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Abstract
Since its dawn as a discipline, Artificial Intelligence (AI) has focused on mimicking the 
human mental processes. As AI applications matured, the interest for employing them into 
real-world complex systems (i.e., coupling AI with Cyber-Physical Systems—CPS) kept 
increasing. In the last decades, the multi-agent systems (MAS) paradigm has been among 
the most relevant approaches fostering the development of intelligent systems. In numerous 
scenarios, MAS boosted distributed autonomous reasoning and behaviors. However, many 
real-world applications (e.g., CPS) demand the respect of strict timing constraints. Unfor-
tunately, current AI/MAS theories and applications only reason “about time” and are inca-
pable of acting “in time” guaranteeing any timing predictability. This paper analyzes the 
MAS compliance with strict timing constraints (real-time compliance)—crucial for safety-
critical applications such as healthcare, industry 4.0, and automotive. Moreover, it elicits 
the main reasons for the lack of real-time satisfiability in MAS (originated from current 
theories, standards, and implementations). In particular, traditional internal agent sched-
ulers (general-purpose-like), communication middlewares, and negotiation protocols have 
been identified as co-factors inhibiting real-time compliance. To pave the road towards 
reliable and predictable MAS, this paper postulates a formal definition and mathemati-
cal model of real-time multi-agent systems (RT-MAS). Furthermore, this paper presents 
the results obtained by testing the dynamics characterizing the RT-MAS model within the 
simulator MAXIM-GPRT. Thus, it has been possible to analyze the deadline miss ratio 
between the algorithms employed in the most popular frameworks and the proposed ones. 
Finally, discussing the obtained results, the ongoing and future steps are outlined.
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1 Introduction

Since their inception, multi-agent systems (MAS)  [59] and Agent-Oriented Program-
ming (AOP)  [63] emerged as prominent results in Distributed Artificial Intelligence 
(DAI) [69] which, in turn, raised as an Artificial Intelligence field dealing with groups 
of intelligent entities interacting by cooperation, coexistence, and competition. Along 
this mainstream, the underlying idea was to flank the “single-reasoner” perspective with 
a “multi-reasoner” one, however, having more interacting agents taking “autonomous 
decisions” opened multiple and wide research horizons, from Distributed Comput-
ing [2] to Distributed Problem Solving [71], from Swarm Intelligence [11] to the fasci-
nating and multidisciplinary visions of a Society of Minds [49].

However, along the branches of this big Oak, from both technical and technologi-
cal viewpoints, a critical issue has been almost neglected (with a few noticeable excep-
tions), which is the central theme of this article: the embodiment in time of MAS.

Since its dawn, AI has focused on simulating and reproducing human-like mental 
processes using formal structures, chasing the logical aspects of reasoning. Neverthe-
less, nowadays, a fast-pace evolving technology challenges AI to take into account con-
crete and real “timing performances”. In particular, in addition to the formal reasoning 
“about” time, reasoning “in” time must be ensured—essential in real-world applications.

Since enforcing the compliance of strict timing constraints over the interactions 
between the agents is becoming increasingly crucial from an engineering point of view, 
it also concerns DAI applications.

At the beginning of the nineties, among the rare attempts to deal with the concept of 
“reasoning in time” (and not just reasoning “efficiently” or, totally different, reasoning 
“about time”), Hayes-Roth with the article “Architectural Foundations for Real-Time 
Performance in Intelligent Agents” [34] and Holt et al. with the article “An Architecture 
for Real-Time Distributed Artificial Intelligent Systems” [35] seemed to grasp the heart 
of the matter.

In particular, in [34], the author first glimpsed the need to bring cognitive agents into 
the real world and make them able to exploit their enormous potential in a temporally 
effective way. However, the author claims, almost sadly:

Because an intelligent agent is almost always in a state of perceptual, cogni-
tive, and action overload, it generally cannot perform all potential operations in 
a timely fashion. While faster hardware or software optimization may solve this 
problem for selected application systems, they will not solve the general prob-
lem of limited resources or obviate its concomitant resource-allocation task. ... An 
agent must use knowledge of its goals, constraints, resources, and environment to 
determine which of its many potential operations to perform at each opportunity.

Although this observation revealed a vein of pessimism, among many others, we attrib-
ute to this paper the merit of having highlighted the need for predictability:

Predictability. The environment is orderly enough to permit probabilistic predic-
tion of some future events.

Holt [35] stated first that (i) it is not possible to conceive the interaction between agents 
if not organized in time, and (ii) each agent must be aware and conscious of the flowing 
of the time:
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The issue of real-time is often neglected or glossed over by researchers. Its importance, 
however, cannot be ignored. In simple terms, the processes (or objects) of attention in 
any process automation system are essentially real-time in nature—as a result, any asso-
ciated AI systems must be designed to be real-time-conscious.

Finally, Holt highlighted the unquestionable relevance of reliability:

Reliability is unquestionably the most important feature of any control system.

In [29], the authors defined a Real-Time Agent (RTA) as a process whose correctness depends 
not only on the soundness and completeness of the code it executes (w.r.t. a certain I/O trans-
fer function), but also on its response time, which is the interval between the moment at which 
it starts to be “executed” and the instant at which its execution is completed. Moreover, they 
have elaborated on this idea from a philosophical point of view, focusing on the ontological 
differences between the concepts of “code” and “process” acting in the real world. Moreo-
ver, they presented the following concrete and basic requirements for a “piece of code” to be 
embodied as RTA in a Cyber-Physical System (CPS): 

1. to deal explicitly with Memory and Time
2. to sense-and-measure Time with a Clock
3. to deal explicitly with deadlines, precedence and, resources constraints, in order to 

dynamically establish priorities
4. to implement “scheduling” algorithms to be sound (from a Real-Time perspective).

Finally, the authors expressed two desiderata for the future, such as: 

1. “Real Agents ” design would be more inspired by “Control Theory”;
2. “Multi-Agents Systems” conception would align with “Real-Time Systems” design.

The implicit claim of that paper was that, in order to be “real” (and “reliable”) a “piece of 
software” needs not only to simply “run” over a hardware, but it also needs to “run and inter-
act” over a specific and well-known Real-Time Operating System (RTOS), in order to be “in-
time”, somehow in the spirit of Lewis Carroll’s White Rabbit: not to be “too late” (and not be 
“too early” too).

In this paper, we would go ahead, trying to give substance to that implicit claim, especially 
focusing on what should be the requirements for a “Real-Time Agent” to behave in a Multi-
Agent scenario.

1.1  Objective

This paper aims to enforce the capability of complying with strict-timing constraints in MAS 
to enable their employment in the real world, especially in safety-critical scenarios. In other 
words, the ultimate goal is to have reliable and predictable MAS—henceforth called real-time 
multi-agent systems (RT-MAS).



 Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

12 Page 4 of 37

1.2  Contributions

Achieving such a challenging objective requires a thorough study composed of several 
steps, each involving several milestones. Therefore, the main contributions of this paper 
can be organized as follows: 

(i)  the state of the art is analyzed producing an understanding of what and how things 
are, and what and how they need to be updated or redefined;

(ii)  a formal model for RT-MAS is proposed;
(iii)  real-time scheduling models, to be adopted and adapted according to the MAS pil-

lars, is identified and studied;
(iv)  a negotiation protocol able to comply with strict-timing constraints and to operate 

accordingly with the agent local scheduler is developed and included in the RT-
MAS model;

(v)  the relevance of employing a communication middleware with bounded time delays 
for the successful development of the model is discussed.

The rest of the paper is organized as follows: Section 2 presents the need for real-time 
compliance in MAS, introducing pillars and fundamental theories of Real-time systems 
and multi-agent systems, existing attempts of complying with strict timing constraints in 
MAS, and discusses their limitations. Section 3 postulates the real-time agent definition 
and presents the RT-MAS model. Section  4 details the empirical tests and results. Sec-
tion 5 discusses the lesson learnt, and finally Sect. 6 concludes the paper, presenting ongo-
ing and future works.

2  Towards real‑time multi‑agent systems

This section moves towards the formalization of RT-MAS. It includes the (i) motivations 
that reinforce the still unmet need for the timing compliance in the modern cyber-physical 
systems particularly interconnected with the contemporary (real) society, (ii) Real-time 
system discipline and its foundations, which are crucial for the modelization and imple-
mentation of RT-MAS, (iii) MAS characterization and (iv) limitations and misconceptions 
of the early scientific attempts of introducing real-time concepts in MAS.

2.1  Motivations

Enforcing the compliance of strict timing constraints in AI applications is becoming 
increasingly crucial since the advent of pervading CPS in people’s daily lives. The employ-
ment of such systems has profoundly revolutionized customs in modern society, and human 
beings are irrevocably coupled with uncountable distributed and interconnected CPS. This 
still ongoing process is providing new application scenarios, also raising new scientific 
challenges.

CPS refer to systems seamless integrating physical components and their cyber mod-
els and elements (e.g., computation and communication) [56]. They span from minuscule 
intra-corporeal medical devices (e.g., pacemakers) or wearable systems (e.g., motion detec-
tion and monitoring) to geographically distributed systems (e.g., national power-grids). 
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The design and implementation of a CPS require a thorough understanding of the applica-
tion domain, regarding both its users and operating environments. However, it has been 
noticed that the dynamics of the physical processes should better be abstracted from real 
scenarios, but the resulting models should be integrated at design time while analyzing the 
performance of the comprehensive CPS [9]. Remembering the old lesson, building intel-
ligent systems and letting them loose in the real world with “real” sensing and “real” 
acting, provide anything less than a candidate to delude ourselves and our customers [12]. 
Back to AI, we claim that the verdicts produced by intelligent systems based on the con-
cept that “the machine will provide a correct result sooner or later”, would be worthless 
(possibly dangerous) if not provided in/on time. In real-world applications, this problem 
has been dealt just with massive adoption of heuristics to cut the response time and tailor 
the system on the related scenario/setup. However, most systems developed for commercial 
purposes are expected to carry out extremely specific jobs with certainty, precision, and 
considerable speed. Such jobs often consist of repeating identical series of operations over 
and over again. Therefore, the employment of “pure” intelligent systems unable to deal 
with them is still hampered (or makes little sense yet).

2.2  Real‑time systems

According to [14], a Real-time system (RTS) is defined to be any information processing 
system which:

• has to respond to externally generated input stimuli within a finite, specified, and pre-
dictable response time;

• correctness depends not only on the logical result but also on the time it was delivered;
• failure to respond in time is as bad as (or worse than) giving the wrong response.

A possible mapping of such concepts on the name identifying this discipline is:

• real component: the environmental time (external time) and the system’s time (internal 
time) must be aligned.

• time component: the correctness implies both correct logical computation and delivery 
in time.

This definition belongs to the holistic notion of rationality. Over the years, the study of 
RTS focused on the search for real-time Scheduling Algorithms to be adopted by the rising 
Real-Time Operating Systems (RTOS). RTS propelled the implementation of a new gen-
eration of CPSs employing both single- and multi-core CPUs.

Such studies identified three kinds of constraints characterizing the processes 
interaction: 

1. timing constraints;
2. prerequisites among the processes (e.g., precedencies);
3. mutual exclusion (when accessing a common resource).

Among those, the most relevant and determinant constraint is the first (i.e., the notion of 
deadline). The RTS community defined two classes of deadline-related priority among the 
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processes: a fixed priority (related to a deadline relative to the time of the activation) and a 
dynamic priority (related to the absolute deadline) [14].

Furthermore, the value (utility function) assumed by the result of a process, and its 
delivery time can be classified as follows:

• Non real-time process: missing the concept of deadline, the outcomes of a general-pur-
pose process is not affected by any change (Fig. 1a);

• Soft real-time process: its result has a decreasing utility after the deadline occurred 
(Fig. 1b);

• On-time real-time process: its result maximizes its value around the deadline (Fig. 1c);
• Firm real-time process: its result has no utility after the deadline (Fig. 1d);
• Hard real-time process: its result has no utility after the deadline, and missing its dead-

line may result in catastrophic consequences (Fig. 1d).

The most-relevant real-world scenarios belong to the hard and soft real-time categories. 
For example, domains that require a strict (hard real-time) timing-reliability are known as 
safety-critical scenarios (e.g., chemical and nuclear power plant control, control of com-
plex production processes, railway switching systems, automotive applications, flight con-
trol systems, telecommunication systems, medical/healthcare systems, industrial automa-
tion, and robotic systems).

Domains characterized by a moderate (soft real-time) timing-reliability are classified as 
non-critical, such as virtual reality applications, internet telephony, and desktop audio and 
video management for entertainment.

Although the term “real time” clearly refers to the system capability of responding to 
external/internal stimuli within a bounded amount of time, some researchers, developers, 
and technical managers have misconceptions about real-time computing [66]. A common 
erroneous interpretation depicts real-time systems as “able to respond quickly (as fast as 

Fig. 1  Examples of utility functions different classes of real-time processes
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possible)”. Although RTS usually operate in the order of milli/micro-seconds, computa-
tional speed must not be confused with predictability, which is the main requirement of an 
RTS. Unfortunately, most of today’s real-time control systems are still designed to respond 
“as fast as possible” using ad-hoc techniques and heuristic approaches. Control applica-
tions with stringent timing constraints are frequently implemented by writing large portions 
of code in assembly language, programming timers, writing low-level drivers for device 
handling, and manipulating tasks and interrupts priorities. Although the code produced by 
these techniques can be optimized to run efficiently, this approach is almost scratch (dif-
ficult programming, code understanding, software maintainability/compatibility, and code 
verification).

A major consequence of this approach is that the control software produced by empiri-
cal techniques has an unpredictable response time. Hence, if all critical timing constraints 
cannot be verified/guaranteed a-priory and the operating system does not include specific 
mechanisms for handling real-time tasks, the system (“apparently” operating “properly”) 
may collapse. A sudden and unexpected failure can occur in rare, unknown, or unclear-but-
possible situations just by missing a deadline.

Moreover, additionally to classical faults due to code failures, hardware failures, and 
conceptual errors in the design phase, a real-time software may be subject to timing errors:

Definition 1 Timing errors are caused by the misalignment between “real” time evolving 
in the environment and its “representation” in the internal (virtual) clock.

No matter how short the average response time of a given system can be, without a 
scientific methodology, compliance with individual timing requirements in all the possible 
circumstances cannot be guaranteed. In the case of several computational activities with 
different timing constraints, common metrics such as speed and average performance have 
been identified as irrelevant for RTS. Vice-versa, it is crucial to be able to investigate a 
given multi-process application at every stage (from design to testing), thus ensuring the 
following properties:

• Timeliness: the results have to be correct both in terms of value and response time;
• Predictability: the system must be observable and analyzable to predict the conse-

quences of any scheduling decision1;
• Efficiency: most of RTS might run into small devices with severe constraints (e.g., 

space, weight, energy, memory, and computational power); thus, optimizing the effi-
ciency is essential;

• Robustness: RTS have to be load-independent (e.g., no collapse in peak-load condi-
tions);

• Fault-tolerance: hardware and software failures of some processes should not cause the 
overall system to crash;

• Maintainability: modular RTS should ensure feasible and easy system updates.

In such multi-process RTS the two fundamental “numbers” are:

1 All timing requirements should be guaranteed off-line.
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• Deadline: the time within which a given task in a system must complete its execution2.
• Worst case execution time (WCET): the maximum amount of execution time a given 

task can take to complete its execution on a specific hardware/software configuration. 
Depending on the criticality of the real-time applications, the WCET is computed 
using static analysis tools, providing a strongly pessimistic evaluation, or approximated 
empirically (i.e., executing such a task a significant number of times, getting the maxi-
mum execution time measured and enlarging it by a sufficient amount to account for not 
evaluated execution cases).

It is worth to recall that a real-time task ( �k)—see Fig. 2—is characterized as follows [14]:

• Arrival time: ( ak ) is the time at which a task k becomes ready for execution (also 
referred as request time or release time and indicated by rk ) ;

• Starting time: sk is the time at which a task starts its execution;
• Computation time: ( Ck ) is the maximum time necessary (WCET) to the processor for 

executing the task k without interruption;
• Finishing time: ( fk ) is the time at which a task finishes its execution;
• Period: ( Tk ) is the interval of time between two consecutive activations of a given task 

k;
• Absolute deadline: ( dk ) is the time before which a task should be completed;
• Relative deadline: ( Dk ) is the difference between the absolute deadline and the arrival 

time: ( Dk = dk − ak);
• Utilization factor: ( Uk ) is the fraction of processor time spent in the execution of the 

task k.

Depending on the values assumed by the features mentioned above, a task can be asso-
ciated to different task models [14]. According to Calvaresi et al. [23], the more interesting 
models (more suitable to be mapped on the agent behaviors) are:

• periodic: a task ( �k ) which repeats indefinitely every Tk starting from a given ak;
• periodic in an interval: a task ( �k ) which repeats a l number of times every Tk starting 

from a given ak;
• aperiodic: a task (typically event-driven) which its ak cannot be predicted / estimated. 

A classic approach to handle such an uncertainty is to “allocate” the execution of such 
a task within the artifact named server (explained below).

  Although disregarding theoretical models, it is worth to recall that managing 
possible failures when executing the tasks is delegated to safety measures, strictly 

Fig. 2  Typical parameters of a real-time task [14]

2 It can vary among different tasks in the same system as well as among same tasks in different systems.
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dependent on the specific application and safety mechanisms. For example, if a 
failed task must be re-executed, the utilization of both instances must be accounted 
for. Due to the variety of safety solutions available, dealing with this issue is outside 
the scope of this paper and requires a dedicated dissertation. Hence, in the context of 
this paper, all tasks are considered not affected by failures.

  To handle the execution of tasks belonging to the models mentioned above, there 
is the need for real-time schedulers. In this context, scheduling means assigning a 
set of tasks to a processor to be completed under specified constraints [10]. A great 
variety of scheduling algorithms for real-time tasks can be grouped according to the 
following classes:

• Preemptive: the running task can be interrupted at any time to assign the proces-
sor to another active task, according to a predefined policy.

• Non-preemptive: In this case, all the scheduling-related decisions are taken when 
a task has completed its execution. Indeed, once started, a task is executed by the 
processor until completion.

• Static: the scheduling decisions are based on fixed predetermined parameters 
assigned to the tasks before their activation.

• Dynamic: the scheduling decisions depend on parameters that might change 
dynamically at run time.

• Off-line: the scheduling is entirely generated before starting the execution of the 
first task.

• Online: the scheduling depends on decisions taken at run-time every time a new 
task is introduced into the system or when the execution of the running one is 
completed.

• Optimal: the scheduling aims at minimizing a cost function defined over the task-
set. If no cost function is defined, the algorithm is said optimal if it achieves a 
feasible schedule (if it exists).

• Heuristic: the scheduling decisions are driven by a heuristic function. Heuristic-
based schedulers can find the optimal scheduling, but it cannot be guaranteed.

  The most adopted scheduling algorithm is named Rate Monotonic (RM)  [14]. 
It relies on a simple rule that assigns to a task a priority based on its request rate 
(period). In other words, tasks with shorter period have higher priority. Since the 
tasks’ periods are intended to be constant, RM can be classified as fixed-priority and 
intrinsically preemptive (i.e., if a task with a shorter period of the one being pro-
cessed is released, it will preempt the running task). Moreover, Liu and Layland [46] 
proved that RM is optimal among all fixed-priority scheduling algorithms (i.e., no 
other fixed-priority algorithm can schedule a task-set if RM cannot). Despite its 
simplicity and optimality, due to the dynamic nature of the MAS, RM cannot serve 
our investigations. Therefore, let us introduce a still optimal and preemptive, but 
dynamic-priority scheduler name Earliest Deadline First (EDF) [14]. Its scheduling 
rule selects the task to be executed according to its absolute deadline (i.e., the earli-
est deadline has the max priority). Moreover, recalling that such a scheduler can pro-
vide guarantees only for periodic tasks, let us briefly present the concept of server 
which is used in combination with EDF to process aperiodic tasks.

  A server is a periodic task whose purpose is to service aperiodic requests as soon 
as possible. Like any periodic task, a server is characterized by a period Ts and a 
computation time Cs , called server capacity, or server budget. In general, the server 
is scheduled with the same algorithm used for the periodic tasks, and, once active, 
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it serves the aperiodic requests within the limit of its budget. The ordering of aperi-
odic requests does not depend on the scheduling algorithm used for periodic tasks, 
and it can be done by arrival time, computation time, deadline, or any other param-
eter [14]. The servers can have fixed or dynamic priority. Among the most relevant, 
we can mention:

• Fixed priority servers:

Polling server (PS): At regular intervals equal to the period Ts , PS becomes active 
and serves the pending aperiodic requests within the limit of its capacity Cs . 
If no aperiodic requests are pending, PS suspends itself until the beginning of 
its next period, and the budget originally allocated for aperiodic service is dis-
charged and given periodic tasks [41].

Deferrable server (DS): As the PS, the DS algorithm creates a periodic task (usually 
having a high priority) for servicing aperiodic requests. However, unlike polling, 
DS preserves its capacity if no requests are pending upon the invocation of the 
server. The capacity is maintained until the end of the period so that aperiodic 
requests can be serviced at the same server’s priority at any time, as long as 
the capacity has not been exhausted. At the beginning of any server period, the 
capacity is replenished at its full value [67].

Sporadic server (SS): The SS algorithm creates a high-priority task for servicing 
aperiodic requests and, like DS, preserves the server capacity at its high-priority 
level until an aperiodic request occurs. However, SS differs from DS in the way 
it replenishes its capacity. Whereas DS periodically replenishes its capacity to 
full value at the beginning of the server period, SS replenishes its capacity only 
after it has been consumed by aperiodic task execution [64].

• Dynamic priority servers:

Dynamic sporadic server (DSS): DSS is characterized by a period Ts and a capac-
ity Cs , which is preserved for possible aperiodic requests. Unlike other server 
algorithms, however, the capacity is not replenished at its full value at the begin-
ning of each server period but only when consumed. The times at which the 
replenishment occur are chosen according to a replenishment rule, which allows 
the system to achieve full processor utilization. The main difference between the 
classical SS and its dynamic version consists of how the priority is assigned to 
the server. Whereas SS has a fixed priority chosen according to the RM algo-
rithm (that is, according to its period Ts ), DSS has a dynamic priority assigned 
through a suitable deadline [65].

Total bandwidth server (TBS): The main idea behind the TBS is to assign a possible 
earlier deadline to each aperiodic request. The assignment must be done in such 
a way that the overall processor utilization of the aperiodic load never exceeds a 
specified maximum value Us . Each time an aperiodic request enters the system, 
the total bandwidth of the server is immediately assigned to it, whenever pos-
sible [65].

Constant bandwidth server (CBS): It efficiently implements a bandwidth reservation 
strategy. As the DSS, the CBS guarantees that, if Us is the fraction of processor 
time assigned to a server (i.e., its bandwidth), its contribution to the total utiliza-
tion factor is no greater than Us , even in the presence of overloads. Note that this 
property is not valid for a TBS, whose actual contribution is limited to Us only 
under the assumption that all the served jobs execute no more than the declared 
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WCET. With respect to the DSS, however, the CBS shows a much better perfor-
mance, comparable with the one achievable by a TBS. The idea behind the CBS 
mechanism can be explained as follows: when a new job enters the system, it is 
assigned a suitable scheduling deadline (to keep its demand within the reserved 
bandwidth), and it is inserted in the EDF ready queue. If the job tries to execute 
more than expected, its deadline is postponed (i.e., its priority is decreased) to 
reduce the interference on the other tasks. Note that by postponing the deadline, 
the task remains eligible for execution. In this way, the CBS behaves as a work 
conserving algorithm, exploiting the available slack in an efficient (deadline-
based) way [14].

   To date, among the several types of servers developed, the constant bandwidth 
server (CBS) is the most used in RTS given its efficiency in implementing a bandwidth 
reservation strategy [14]. Besides research activities, its implementation (EDF+CBS), 
namely SCHEDEADLINE [43], is part of the mainline Linux kernel since 2014.

Once identified and understood elements and properties characterizing an RTS, the next 
step is to map them on MAS (i.e., from “processes” to “agents”). Thus, what has been 
proved to be valid for sets of processes (e.g., RTOS), must also be valid for societies of 
agents (MAS). To support the understanding of such a mapping, the next section quickly 
overviews the MAS pillars and their current/expected contributions to modern IoT and 
CPS (time and resources constrained domains).

2.3  MAS: a DAI expression

An intelligent agent can be rationalized as an autonomous entity observing the surrounding 
environment through sensors and possibly interacting with it using effectors (see Fig. 3). 
Self-developed or induced goals (both pre-programmed and dynamic decisions) drive the 
agent choices while trying to maximize its performance. Such an intelligent agent is also 
able to extend/update its knowledge base, thus renewing its plans to achieve the desired 
goals [59]. Recently, the agent-oriented programming has been invoked to face technologi-
cal challenges in the Internet of Things (IoT) and cyber-physical systems (CPS).

In a world where more than one behavior might often be appropriated in a given 
situation, the agent aims at being a human alter ego in its essence and interactions. The 
natural abstraction of MAS in ecological and societal terms supports the robustness of 
their mechanisms and behaviors. For example,  [73] asserts the affinity of ant foraging 

(a)
(b)

Fig. 3  Agent characterization: a Functional decomposition; b Behavior-based decomposition, adapted 
from [60]
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and the agents’ mobility in finding information within a distributed P2P network, and 
the similarity of social phenomena like the information propagation in social networks 
and routing algorithms. Social and natural phenomena with negotiation-based interac-
tions [39] and social conventions [26, 51] have been exploited extensively shaping the 
MAS paradigm. Moreover, it has also associated physical phenomena such as virtual 
gravitational fields to the orchestration of the overall movements of a vast number of 
distributed mobile agents/robots [47].

The complexity range of such agents is notably broad. Observing one or more agent 
communities operating in IoT and CPS scenarios can unveil an apparently unlimited 
potential. For example, the application domains that received more contributions are 
healthcare  [25, 27, 31, 52, 61, 62], smart environments (e.g., office, home city  [4, 6, 
44, 58]), smart cities (e.g., mobility  [32, 44], urban safety  [73], water distribution  [4, 

Table 1  MAS’ feature adopted in IoT and CPS [24]

Feature Contribution Source

Enable lightweight device coop. Partial [6]
Increase dependability Partial [4, 42]
Increase interoperability Partial [4, 42]
Optimize energy consumption Partial [58]
Enable repetability Partial [42, 58]
Facilitate development (various systems’ complexity) Partial [45, 72, 73]
Reducing communication (Agent Migration) Partial [6, 72]
Facilitate understanding system model Partial [44]
Enable self-healing Partial [54]
Handling variability and resources scarcity Partial [6]
Enabling self-adaptation Partial [73]
Simplify software development/extension Partial [6]
Ensure robustness Partial [54]
Facilitate components evolution and reuse Partial [6]
Face unpredictable scenarios Partial [73]
Support security (cyber and physical layers) Partial [75]
Maximization of resources utilization Partial [4]
Reduce redundancy Partial [44]
Proactiveness and intelligent behaviors Full [42, 45, 54, 58, 72, 73]
Ensure scalability Full [4, 42]
Reactivity Full [54, 58, 72]
Social-able Full [54, 58]
Increase autonomy (e.g.: failures, resources) Full [4, 45, 54, 58, 72]
Ensure modularity and encapsulation Full [42, 73]
Support contex awareness Full [6, 45, 58, 73]
Ensure flexibility Full [42, 45, 58, 73]
Increase systems integration Full [4, 42, 58]
Support fault-tolerance Full [44, 45, 75]
Enable high-level protocols and langs Full [68, 73]
Ensure reconfigurability Full [4, 42, 73]
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45], transportation [13], and energy [13, 54, 73]), industrial scenarios (e.g., manufactur-
ing [4], workflow and process management [13, 73]) and assisted living [6, 20, 21, 58]. 
See [70] for a recent survey of MAS applications.

Investigating primary studies which already tried to employ MAS in IoT and CPS 
in resources constrained domains, Calvaresi et  al.   [24] identified and collected the 
MAS characteristics recurring the most used platforms in the literature (see Table 1). 
Although scenarios and application domains might differ, the authors of the primary 
studies identified features supporting (either partially or fully) by the various adoption 
of MAS in IoT and CPS (full support indicates that MAS provide means to satisfy such 
a feature, while partial support indicates that MAS’ contribution, although positive, has 
been assessed as unable to ensure the complete satisfaction of such a feature).

The proactiveness and the possibility of performing dynamically intelligent behav-
iors with a high degree of autonomy are the most important MAS features. Further-
more, MAS resulted in being particularly appreciated in the case of failure handling or 
resource optimization where required  [6]. Finally, although broadly appreciated, MAS 
autonomy and flexibility still generate minor concerns about possible evolution in unde-
sired behaviors of inferences and plans.

Nevertheless, MAS are increasingly involved in concrete systems, such as the con-
trol of physical devices in smart environments (e.g., water provisioning  [45]), energy 
negotiation, management  [74], and system security  [75]. Moreover, in IoT and CPS 
solutions, the agents have been associated with real-time related services/tasks, repre-
senting a fascinating cross-domain class to be analyzed in more depth. For example, in 
“smart” and other relevant domains, several applications require features compliant with 
real-time-like constraints, such as sharing information [45], awareness of environmental 
changes  [13], decision support  [45], perception of provided energy  [54], information 
sharing in manufacturer processes [4], security controls [75], and on time activities exe-
cution in production lines [42]. Such services are receiving increasing scientific atten-
tion, and the MAS, if extended with the above-mentioned real-time services, represent a 
notable overlap among the IoT and CPS systems.

2.4  Previous attempts to bring real‑time in MAS

Kravari and Bassiliades  [40] proposed a detailed and comprehensive study of multi-
agent frameworks (referred to as Agent Platforms) and simulators. The most relevant 
in the community are Jade, Cormas, Swarm, Gama, Mason, Jason, Madkit, NetLogo, 
RePast, Janus, and Jadex.

Real-time compliance in MAS is a well-known need and a priceless milestone. Nev-
ertheless, current MAS still fail in dealing with real-time properties. The main driver of 
such a failure is the misconception about the meaning of real time, which too often is 
interpreted as “fast” (e.g., answering as fast as possible - low latency, and operating in 
the order of microseconds) which has nothing to do with the time predictability. Indeed, 
all the agent platforms mentioned above (and many more) typically adopt best-effort 
approaches under which the system behavior in worst-case scenarios cannot be handled, 
nor guaranteed in advance [7].

Among the most relevant attempts of achieving the timing compliance in MAS, it can 
be mentioned the study of Julian and Botti [37]. The authors evolved their earlier con-
tribution (named Message  [30]) developing a messaging system (named rt-Message), 
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aiming at reducing network and communication uncertainty. According to their analy-
sis, the message protocol [30] cannot guarantee the aimed real-time requirements for the 
following reasons:

• the protocol was operating in a framework that was not meant for facing real-time 
needs;

• its low-level layer required an ad-hoc design tailored for any specific situation;
• several extensions were required to incorporate all the temporal aspects; and
• diverse criticalities had to be considered.

Nevertheless, as acknowledged by the authors in the same work, this single step is not 
enough to ensure the actual real-time compliance of a MAS. The proposed methodol-
ogy introduced concepts such as worst-case execution time (WCET) and schedulability 
analysis, trying to cope with the overall process of developing a real-time MAS. How-
ever, although they have foreseen important aspects to be included in such a process, a 
complete framework matching all the required features is still missing.

Aligned with the previous approach, several studies tried to approach the challenge 
from the “middleware” perspective. The outcome of these studies is Common Object 
Request Broker Architecture (CORBA), which is a standard developed by the Object 
Management Group (OMG), consequently evolved in Real-Time CORBA [33].

Real-time CORBA extends the standard specification to comply with real-time enti-
ties’ needs. It takes into account soft and hard real-time requirements and components’ 
end-to-end predictability under the assumption of fixed priority [14]. However, in sce-
narios characterized by a non-negligible dynamicity and uncertainty (not handled by 
RT-CORBA), the presence of any non-predictable component can hamper the reliabil-
ity of the entire system. Thus, the employment Real-Time CORBA cannot satisfy the 
timing-compliance in MAS for the following reasons: 

1.  it only provides a means to build a communication middleware;
2.  it does not provide specifications for the single entities (e.g., real-time agents must 

also have internal mechanisms compliant with real-time mechanisms);
3.  although it provides specifications for the communication layer, RT-MAS cannot rely 

on a fixed-priority approach because of their dynamic nature.

Another architecture worth to be mentioned is named SIMBA [38]. It is the natural 
evolution of the Artis agent architecture  [7]. Based on the concept of the blackboard 
model [28], such an approach tries to model a community of agents with only claimed 
real-time capabilities. However, it is only theoretical and subject to constraints too 
strong and inapplicable to real-world scenarios (e.g., assuming an off-line schedulability 
analysis and having a static set of interactions). Moreover, this approach relies on the 
key role of an agent mediator, which impedes the scalability of the solution (bottleneck).

In [50], the authors employ a Beliefs–Desires–Intentions (BDI) architecture and lev-
erage on timed automata to verify if their goals could be achieved at the design phase, 
meeting deadlines “when possible”. Besides the sole concept of deadline, the authors do 
not use any real-time construct. Considering that the underlying framework is JADEX 
and that it does not offer real-time compliant mechanisms to schedule and negotiate 
tasks, the timing predictability of the system cannot be ensured. Moreover, JADEX adds 
inherited technological factors such as the Java Virtual Machine (JVM), which impede 
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any guarantee of complying whit strict timing constraints. In fact, application scenarios 
requiring strict real-time compliance do not use standard JVM. Conversely, dedicated 
solutions based on Real-Time Specification (RTSJ) are employed [36].

Still in the context of BDI, Alzetta et  al.  [5] presented a revision of the BDI model 
exploiting RT mechanisms named RT-BDI. The main contribution of this paper is the 
integration of RT mechanisms into the BDI reasoning cycle. In particular, constructs and 
mechanisms typical of a dynamic priority preemptive (i.e., EDF) are applied to choose 
a feasible set of intentions to be executed, and then (to ensure their correct execution) 
an adapted version of EDF handles the correct execution of the actions composing such 
intentions. Although the granularity of the model needs to be enhanced and finalized, this 
approach opens to promising developments and calls for an RT-BDI simulator to allow 
verification and validation.

Overall, besides some attempts which only partially address the real-time compliance 
of MAS, there is still no viable solution (not rearranging existing protocols or method-
ologies nor proposing dare new novelties) guaranteeing the compliance of MAS with 
time-bounded constraints. Table 2 details the main components characterizing the existing 
multi-agent platforms.

Analyzing the agent-based platforms used by most to realize MAS (mainly in the sci-
entific environment with a few isolated attempts in the industrial world) [39], we can high-
light that their characterizing mechanisms (e.g., negotiation protocols and local schedulers) 
are solely General Purpose [23] or hybrid with isolated RT-components [7].

Unfortunately, none of those approaches enables to ensure the timing reliability of the 
whole agent community. Indeed, to achieve the real-time compliance of the whole agent 
community, all the fundamental mechanisms and algorithms adopted by the agents in a 
given community must be aware of and able to handle strict-timing constraints (i.e., dead-
lines) [24]. However, although these are crucial aspects to be included in a real-time frame-
work, they are not enough to fully comply with strict-timing constraints.

In our prior studies, we identified in the local scheduler, communication middleware, 
and negotiation protocol, the MAS pillars whose incapability (even if of a single one) of 
dealing with strict timing constraints hampers the real-time compliance  [18, 22–24]. In 
particular:

Agent internal scheduler In MAS literature, the notion of scheduling refers mainly to 
mechanisms to distribute and allocate tasks/resources among the agents. By doing so, the 
execution of the behaviors and the compliance with the agreements negotiated are given 
for granted. In safety-critical applications, such assumptions are too naive and optimistic, 
thus unacceptable. Investigating further the actual implementations of the existing plat-
forms, we identified that they can allocate one or more agents per hardware component. 
This means that in several cases, the scheduler of the agent behaviors is only “virtual” 
and it runs over general-purpose (so non-real-time compliant architectures). The schedul-
ers employed to process agent tasks (known as Behaviors) are mainly Round-Robin (RR), 
first-come-first-served (FCFS), and revised versions of those [23]. A few studies proposed 
to impose fixed priority settings on the existing local scheduler. However, by doing so, 
preemption is not allowed. Thus, hampering flexibility and dynamicity (so not valuable for 
multi-agent applications). Moreover, none of the scheduling algorithms employed in MAS 
implements the concept of deadline, crucial for any real-time mechanism [23].

Agent communication middleware With the introduction of the next generation of 
internet connectivity, IoT devices will transmit and trigger in real-time. Given their social 
nature, agents interact and negotiate tasks/resources over heterogeneous networks. The for-
mat and semantic of the packets over those networks must be defined and shared to satisfy 
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the real-time requirements. For instance, the Foundation for Intelligent Physical Agents 
(FIPA) promotes agent-based technology and the interoperability of its standards with 
other technologies [1]. However, proposed agent platforms leverage on IP networks lacking 
mechanisms to handle network load, messages status, and fairness [23]. In the current state 
of our research, we envision to exploit approaches such as software-defined networking and 
named-data networking to provide timely reliability and context-aware intelligence to IoT 
devices [48]. MAS can support and be supported by those approaches by sharing network 
knowledge and providing resources to the edge devices to ensure real-time agents’ com-
munication (RT-MAS).

Agent negotiation protocol Within a community, agents can pursue individual and/or 
common goals. Thus, they can seek mutual agreements for the organization and optimi-
zation of activities, efforts, and resources via shared negotiation protocols. Such mecha-
nisms are composed of rules governing the interaction between agents. In the general case, 
there can be initiator(s) (i.e., agents demanding task(s)/service(s) with certain conditions) 
and contractor(s) (i.e., agent(s) reached out by the initiator(s) who are willing to execute 
task(s), henceforth proposing a bid). Flexibility (in terms of the number of agents involved 
and capabilities) is crucial in such dynamics. In  [18], we systematically reviewed MAS 
negotiation protocols available in the literature. Although many algorithms can generate 
fascinating and sophisticated high-level reasoning, to comply with strict-timing constraints, 
the connection with the other low-level MAS components (agent internal scheduler and 
communication middleware) must not be neglected. In particular, accepting a task via a 
negotiation impacts the contractor’s workload. Therefore, functional parameters related to 
that (e.g., utilization factor, schedulability test, and acceptance ratio) must be (re)evalu-
ated dynamically [17]. Thus, there is the need for a negotiation protocol strongly charac-
terized by features such as WCET, inter-arrival time, activation time, and finishing time 
of tasks and behaviors (both shared or not), and a viable communication channel ensur-
ing bounded a time delay for the interactions. Over the years, some studies proposed to 
introduce “novel” concepts time-aware. Unfortunately, operating on the singular elements 
(e.g., only on the negotiation protocol) still produced MAS unable to fully comply with 
the real-time needs. For example, Qiaoyun et al.  [55] limited to an arbitrary interval the 
bidding-window introducing the concept of timeout. However, this solution is able to over-
come only some limitations (e.g., diverging negotiations). Overall, no current negotiation 
protocol takes into account all the identified elements (agent internal scheduler, agent com-
munication middleware, agent negotiation protocol) needed to achieve real-time compliant 
negotiations (not theoretically, nor practically).

Summarizing earlier attempts and investigations towards real-time multi-agent systems, 
it is possible to conclude that, to date, there is no MAS model nor actual platform recon-
ciling the MAS pillars to ensure compliance with strict timing constraints. Therefore, the 
following section formalizes the notation and necessary constraints into the proposed RT-
MAS model.

3  Real‑time multi‑agent systems (RT‑MAS)

Along the years, several communities proposed their formal definition of an agent (some-
times partially overlapping). However, properly adopting and adapting the RTS notions 
needed to enable MAS real-time compliance requires a precise formalization in the form 



 Autonomous Agents and Multi-Agent Systems (2021) 35:12

1 3

12 Page 18 of 37

of both a new definition and a related theoretical model, containing and orchestrating both 
classical and new elements. Therefore, we propose a formal definition of a real-time agent 
(RTA) composing a real-time multi-agent system (RT-MAS):

Definition 2 A real-time agent is a cyber(-physical) entity characterized by amendable 
partial knowledge and both reactive and proactive behaviors, capable of sensing and effect-
ing its environment, and negotiating services and resources with other agents in a predict-
able timely fashion to pursue both self-developed and community’s goals.

3.1  The RT‑MAS model

This section introduces the notations and definitions used in this work and formalizes the 
theoretical characterization of the RT-MAS model.

Let us define a MAS as a society of agents C defined by

with a
�
 denoting the �th agent, and L denoting the total number of agents in community C.

Each agent a
�
 is able to perform a set of tasks T� denoted by

with ��
k
 denoting the kth task in the agent a

�
 , and K denoting the total number of tasks 

executable by the agent a
�
.

To facilitate the understanding of the model, let us introduce a simple example consid-
ering a community of two agents a1 (able to compute the arithmetical mean of values) and 
a2 (able to get the environmental temperature). The goal of a1 is to compute the mean of the 
environmental temperature. Therefore, it needs to negotiate such values with a2.

The type of negotiation considered in this study involves:

• a pair of interacting agents ai and aj , with agent ai being the initiator and aj being the 
contractor.

• an object of the negotiation �i
c
 composed of a triple �, ts, tf  , defined as 

 with i indicating the agent initiator and c identifying a unique triple composed of: a 
task � , its execution starting-time ts , and completion time tf  . Hereafter, �i

c
 is referred as 

workload, since the execution of the negotiated task � impacts on the load of the con-
tractor aj that will be in charge of its execution.

The negotiation, hereafter referred as Reservation Based Negotiation (RBN), is composed 
of three steps: 

1. performing the request r for a given workload, from ai to aj , denoted by 

2. performing the answer b to such a request, from aj to ai . This step is named bid, and it 
is denoted by 

(1)C =
{

a1,… , aL
}

,

(2)T
� =

{

�
�

1
,… , ��

K

}

,

(3)�
i
c
∶=(�, ts, tf ) ∈ T

i ×ℝ
+ ×ℝ

+,

(4)ri,j
(

�
i
c

)
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3. performing the acknowledgement h of a given bid, from ai to aj . Such an awarding is 
denoted by 

Requests, answers, and acknowledgements are subject to the following constraints:

• Each required workload generates at least one request: 

• Each submitted request for a given �i
c
 generates one bid. Moreover, among all the bids, 

at least one has to be positive. The value of a bid can be available (1) or unavailable (0). 
: 

• For a given �i
c
 required by an agent ai , among all the possible requested contractors aj , 

only one can receive a positive acknowledgment: 

The bid is computed by the contractor performing the schedulability test. The acceptance 
of the workload under negotiation is possible if adding it to the contractor’s task-set it 
remains feasible [14].

Let us define the starting time of a task 𝜏 under negotiation as ts̄ , and its finishing time 
as tf̄  (if the negotiated task is periodic, tf̄ → ∞ ). To compute the workload necessary to 
allocate the negotiated task, it is necessary to execute the schedulability test [14]. Such a 
process is computed at the negotiation time ( tē ) and, with respect to the interval [ ts̄, tf̄  ], it 
analyzes the agent’s tasks composing Γj

(

ts̄
)

 , which is defined as

Concerning Eq. (10): 
ack

Γj
(

ts̄
)

  is composed of the tasks acknowledged before tē and running at ts̄ by the agent j 
(already accepted before tē and, if finishing, it does it after a ts̄).pen

Γj
(

ts̄
)

  is composed of the tasks for which the agent j proposed a positive bid before tē , 
but that are still pending (neither confirmed nor declined yet).

Depending on the model of the task under negotiation and the task(s) under evaluation 
for the schedulability test, 

ack

Γj
(

ts̄
)

 and 
pen

Γj
(

ts̄
)

 assume different connotations.
If the task is periodic, its contribution to the total workload is perpetual. Otherwise, it 

must be accounted only for the interval during which it will execute on the specific node.
If the task under negotiation is periodic and the task(s) evaluated for the schedulability 

test are either periodic or periodic in an interval

(5)bj,i
(

ri,j
)

(6)hi,j
(

bj,i
)

(7)∀ 𝜔
i
c
, ∃ ri,j

(

𝜔
i
c

)

, with 0 < j ≤ L

(8)∀ ri,j
(

𝜔
i
c

)

, ∃! bj,i
(

ri,j
)

∈ {0, 1} with
∑

j

bj,i
(

ri,j
)

> 0

(9)∀ bj,i
(

ri,j
)

> 0, ∃! hi,j
(

bj,i
)

∈ {0, 1} with
∑

j

hi,j
(

bj,i
)

= 1

(10)Γj
(

ts̄
)

=
ack

Γj
(

ts̄
)

∪
pen

Γj
(

ts̄
)

.
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with ts(�) indicating starting time and tf (�) indicating finishing time of the task under eval-
uation � for the composition of Γj

(

ts̄
)

 , and the symbol ∗ indicating all the indexes of the 
agents having negotiated a workload with agent j.

If the task under negotiation is periodic in an interval and the evaluated task(s) for the 
schedulability test are either periodic or periodic in an interval

Equation (13) and Eq. (14) are also valid if the task under negotiation is aperiodic. How-
ever, the contribution to the utilization factor depends on which server is in charge of han-
dling such a task (see Sect. 2.2).

Summarizing, Fig. 4a,d shows the cases in which a given task �k is part of Γj
(

ts̄
)

 for 
Eqs. (11) and (12), and Fig. 4b,c shows the cases in which a given task �k is part of Γj

(

ts̄
)

 
for Eqs. (13) and (14).

The MAS dynamics are complex and involve several elements and mechanisms. Thus, 
applying the bottom-up approach, the formalization of the constraints characterizing the 
timing-reliability of the system follows. It is worth to recall that having predictable MAS 
implies that inside an agent, whenever a need for the execution of a task �k arises (repre-
sented by �i

c
 ), it generates a certain number of requests, of which at least one has to be 

answered positively [see Eq.  (8)]. From the point of view of a single agent ai , it means 
extending the validity of Eq.  (8) to all its negotiations. It implies that the product of the 
sum of all the bids for any given �i

c
 has to be greater than 0, as denoted by

Finally, from the community point of view, Eq.  (15) has to be verified for all its agents. 
Thus, the Timing Reliability (TR) of a given agent community C is defined by

(11)

ack

Γj
(

ts̄
)

=
{

𝜏 ∈ 𝜔
∗
c
∶
(

∃ h∗,j
(

bj,∗
(

r∗,j
(

𝜔
∗
c

)))

= 1
)

∧

((

ts(𝜏) < tf̄
)

∨
(

tf (𝜏) > ts̄
))

}

(12)

pen

Γj
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∧
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∨
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∨
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∧
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∧
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j

bj,i(ri,j(𝜔i
c
)) > 0

(16)TR(C) =
∏

ai

∏

c

∑

j

bj,i(ri,j(𝜔i
c
)) > 0
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Recalling that the schedulability test is a cornerstone of that class of scheduling algo-
rithms based on the CPU utilization, it is employed to decide whether or not a new task 
can be added to a task-set of a given agent, still guaranteeing compliance with strict 
timing-constraints.

The characterization of b is defined by

Thus, a task-set of a given agent is feasible if its utilization factor is less (or equal) than the 
least upper bound3 (≤ Ulub) of its scheduling algorithm [14].

The utilization factor Uk of a single task �k is computed dividing its computation time 
Ck by its period Tk4. Therefore, the utilization factor of a given agent aj at a given time t is 
defined by

The computation of bj,i for a given ri,j for a given task �k ∈ �
i
c
 is denoted by

(17)bj,i(ri,j(𝜔i
c
)) =

{

1 if Γj(ts̄) ∪ {𝜏} is schedulable

0 else

(18)Uj(t) =
∑

�k∈Γ
j(t)

Uk with Uk =
Ck

Tk

(19)bj,i(ri,j(𝜔i
c
)) =

{

1 if Uk + Uj(ts̄) ≤ Ulub

0 else

(c) (d)

t t

t t

(a) (b)

τ1

τ2

τ3

τ4

τ5

τ1

τ1

τ1
τ2

τ2
τ2

τ3
τ3

τ3τ4

Discarded taskConsidered taskNegotiated task

ts̄

ττ

ts̄

τ

ts̄

τ

Fig. 4  Graphical examples of the possible conditions expressed in Eqs. 11 to 14. Blue indicates the task 
under negotiation (starting at ts̄ ), green indicates the tasks considered in Γj

(

ts̄
)

 (either acknowledged or 
pending), and red indicates the tasks discarded in the computation of the workload. a periodic task negoti-
ated and periodic tasks considered, b task periodic in an interval negotiated and periodic tasks considered, 
c periodic in an interval task negotiated and periodic in an interval tasks considered, and d periodic task 
negotiated and periodic in an interval task considered

3 For example, in the case of algorithms such as EDF and CBS U
lub

= 1.
4 in the case where the period T

k
 and deadline D

k
 are equal. If D

k
< T

k
 , a safe bound typically used for 

computing the utilization factor is U
k
= C

k
∕D

k
.
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Summarizing, Eqs. (1)–(6) define a real-time agent, its task-set, and the negotiated work-
load. Equations  (7)–(9) define the conditions characterizing the negotiation among 
the agents and the constraints necessary to ensure the real-time compliance. Equa-
tions  (10)–(14) define the conditions characterizing an agent internally (i.e., acceptance 
test). Equations (15) and (16) define the conditions to be verified to have the RT-constraints 
satisfied at the community level. Equations (17)–(19) relate the community Eqs. (15) and 
(16) to the agent’s Eqs. (1)–(14).

3.2  Heuristics

Designing a MAS according to the model presented in Sect.  3.1 ensures the respect of 
strict timing constraints (real-time compliance).

However, although real-time compliant, the system performance can still have a consid-
erable variability, which is subject to parameters such as the (1) nature of the system, (2) 
number of involved agents, (3) amount and task distribution, (4) amount and needs distri-
bution, (5) frequency of the negotiations, and (6) decision-making policies. The parameters 
(1)–(3) are mostly defined at design time.

While observing the basic constraints formalized in Sect. 3, heuristics can be applied 
to balance or optimize the load-distribution according to application-specific needs. For 
example, concerning the negotiated workload, defining to which and how many agents aj to 
send a request ri,j plays a crucial role on the balance of the network.

Concerning the workload (�i
c
) acceptance, beside the basic schedulability analysis, 

other rules might be defined (e.g., limiting the acceptance of given tasks to prevent a quick 
saturation or reserving bandwidth to specific tasks):

Concerning the cost function, defining which agent (aj) has to be acknowledged (among 
the ones bidding positively) impacts on the load of single agents, representing an important 
factor to fairly distribute or saturate given agents:

Summarizing, Fig. 5 represents/schematize the elements and dynamics discussed above.

bj,i(𝜔i
c
) =

{

1 if Γj(ts̄) is schedulable ∧ other rules

0 else
.

hi,j(�i
c
) =

{

1 if j = j∗

0 else
.
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4  Empirical tests

The implementation of the model presented in Sect. 3.1 has been initially employed in the 
study conducted by Calvaresi et al.  [17]. The objective of such a study was to evaluate the 
timing-reliability of the RBN protocol combined with the Earliest Deadline First (EDF) [14] 
as local scheduler with respect to negotiation and scheduling algorithms, which are the core of 
currently available agent-based platforms [18, 23] over task-sets composed of periodic tasks.

Fig. 5  Schematic representation 
of the RBN negotiation protocol

ωi
1 (τk, ts, tf )

ωi
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4.1  Tests setups

To perform such an evaluation, it has been used MAXIM-GPRT (a multi-agent system sim-
ulator for general-purpose and real-time algorithms) [3]. The tests executed on MAXIM-
GPRT employed task-sets and associated agents-configurations characterized by a broad 
set of different parameters (see Table  3). To generate numerous, random, and unbiased 
tasks, task-sets, and agents-configurations, it has been used the tool presented in [16]. Such 
a tool can generate task-sets and scenarios (a combination of parameters characterizing a 
MAS-configuration). In particular, the task-sets are composed of tasks, which are randomly 
generated and subject to given statistical distributions applied to user-defined bounds. The 
scenarios are characterized by a set of parameters representing the operating conditions 
and the selected algorithms (see Table 3 and Fig. 6).

The parameters P4 and P5 (expressed in percentages) indicate the number of services 
and needs requiring generation with respect to the number of tasks composing the task-set. 
P5 is also characterized by the release time of such needs5. Similarly, P7, P8, and P9 are 

Table 3  Configurable parameters

Id Parameter Description

P1 Number of agents Number of agents participating in the simulation
P2 Agent knowledge Set of tasks an agent is able to execute
P3 Agent task-set Set of running tasks
P4 Agent services Set of tasks an agent might execute on demand
P5 Agent Needs Set of tasks an agent needs, but it is unable to execute
P6 Tasks models Typology of running tasks
P7 Agent utilization Load of the agent’s CPU (see Eq. 18)
P8 Tasks utilization Load of a single task (see Eq. 18)
P9 Tasks computation time Computation time of a single task (see Eq. 18)
P10 Negotiation prot. Mechanisms used to negotiate task execution
P11 Local scheduler Algorithm scheduling the agent tasks/behaviors
P12 Heuristics Policies used by agents to select possible contractors 

and to award them

Fig. 6  Graphical representation 
of a scenario

Agent

Task
P6 P8 P9

P3 P2

P11P10 P12 P7

P1

P5P4

5 It triggers the needs release during the simulation, abstracting the “will” of the agent.
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generated according to customizable ranges and related statistical distributions (e.g., uni-
form and Gaussian). P1 indicates the number of task-sets to be generated (one per agent). 
A task is characterized by: id, executor, demander, computation time6, residual computation 
time, arrival  time6, relative deadline,  period6, number of executions, first activation time, 
last activation time, public flag, and server id. P2 indicates the set of tasks that a given agent 
is capable of executing. Its elements can be labeled as public, which are services (P4) pos-
sibly demanded by other agents7. P5 are tasks that an agent has to execute at a certain point 
in time (needs which might be part of its knowledge (P2) and/or marked public by other 
agents). For each agent, the running tasks (within their P1) compose the task-set (P3).

A graphical representation of P2, P3, P4, and P5 is shown in Fig. 7. In particular, such 
sets are generated as follows: 

1.  generation of P3;
2.  generation of services (P4)—according to the indicated percentage;
3.  when the P4 of all the agents have been generated, a percentage of needs with the 

related release time8 is associated to each agent.

In P6, the task models that can be generated are: periodic, periodic in an interval, and 
sporadic/aperiodic  [14]. Recalling that P7 is the sum of the fractions of processor-time 
spent to execute a task-set composed of n tasks, it is calculated according to Eq. (18).

4.2  Tests execution

Using the parameters and scenarios as mentioned in the previous section, the tested algo-
rithms are:

• Schedulers9: First Come First Served (FCFS), Round Robin (RR), and Earliest Dead-
line First (EDF).

• Negotiation protocols: Contract Net protocol (CNET), Contract Net with Confirmation 
Protocol (CNCP), and Reservation Based Negotiation Protocol (RBN).

Fig. 7  Graphical representation 
of P2, P3, P4, and P5

8 Values subject to given ranges and distributions.
9 FCFS and RR have been chosen as comparison terms since they are employed by the most used multi-
agent platforms (See Table  2). EDF equipped with CBS has been chosen and adapted according to the 
model proposed in Sect. 3.

7 The execution of such tasks is subject to negotiation mechanisms.

6 Values computed according to a uniform or Gaussian probability distribution.
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• Communication middleware:
  The impact of dynamic delays in the communication channels is not relevant for the 

current study. Therefore, it has been imposed a fixed communication delay assumed 
equal to the worst case10.

Such algorithms have been combined and tested as shown in Table 4.

All the task-sets employed in the studied scenarios respected the necessary condition 
for the schedulability ( U ≤ 1 ). Despite the configurations employing EDF+CBS & RBN 
(RT-MAS)—that have not registered any deadline miss (in accordance with what has been 
proved by the theory)—FCFS and RR (with either CNET or CNCP) failed in many of the 
tested combinations.

The parameters characterizing the simulated scenarios are formally expressed as follow: 
P1 (Na) , P7 (Ua) , and P8 (U� ).

To better understand the impact of the scenario’s characterization on the deadline 
misses, we have tested 90 task-sets (for a total of 243 tasks) over ten agents ( Na—Direc-
tory Facilitator—DF excluded 11), with Ua within 3 rages (see Table 5), and, to increase the 
granularity of the study, U� have been characterized by 3 levels (see Table 6)—for a total of 
810 configurations.

Table 5  Levels of utilization for 
single agent

Utilization level Value

Low U
a

l
∈ [0.1, 0.5]

Medium Ua

m
∈ [0.5, 0.8]

High U
a

h
∈ [0.8, 1.0]

11 Concept borrowed from the Jade Framework. The DF is the agent in charge of mapping and exposing a 
list of agent(s)-service(s) offered [8].

10 It has been exploited the capability of MAXIM-GPRT  [3] to simulate a bounded-time delay—RTPS-
like [53].

Table 4  Scheduling and 
negotiation algorithms 
configuration

ID Scheduling alg. Negotiation Prot.

GP-MAS1 FCFS CNET
GP-MAS2 RR CNET
GP-MAS3 FCFS CNCP
GP-MAS4 RR CNCP
RT-MAS  

(our approach)
EDF + CBS RBN
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Fig. 8  Percentage of deadline miss for periodic tasks with U�

l
 (low task utilization level, see Table 6) with 

respect to the agent utilization Ua for GP-MAS1, GP-MAS2, and RT-MAS (ours). The three colored areas 
correspond to the three agent utilization levels defined in Table 5 (low, medium, and high). The percentage 
of deadline miss is 0% for all Ua values tested using RT-MAS, while GP-MAS1 and GP-MAS2 get up to 
73% and 53% of deadline miss, respectively, at Ua

h

Fig. 9  Percentage of deadline miss for periodic tasks with U�

h
 (high task utilization level, see Table 6) with 

respect to the agent utilization Ua for GP-MAS1, GP-MAS2, and RT-MAS (ours). The three colored areas 
correspond to the three agent utilization levels defined in Table 5 (low, medium, and high). The percentage 
of deadline miss is 0% for all Ua values tested using RT-MAS, while GP-MAS1 and GP-MAS2 get up to 
62% and 35% of deadline miss, respectively, at Ua

h

Table 6  Levels of utilization for 
single task

Utilization level Value

Low U
�

l
∈ [0.1, 0.3]

High U
�

h
∈ [0.3, 0.6]

Mixed U�

x
= U

�

l
∪ U�

m

4.3  Results

Concerning the configuration of the algorithm presented in Table  4, the performance 
obtained by GP-MAS3 and GP-MAS4 are analogue (sometimes worst) to those obtained 
by GP-MAS1 and GP-MAS2. Therefore, this section focuses on analyzing the results 
of GP-MAS1, GP-MAS2, and the algorithms we proposed (RT-MAS). To assess the 
timing-reliability, let us elaborate on the reports produced by the 90 tested task-sets. 
Fostering the understanding of the deadline miss distribution, the results have been 
organized in 3 different figures (per task model) based on the U� . In particular, the ratios 
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Table 7  Average percentage (± standard deviation) of periodic tasks with miss deadline for each method. 
The values are reported for each combination of U� and Ua intervals (see Tables 5 and 6). Our method pre-
sents a deadline miss percentage of 0.00 (± 0.00) for all the cases

U
a

l
Ua

m
U

a

h

U
�

l
GP-MAS1 4.00 (± 6.32) 8.56 (± 13.28) 41.70 (± 27.36)
GP-MAS2 0.00 (± 0.00) 1.11 (± 3.14) 25.50 (± 19.32)
RT-MAS 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)

U
�

h
GP-MAS1 0.00 (± 0.00) 5.00 (± 5.71) 19.60 (± 18.56)
GP-MAS2 0.00 (± 0.00) 0.29 (± 0.70) 7.70 (± 11.38)
RT-MAS 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)

U�

x
GP-MAS1 0.00 (± 0.00) 13.50 (± 16.01) 25.20 (± 21.80)
GP-MAS2 0.00 (± 0.00) 2.60 (± 4.74) 11.60 (± 17.77)
RT-MAS 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)

Fig. 11  Percentage of deadline miss for periodic and periodic-in-an-interval tasks with U�

l
 (low task utiliza-

tion level, see Table  6) with respect to the agent utilization Ua for GP-MAS1, GP-MAS2, and RT-MAS 
(ours). The three colored areas correspond to the three agent utilization levels defined in Table  5 (low, 
medium, and high). The percentage of deadline miss is 0% for all Ua values tested using RT-MAS, while 
GP-MAS1 and GP-MAS2 get up to 45% and 23% of deadline miss, respectively, at Ua

h

Fig. 10  Percentage of deadline miss for periodic tasks with U�

x
 (mixed task utilization level, see Table 6) 

with respect to the agent utilization Ua for GP-MAS1, GP-MAS2, and RT-MAS (ours). The three colored 
areas correspond to the three agent utilization levels defined in Table 5 (low, medium, and high). The per-
centage of deadline miss is 0% for all Ua values tested using RT-MAS, while GP-MAS1 and GP-MAS2 get 
up to 65% and 53% of deadline miss, respectively, at Ua

h
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(expressed in percentage) of deadline missed out of deadline checked is represented on 
the y-axes, and the Ua is on the x-axes.

• Concerning periodic tasks, Fig. 8 refers to tasks with (U�

l
) , Fig. 9 refers to tasks with 

(U�

h
) , and Fig. 10 refers to tasks with (U�

x
) . Finally, Table 7 shows the average per-

centage ± standard deviation of the deadline miss by each configuration.
• Concerning periodic and periodic-in-an-interval tasks, Fig. 11 refers to tasks with 

(U�

l
) , Fig. 12 refers to tasks with (U�

h
) , and Fig. 13 refers to tasks with (U�

x
) . Finally, 

Table 8 shows the average percentage ± standard deviation of the deadline miss by 
each configuration.

Fig. 12  Percentage of deadline miss for periodic and periodic-in-an-interval tasks with U�

h
 (high task utili-

zation level, see Table 6) with respect to the agent utilization Ua for GP-MAS1, GP-MAS2, and RT-MAS 
(ours). The three colored areas correspond to the three agent utilization levels defined in Table  5 (low, 
medium, and high). The percentage of deadline miss is 0% for all Ua values tested using RT-MAS, while 
GP-MAS1 and GP-MAS2 get up to 43% and 3% of deadline miss, respectively, at Ua

h

Fig. 13  Percentage of deadline miss for periodic and periodic-in-an-interval tasks with U�

x
 (mixed task 

utilization level, see Table 6) with respect to the agent utilization Ua for GP-MAS1, GP-MAS2, and RT-
MAS (ours). The three colored areas correspond to the three agent utilization levels defined in Table 5 (low, 
medium, and high). The percentage of deadline miss is 0% for all Ua values tested using RT-MAS, while 
both GP-MAS1 and GP-MAS2 get up to 71% of deadline miss at Ua

h
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• Concerning periodic, periodic-in-an-interval, and sporadic tasks, Fig.  14 refers to 
tasks with (U�

l
) , Fig.  15 refers to tasks with (U�

h
) , and Fig.  16 refers to tasks with 

(U�

x
) . Finally, Table  9 shows the average percentage ± standard deviation of the 

deadline miss by each configuration.

Table 8  Average percentage (± standard deviation) of periodic-in-an-interval tasks with miss deadline for 
each method. The values are reported for each combination of U� and Ua intervals (see Tables 5 and 6). Our 
method presents a deadline miss percentage of 0.00 (± 0.00) for all the cases

U
a

l
Ua

m
U

a

h

U
�

l
 GP-MAS1 0.10 (± 0.30) 8.58 (± 8.76) 16.25 (± 16.54)
 GP-MAS2 0.00 (± 0.00) 1.08 (± 2.02) 5.50 (± 7.07)
 RT-MAS 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)

U
�

h
 GP-MAS1 0.00 (± 0.00) 9.57 (± 11.97) 13.00 (± 15.50)
 GP-MAS2 0.00 (± 0.00) 0.43 (± 1.05) 0.00 (± 0.00)
 RT-MAS 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)

U�

x
 GP-MAS1 0.00 (± 0.00) 11.30 (± 15.45) 24.40 (± 21.68)
 GP-MAS2 0.00 (± 0.00) 0.00 (± 0.00) 16.20 (± 22.77)
 RT-MAS 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)

Fig. 14  Percentage of deadline miss for periodic, periodic-in-an-interval, and sporadic tasks with U�

l
 (low 

task utilization level, see Table 6) with respect to the agent utilization Ua for GP-MAS1, GP-MAS2, and 
RT-MAS (ours). The three colored areas correspond to the three agent utilization levels defined in Table 5 
(low, medium, and high). The percentage of deadline miss is 0% for all Ua values tested using RT-MAS, 
while GP-MAS1 and GP-MAS2 get up to 96% and 97% of deadline miss, respectively, at Ua

h
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Fig. 15  Percentage of deadline miss for periodic, periodic-in-an-interval, and sporadic tasks with U�

h
 (high 

task utilization level, see Table 6) with respect to the agent utilization Ua for GP-MAS1, GP-MAS2, and 
RT-MAS (ours). The three colored areas correspond to the three agent utilization levels defined in Table 5 
(low, medium, and high). The percentage of deadline miss is 0% for all Ua values tested using RT-MAS, 
while GP-MAS1 and GP-MAS2 get up to 93% and 96% of deadline miss, respectively, at Ua

m

Fig. 16  Percentage of deadline miss for periodic, periodic-in-an-interval, and sporadic tasks with U�

x
 (mixed 

task utilization level, see Table 6) with respect to the agent utilization Ua for GP-MAS1, GP-MAS2, and 
RT-MAS (ours). The three colored areas correspond to the three agent utilization levels defined in Table 5 
(low, medium, and high). The percentage of deadline miss is 0% for all Ua values tested using RT-MAS, 
while GP-MAS1 and GP-MAS2 get up to 94% and 97% of deadline miss, respectively, at Ua

m

Table 9  Average percentage (± standard deviation) of sporadic tasks with missed deadline for each method. 
The values are reported for each combination of U� and Ua intervals (see Tables 5 and 6). Our method pre-
sents a deadline miss percentage of 0.00 (± 0.00) for all the cases

U
a

l
Ua

m
U

a

h

U
�

l
 GP-MAS1 0.00 (± 0.00) 48.40 (± 25.64) 86.20 (± 5.06)
 GP-MAS2 0.00 (± 0.00) 49.20 (± 26.24) 79.10 (± 11.35)
 RT-MAS 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)

U
�

h
 GP-MAS1 0.50 (± 0.91) 54.00 (± 24.68) 79.00 (± 6.96)
 GP-MAS2 3.14 (± 5.11) 50.29 (± 28.01) 66.22 (± 19.21)
 RT-MAS 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)

U�

x
 GP-MAS1 7.00 (± 19.39) 53.25 (± 25.27) 78.00 (± 8.12)
 GP-MAS2 8.40 (± 19.70) 53.83 (± 25.84) 62.38 (± 19.03)
 RT-MAS 0.00 (± 0.00) 0.00 (± 0.00) 0.00 (± 0.00)
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5  Discussion

Analyzing the results provided in Sect. 4.3, it is possible to understand that: 

(i)  the implementation of the RT-MAS model presented in Sect. 3.1 confirmed that the 
mathematical formulation ensures the compliance with strict-timing constraints,

(ii)  according to the recorded behaviors, there is no direct mapping among the GP algo-
rithms tested (CNET, CNCP, FCFS, and RR), and

(iii)  in both FCFS and RR, there is a tight connection between the features of the task-
sets and the performance of the schedulers.

Given this strong dependency—see (3)—and the impossibility (given the lack of con-
struct and mechanism) of providing any off/on-line guarantee, the employment of general-
purpose algorithms makes current MAS platforms non-suitable for safety-critical appli-
cations. Nevertheless, such variability of behaviors could be tolerated in soft best-effort 
approaches, which would, however, force the system to be over-dimensioned and empiri-
cally tested (if possible) in any expected scenario.

In real-application scenarios, systems operate more commonly in fully/over-loaded con-
ditions [57]. Such conditions can be faced in terms of timing-reliability by a broad set of 
approaches [14]. Factors such as high flexibility, dynamism, and unpredictability strongly 
characterize current and possible MAS application fields. Thus, the applicability of real-
time approaches in MAS scenarios is quite limited.

Nevertheless, embracing the RT-MAS model presented in Sect. 3.1 guaranteed no dead-
line misses in all the tested setups.

MAXIM-GPRT and the model presented in Sect. 3 have been included in a bigger 
project (open source12) named SEAMLESS  [15]. In particular, the simulator is now 
publicly available13 and free to use thanks to its responsive multi-device web interface. 
Moreover, it is worth mentioning that in SEAMLESS, we have introduced components 
such as a set of heuristics to select possible executor(s), task-execution awarding poli-
cies, customizable bidding windows, communication delay, and other implementation-
related parameters. Such elements fully comply with the RT-MAS model presented here 
and can foster further studies in load balancing or design optimization.

Exploiting such a simulator, we have tested three rehabilitation scenarios. In particu-
lar, we have designed and tested (simulated) several task-sets and agent distribution over 
wearable inertial sensors  [19]. Such a study aims to show how RT-MAS can perform 
over distributed wearable-based scenarios when dealing with real-time data-stream pro-
cessing. Application-specific requirements, together with issues related to current and 
future underlying platforms, should produce further constraints that will be added to the 
ones presented in the proposed general model.

6  Conclusions and ongoing works

This work pursued compliance with strict timing constraints (timing-reliability) for 
MAS. In particular, it elaborated on rationality, the need for systems to be time-aware/
compliant if employed in the real world, the pillars of MAS and RTS, and investigated 

12 SEAMLESS Source code link: https ://githu b.com/aisla b-hevs/seaml ess.
13 SEAMLESS link: https ://seaml ess.eheal th.hevs.ch/.

https://github.com/aislab-hevs/seamless
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the current state of the art and attempts to enforce the compliance with timing con-
straints in MAS providing a critical analysis. Moreover, the need for a formal model 
and definition of RT-MAS has been discussed, filling the gap generated by partial and/
or biased contributions. In turn, given the lack of mathematical methods to study and 
compare GP and RT algorithms, it detailed empirical studies (employing the simulator 
MAXIM-GPRT) addressing the analysis of deadline miss recorded by several GP and 
RT-MAS configurations.

Summarizing, a task can miss its deadlines due to several factors such as the agent 
utilization factor, single task utilization factor, and task-set composition. However, com-
plying with RT-MAS and employing the proposed negotiation protocol (RBN) com-
bined with either EDF or EDF+CBS (depending on the task model) as the local sched-
uler, the timing reliability in MAS can be achieved.

Finally, it can be concluded that to employ MAS in scenarios demanding compliance 
with strict-timing constraints, the following interventions are compulsory: 

(i)  the adoption and adaptation of real-time theories and scheduling models,
(ii)  the employment of the RBN protocol, and
(iii)  the employment of a communication middleware with bounded time delays.

6.1  Ongoing and future works

Confirming the crucial role that the proposed model can play in future studies, the ongo-
ing work is composed of the following steps: 

(i)  To provide a qualitative evaluation of the response time between GP and RT 
configurations,

(ii)  To study the impact of decisional heuristics (e.g., bidding, acknowledging, and load 
balancing) on the overall performance and timing-compliance of the agency, and

(iii)  To develop a framework supporting the design and deployment of RT-MAS based 
on the proposed model (with particular emphasis on the compatibility with RTOS).
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