadline scheduling in the linux kernel.
Software: Practice and Experience, 46(6), 821–839. https ://doi.org/10.1002/spe.2335.

 44. Lin, J., Sedigh, S. & Miller, A. (2009). A general framework for quantitative modeling of dependa-
bility in cyber-physical systems: A proposal for doctoral research. In 2009 33rd Annual IEEE Inter-
national Computer Software and Applications Conference (Vol. 1, pp. 668–671). IEEE.

 45. Lin, J., Sedigh, S. & Miller, A. (2010). Modeling cyber-physical systems with semantic agents. In
34th Computer Software and Applications Conference.

 46. Liu, C. L., & Layland, J. W. (1973). Scheduling algorithms for multiprogramming in a hard-real-
time environment. Journal of the ACM (JACM), 20(1), 46–61.

http://ceur-ws.org/Vol-2156
https://doi.org/10.1145/3106426.3106518
https://doi.org/10.1007/BF01088628
https://doi.org/10.1016/j.engappai.2008.09.005
https://doi.org/10.1016/j.engappai.2008.09.005
https://doi.org/10.1002/spe.2335

 Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

12 Page 36 of 37

 47. Mamei, M., Zambonelli, F., & Leonardi, L. (2004). Cofields: A physically inspired approach to
motion coordination. IEEE Pervasive Computing, 3(2), 52–61.

 48. Manzo, G., Kalogeiton, E., Di Maio, A., Braun, T., Palattella, M., Turcanu, I., et al. (2020). Deep-
ndn: Opportunistic data replication and caching in support of vehicular named data. IEEE WOW-
MOM. https ://doi.org/10.1109/WoWMo M4995 5.2020.00051 .

 49. Minsky, M. (1986). The Society of Mind. New York, NY: Simon & Schuster Inc.
 50. Moscato, F., Venticinque, S., Aversa, R., & Di Martino, B. (2008). Formal modeling and verifica-

tion of real-time multi-agent systems: The REMM framework. Intelligent distributed computing,
systems and applications (pp. 187–196). Berlin: Springer.

 51. Moses, Y., & Tennenholtz, M. (1995). Artificial social systems. Computers and Artificial Intelli-
gence, 14, 533–562.

 52. Palazzo, L., Rossi, M., Dragoni, A., Claudi, A., Dolcini, G. & Sernani, P. (2013). A multi-agent
architecture for health information systems. Frontiers in Artificial Intelligence and Applications 252,
375–384. https ://www.scopu s.com/inwar d/recor d.uri?eid=2-s2.0-84894 64773 4&doi=10.3233%2f978
-1-61499 -254-7-375&partn erID=40&md5=1ac3f 44d9f 60bf1 55c63 a0a7e 36893 15.

 53. Pardo-Castellote, G., Innovations, R. T. & Chairman, D. (2005). Omg data distribution service:
Real-time publish/subscribe becomes a standard. RTC Magazine 14.

 54. Pipattanasomporn, M., Feroze, H. & Rahman, S. (2009). Multi-agent systems in a distributed smart
grid: Design and implementation. In Power Systems Conference and Exposition, 2009. PSCE’09.
IEEE/PES (pp. 1–8). IEEE.

 55. Qiaoyun, L., Jiandong, L., Dawei, D., & Lishan, K. (1996). An extension of contract net protocol
with real time constraints. Wuhan University Journal of Natural Sciences, 1(2), 156–162.

 56. Rajkumar, R., Lee, I., Sha, L. & Stankovic, J. (2010). Cyber-physical systems: The next com-
puting revolution. In Proceedings of the 47th Design Automation Conference. https ://doi.
org/10.1145/18372 74.18374 61.

 57. Ramanathan, P. (1999). Overload management in real-time control applications using (m, k)-firm
guarantee. IEEE Transactions on Parallel and Distributed Systems, 10(6), 549–559.

 58. Roscia, M., Longo, M. & Lazaroiu, G. C. (2013). Smart city by multi-agent systems. In Renewable
Energy Research and Applications.

 59. Russell, S., Norvig, P., Canny, J., Malik, J., & Edwards, D. (2003). Artificial intelligence: A modern
approach. Upper Saddle River: Prentice Hall.

 60. Russell, S., Norvig, P., & Intelligence, A. (1995). A modern approach (Vol. 25, p. 27)., Artificial
Intelligence. Englewood Cliffs: Prentice-Hall.

 61. Sernani, P., Claudi, A., Palazzo, L., Dolcini, G. & Dragoni, A. (2013). A multi-agent solution for the
interoperability issue in health information systems (pp. 24–29).

 62. Shakshuki, E. & Reid, M. (2015). Multi-agent system applications in healthcare: Current technology
and future roadmap. Procedia Computer Science 52, 252 – 261. In The 6th International Conference
on Ambient Systems, Networks and Technologies (ANT-2015), the 5th International Conference on
Sustainable Energy Information Technology (SEIT-2015). https ://doi.org/10.1016/j.procs .2015.05.071.
http://www.scien cedir ect.com/scien ce/artic le/pii/S1877 05091 50087 16.

 63. Shoham, Y. (1993). Agent-oriented programming. Artificial Intelligence, 60(1), 51–92. https ://doi.
org/10.1016/0004-3702(93)90034 -9.

 64. Sprunt, B., Sha, L., & Lehoczky, J. (1989). Aperiodic task scheduling for hard-real-time systems. Real-
Time Systems, 1(1), 27–60.

 65. Spuri, M. & Buttazzo, G. C. (1994). Efficient aperiodic service under earliest deadline scheduling. In
RTSS (pp. 2–11).

 66. Stankovic, J. A. (1988). Misconceptions about real-time computing: A serious problem for next-gener-
ation systems. Computer, 21(10), 10–19.

 67. Strosnider, J. K., Lehoczky, J. P., & Sha, L. (1995). The deferrable server algorithm for enhanced ape-
riodic responsiveness in hard real-time environments. IEEE Transactions on Computers, 44(1), 73–91.

 68. Vikhorev, K., Alechina, N. & Logan, B. (2011). Agent programming with priorities and deadlines. In
The 10th International Conference on Autonomous Agents and Multiagent Systems (Vol. 1, pp. 397–
404). International Foundation for Autonomous Agents and Multiagent Systems.

 69. Weiss, G. (Ed.). (1999). Multiagent systems: A modern approach to distributed artificial intelligence.
Cambridge, MA, USA: MIT Press.

 70. Xie, J., & Liu, C. C. (2017). Multi-agent systems and their applications. Journal of International
Council on Electrical Engineering, 7(1), 188–197.

 71. Yeoh, W., & Yokoo, M. (2012). Distributed problem solving. AI Magazine, 33(3), 53. https ://doi.
org/10.1609/aimag .v33i3 .2429.

https://doi.org/10.1109/WoWMoM49955.2020.00051
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84894647734&doi=10.3233%2f978-1-61499-254-7-375&partnerID=40&md5=1ac3f44d9f60bf155c63a0a7e3689315
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84894647734&doi=10.3233%2f978-1-61499-254-7-375&partnerID=40&md5=1ac3f44d9f60bf155c63a0a7e3689315
https://doi.org/10.1145/1837274.1837461
https://doi.org/10.1145/1837274.1837461
https://doi.org/10.1016/j.procs.2015.05.071
http://www.sciencedirect.com/science/article/pii/S1877050915008716
https://doi.org/10.1016/0004-3702(93)90034-9
https://doi.org/10.1016/0004-3702(93)90034-9
https://doi.org/10.1609/aimag.v33i3.2429
https://doi.org/10.1609/aimag.v33i3.2429

Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

Page 37 of 37 12

 72. Yu, H., Shen, Z. & Leung, C. (2013). From internet of things to internet of agents. In 2013 IEEE
International Conference on Green Computing and Communications and IEEE Internet of Things and
IEEE Cyber, Physical and Social Computing (pp. 1054–1057). IEEE.

 73. Zambonelli, F., & Omicini, A. (2004). Challenges and research directions in agent-oriented software
engineering. Autonomous agents and multi-agent systems, 9(3), 253–283.

 74. Zhao, P., Suryanarayanan, S., & Simoes, M. G. (2013). An energy management system for building
structures using a multi-agent decision-making control methodology. IEEE Transactions on Industry
Applications, 42, 322–330.

 75. Zhu, Q., Bushnell, L., & Başar, T. (2013). Resilient distributed control of multi-agent cyber-physical
systems., Control of cyber-physical systems Berlin: Springer.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Real-time multi-agent systems: rationality, formal model, and empirical results
	Abstract
	1 Introduction
	1.1 Objective
	1.2 Contributions

	2 Towards real-time multi-agent systems
	2.1 Motivations
	2.2 Real-time systems
	2.3 MAS: a DAI expression
	2.4 Previous attempts to bring real-time in MAS

	3 Real-time multi-agent systems (RT-MAS)
	3.1 The RT-MAS model
	3.2 Heuristics

	4 Empirical tests
	4.1 Tests setups
	4.2 Tests execution
	4.3 Results

	5 Discussion
	6 Conclusions and ongoing works
	6.1 Ongoing and future works

	Acknowledgements
	References

