
The Journal of Systems & Software 173 (2021) 110886

A
S

i
t
c
t
e
n
a
r
b

p
s
c
d
s
i

✩

t
m
(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Dynamic partitioned scheduling of real-time tasks on ARMbig.LITTLE
architectures✩,✩✩

gostino Mascitti ∗, Tommaso Cucinotta, Mauro Marinoni, Luca Abeni
cuola Superiore Sant’Anna, Via Moruzzi, 1, 56124, Pisa, Italy

a r t i c l e i n f o

Article history:
Received 13 July 2020
Received in revised form 25 October 2020
Accepted 9 December 2020
Available online 11 December 2020

Keywords:
Real-time scheduling
ARM big.LITTLE
Heterogeneous multicore processing
Energy-efficiency

a b s t r a c t

This paper presents Big-LITTLE Constant Bandwidth Server (BL-CBS), a dynamic partitioning approach
to schedule real-time task sets in an energy-efficient way on multi-core platforms based on the ARM
big.LITTLE architecture. BL-CBS is designed as an on-line and adaptive scheduler, based on a push/pull
architecture that is suitable to be incorporated in the current SCHED_DEADLINE code base in the
Linux kernel. It employs a greedy heuristic to dynamically partition the real-time tasks among the
big and LITTLE cores aiming to minimize the energy consumption and the migrations imposed on
the running tasks. The new approach is validated through the open-source RT-Sim simulator, which
has been extended integrating an energy model of the ODROID-XU3 board, fitting tightly the power
consumption profiles for the big and LITTLE cores of the board. An extensive set of simulations have
been run with randomly generated real-time task sets, leading to promising results.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

In recent years, embedded systems faced a relentless growth
n the requirements posed by users on their computing capabili-
ies, with a pervasive switch to multi-core architectures. Specifi-
ally, in the area of mobile and battery-operated embedded sys-
ems, we have witnessed a widespread adoption of novel energy-
fficient architectures, first and foremost the ARM big.LITTLE one,
owadays a fundamental component of a plethora of smartphone
nd tablet devices on the market, where the timeliness of soft
eal-time applications in domains like multimedia and gaming is
ecoming more and more important.
The big.LITTLE design deviates from classical symmetric multi-

rocessing (SMP), in that it introduces two different types of cores
haring the same instruction-set architecture (ISA), so that tasks
an be seamlessly migrated among them, as in SMP, but with
ifferent frequency vs power consumption curves: LITTLE cores
pecialize in low-energy computing whilst big cores specialize
n performance. The two types of cores are normally capable of

✩ This work has received funding from the European Commission through the
EU H2020 research project AMPERE (A Model-driven development framework
for highly Parallel and EneRgy-Efficient computation supporting multi-criteria
optimization) under the grant agreement no. 871669.

✩ Editor: Alexander Chatzigeorgiou.
∗ Corresponding author.

E-mail addresses: agostino.mascitti@santannapisa.it (A. Mascitti),
ommaso.cucinotta@santannapisa.it (T. Cucinotta),
auro.marinoni@santannapisa.it (M. Marinoni), luca.abeni@santannapisa.it

L. Abeni).
 e

ttps://doi.org/10.1016/j.jss.2020.110886
164-1212/© 2020 Elsevier Inc. All rights reserved.
switching among principally different but partially overlapped
frequency steps. However, the differences in the internal micro-
architecture and pipeline design for the two core types causes a
task running on a LITTLE core to take longer for execution and to
consume less power than when running on a big core at the same
frequency. Nowadays, the Dynamic Voltage and Frequency Scal-
ing (DVFS) capabilities of big.LITTLE architectures are constrained
to being able to set a single frequency for each of the two core
type islands, albeit the most recent and advanced developments
of the architecture, named DynamIQ (ARM, 2019), will remove
this constraint.

These hardware characteristics make it quite challenging to
design a scheduler within an operating system (OS) that manages
to perform an optimum use of the available features. This prob-
lem has been tackled in the Linux kernel community introducing
the Energy-Aware Scheduling (EAS) framework (Perret, 2018),
a feature that introduces an energy model within the kernel,
gaining awareness of what are the power consumption and pro-
cessing capacity figures associated to each frequency on big vs
LITTLE cores. This information, made available through the kernel
device tree,1 has been leveraged for the default completely fair
scheduling (CFS) class.

However, when dealing with real-time workloads, the heuris-
tics provided by the CFS are not effective in handling prop-
erly the available hardware features, causing either applications

1 More information at: https://www.kernel.org/doc/Documentation/devicetre
/usage-model.txt.

https://doi.org/10.1016/j.jss.2020.110886
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2020.110886&domain=pdf
mailto:agostino.mascitti@santannapisa.it
mailto:tommaso.cucinotta@santannapisa.it
mailto:mauro.marinoni@santannapisa.it
mailto:luca.abeni@santannapisa.it
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://doi.org/10.1016/j.jss.2020.110886

A. Mascitti, T. Cucinotta, M. Marinoni et al. The Journal of Systems & Software 173 (2021) 110886

t
f
a
s
t
t
w
t
t
p
t
c

1

s
t
w
b
c
l
(
a
s
t
f
m

e
e
c
i
a
t
s
i
s

1

r
t
p
o
s
o
S
i
a
m
i
i
b
S
t

2

i
i
s
t
i

o experience unnecessary deadline misses, or forcing the plat-
orm into excessively high power consumption. More appropri-
te solutions are needed, designed in the realm of real-time
ystems (Balsini et al., 2019, 2016). An interesting feature of
he latter kind, made recently available in the Linux kernel, is
he SCHED_DEADLINE scheduler, a multi-processor variant of the
ell-known constant bandwidth server (CBS) (Abeni and But-
azzo, 1998), employing a reservation-based scheduling strategy
hat can be conveniently configured as using either global or
artitioned or clustered EDF scheduling underneath. However,
he interesting energy-awareness features of the EAS framework
annot be exploited by SCHED_DEADLINE at the moment.

.1. Paper contributions

In this paper, we propose a novel energy-aware scheduling
trategy for soft real-time tasks running on big.LITTLE architec-
ures, in the context of a complex embedded OS like Linux,
here applications cannot be known beforehand, and they can
e dynamically started and terminated. The proposed approach
ombines partitioned EDF scheduling (CBS, actually) with an on-
ine partitioning heuristics that is activated only at task wake-up
or creation) and suspension (or termination) times, performing
single task placement (or migration) action that: (1) ensures

chedulability of the real-time tasks that have been admitted onto
he system; (2) achieves the lowest expected power consumption
or the execution of the real-time tasks; (3) avoids unnecessary
igrations that might degrade the tasks performance.
This work extends a preliminary prior work of ours (Mascitti

t al., 2020) along several directions: we clarify and refine sev-
ral aspects of the proposed mechanism, identify the theoretical
onditions under which schedulability is guaranteed, discuss key
mplementation details related to the performance of the mech-
nism, and present a much more comprehensive evaluation of
he technique under various workload conditions. The performed
imulations show that our approach is actually promising, allow-
ng 15% of energy saving in average with respect to the current
tate of the SCHED_DEADLINE code base.

.2. Paper organization

This paper is organized as follows: after a brief review of the
elated research in Section 2, key background concepts related
o the adopted real-time task model and CBS scheduling are
resented in Section 3, then the computing platform we focus
n and its energy model are described in Section 4, along with
ome accompanying notation that is adopted throughout the rest
f the paper. The proposed BL-CBS technique is described in
ection 5, along with the main factors driving its design. Section 6
ntroduces theoretical conditions on the real-time task sets that
re schedulable under BL-CBS, i.e., they are guaranteed not to
iss any deadlines. Then, after providing a few important details

n Section 7 related to an efficient implementation within an
n-kernel scheduler, the proposed BL-CBS technique is evaluated
y simulation in Section 8. Finally, conclusions are drawn in
ection 9, sketching out possible directions for future research on
he topic.

. Related work

Energy-efficient scheduling for real-time tasks has been widely
nvestigated in the research literature, starting from some sem-
nal works on uni-processor systems. In particular, real-time
chedulability analysis has been combined with DVFS techniques
o reduce the CPU frequency as much as possible without break-
ng guarantees. For example, the RT-DVS algorithms proposed
 m

2

by Pillai and Shin (2001) used an approach exploiting the task
unused computation time (with respect to its worst case) to
decrease the working frequency dynamically. Aydin et al. (2004)
used similar static scaling algorithms to minimize the speed
while guaranteeing tasks deadlines, coupling them with dynamic
reclaiming of unused computation time both intratask and inter-
task. While these authors focused on solutions based on dynamic
priorities and the Earliest Deadline First (EDF) scheduling policy,
Saewong and Rajkumar (2003) presented similar algorithms but
focusing on fixed priorities. More dynamic approaches have been
proposed, for example, by Zhu and Mueller (2004, 2007), who
used a feedback mechanism to maximize energy saving for the
average execution time, still guaranteeing the timing constraints
in case of worst-case execution times.

When considering multi-core CPUs, minimizing the consumed
energy is not as simple as selecting the minimum frequency and
different strategies can be used. See Bambagini et al. (2016) for an
overview of the solutions presented in the literature (in particular
Section 7 considers uniform heterogeneous multi-processors or
multi-cores, as defined in Funk, 2004). For example, the place-
ment of tasks on the various cores (or the migration of tasks
between cores) has a significant impact on the operating frequen-
cies, and on some platforms (such as ARM big.LITTLE) different
cores can be characterized by different power characteristics (and
different sets of possible operating frequencies). Hence, frequency
scaling, task placement, and migration actions must be strictly
coordinated.

Multi-core real-time schedulers are generally classified as
global schedulers or partitioned schedulers: while a global sched-
uler is free to migrate tasks between different cores according
to the scheduling policy (and hence, conceptually, the scheduler
uses one single global ready queue that contains all the tasks
ready for execution), a partitioned scheduler does not migrate
tasks between cores (and tasks are statically assigned to cores by
the system designer). As a consequence, when using partitioned
scheduling the problem of scheduling tasks on m CPUs is reduced
to m scheduling problems on a single CPU, and single-processor
DVFS algorithms can be re-used. Hence, the main challenge in
partitioned scheduling is the tasks assignment so that the DVFS
algorithm can more effectively decrease the consumed energy.

Semi-partitioned scheduling (Andersson and Tovar, 2006;
Burns et al., 2012; Casini et al., 2017) represents a trade-off
between global and partitioned scheduling, allowing to schedule
tasksets that are not partitionable. It relies on splitting a real-
time task into two parts with reduced demand that fit into two
different cores and execute with a precedence constraint (one af-
ter the other), keeping schedulability. These techniques have also
been applied to heterogeneous multi-cores, and used to reduce
energy consumption (Liu et al., 2016). However, this power saving
technique relies on an off-line placement of the tasks (or parts of
the tasks) on the various cores. Some authors (Casini et al., 2017)
investigated the use of linear-time approximation methods to
perform the splittings so that they can be performed on-line, but
this technique does not take into account energy consumption.

The present work advocates a simpler utilization-based
method where task splitting is not used and a ‘‘restricted mi-
grations’’ approach (Baruah and Carpenter, 2003) is used: a task
resides mostly on one core for each job, and it is migrated
normally only across subsequent activations.2 This is easier to
compute in an OS kernel (see Section 5 for details). On the other
hand, task splitting requires to migrate tasks while running, when
one split of the task exhausted its assigned time on one CPU, and
the subsequent split continues execution on a different CPU.

2 As it will become clear in Section 5, a task can also be migrated in the
iddle of a job to balance workload and bring down the island frequency.

A. Mascitti, T. Cucinotta, M. Marinoni et al. The Journal of Systems & Software 173 (2021) 110886

c
P
s
w
b
i
e
H
D
p
a
f
g

p
(
l
c
o
o
K
h
i
s
s
f
s
p
t
o
a
p
w
w
f
o
c
t
e
t
s
b
t
t
o
t
a
A
f
h
f
r
m

s
e
H
(
w
s

n
g
t
h

s

e
f
d

Notice that frequency scaling is not the only technique that
an be used to reduce energy consumption. For example, Dynamic
ower Management (DPM) allows for reducing the energy con-
umption by putting the CPU in a ‘‘low-power’’ (or sleep) state
henever it is idle. DPM is not an alternative to DVFS but can
e combined with it. For example, these techniques are jointly
nvestigated in the context of real-time scheduling in Bambagini
t al. (2013) and Moulik et al. (2019). Other works (Imes and
offmann, 2015) investigated the trade-offs between DVFS and
PM, studying whether it is better to execute at the highest
ossible frequency and then set cores to a sleep state as long
s possible (and so relying on DPM only), or finding the lowest
requency needed to make tasks respect their deadlines and never
o idle (and so relying on DVFS only).
Several authors reduced the complexity of the scheduling

roblem by reducing the number of decisions taken at run-time
for example, by statically assigning tasks to cores or core is-
ands, or statically deciding the frequency at which each core or
ore island executes, by resorting to a static schedule computed
ff-line). This allows for taking some decisions by solving an
ptimization problem (Chwa et al., 2015; Thammawichai and
errigan, 2018; Qin et al., 2019a,b). Polynomial-time algorithms
ave been proposed (Liu et al., 2015) to divide real-time stream-
ng applications across DVFS capable islands, where tasks are
tatically assigned to an island and then globally scheduled in-
ide it via an optimal scheduler. In Colin et al. (2014), it is
ound that the most efficient way to allocate real-time tasks and
ave energy is neither balancing the load nor choosing the most
ower-efficient core. They find off-line the optimal load distribu-
ion via integer linear programming (ILP) and try to approximate
n-line that result via heuristics. Other authors (Thammawichai
nd Kerrigan, 2018) divide the scheduling problem into workload
artitioning and next task ordering. The first step determines
hat parts of the tasks should be executed at what frequency
ithin a time interval such that feasibility constraints are satis-

ied, while the second part establishes how to order the pieces
f tasks for each core. Also, an analysis of the task code structure
oupled with an ILP returning the minimum frequency and loca-
ion to be used for each code segment has been proposed (Qin
t al., 2019a). In the same work, the authors tried to moderate
he use of the LITTLE-Core-First principle, according to which one
hould always fill LITTLE cores while possible before selecting a
ig one. Using the task execution variance (i.e., the ratio between
he WCET on LITTLE and on big for a given task) an ILP formula-
ion is used to compute the optimal distribution of the utilization
f the tasks between the islands and their minimum frequencies
o respect the deadline. A heuristic is then used to assign tasks
nd set the frequencies. This approach, however, is related to
RM DynamIQ and it makes use of per-core DVFS, which is not
easible for generic big.LITTLE platforms. Optimization methods
ave also been used in Nogues et al. (2016) for choosing the best
requency for each node of stream processing applications rep-
esented as Synchronous Data Flows with end-to-end deadlines,
aking their parallelism explicit in the model.
While most of the above works focus on optimizing some deci-

ions taken off-line, in this paper, we deal with designing a strat-
gy that can be applied on-line within an OS kernel scheduler.
ence, our algorithm copes with both on-line scheduling of tasks
considering both task migrations and possible task overruns,
hich we handle by using CBS servers) and dynamic frequency
caling.
Focusing on recent developments in the mainline Linux kernel,

otable energy-aware features for big.LITTLE have been inte-
rated within the EAS framework, that is mostly focused on
he CFS scheduler for general-purpose workloads. On the other

and, for real-time tasks, the SCHED_DEADLINE policy has been

3

recently enriched with an on-line support for DVFS (Scordino
et al., 2018, 2019), by integrating a variant of the GRUB-PA
algorithm (Scordino and Lipari, 2004). However, the current im-
plementation does not support non-symmetric multi-cores such
as ARM big.LITTLE platforms. Also, other investigations of ours on
the use of adaptive partitioning schedulers for multi-cores (Abeni
and Cucinotta, 2020), albeit in a non energy-aware context, high-
lighted that these techniques can be effective in scheduling real-
time task sets reducing deadline violations compared to the
global EDF used by SCHED_DEADLINE. Following this research
track, this paper focuses on an on-line scheduling algorithm that
dynamically partitions real-time tasks, exploiting job-level migra-
tion. It is suitable to be implemented into the existing code-base
of the Linux kernel in the scheduling class SCHED_DEADLINE and
works with incremental, dynamic task sets, which are not known
a priori. Off-line approaches cannot be used in this context since
they are not suitable for being used with dynamic workloads.
However, off-line partitioning algorithms commonly give better
results since all the optimizations can be performed on a task set
known a priori, leading to better solutions in terms of real-time
guarantees and energy-saving. Conversely, an on-line algorithm,
like the one proposed in this paper, is expected to make swift
decisions, aiming at achieving a good-enough performance in a
reduced computation time.

Some authors deal with the problem of scheduling real-time
DAG tasks (Guo et al., 2017, 2019; Li et al., 2019) and
digraphs (Zahaf et al., 2019) on ARM big.LITTLE, evaluating the
approach either through implementation on real hardware or by
simulation. Our work is currently limited to scheduling of real-
time independent task sets, albeit extensions along said lines will
be considered in future extensions.

Finally, an interesting approach is the one proposed in Balsini
et al. (2016), where authors highlight that power consumption
may vary in non-negligible way depending also on the workload
type being computed, supporting the argument with real data
measured on an ODROID-XU3 platform. Possible integration of
such a per-application power-consumption model might be an
interesting area of future extensions of the present work.

In this paper, the validation is carried out using RTSim
(Palopoli et al., 2002, 2001; Scordino and Lipari, 2006), an open-
source tool we have been evolving over time and used in several
previous research works. Albeit other real-time task simula-
tors (Pillai and Isha, 2013; Thakare and Deshmukh, 2017; Cher-
amy et al., 2014) were available, RTSim was an easier choice for
us, also because its modifications in Balsini et al. (2016), integrat-
ing a realistic energy consumption model for the ODROID-XU3
big.LITTLE platform, have been used as a starting point to develop
the energy-aware adaptive partitioning technique presented in
this paper.

3. Background

In this paper we consider a set of real-time tasks {τi} to be
cheduled on a number of CPUs. A real-time task τi is charac-
terized by a minimum inter-arrival period Ti equal to its relative
deadline (implicit deadline case) and by the worst-case execution
time (WCET), which will be discussed in depth in the following
sections for the case of the ARM big.LITTLE architecture. τi gen-
rates a sequence of jobs Ji,j and for a job arriving at time ri,j, its
inishing time is denoted by fi,j > ri,j. Task τi respects all of its
eadlines if ∀j, fi,j ≤ ri,j + Ti. Generally, ri,j+1 ≥ ri,j + Ti, but for a

periodic real-time task, we have ri,j+1 = ri,j + Ti.
In this paper we consider soft real-time tasks, meaning that

a job missing its deadline will not cause severe consequences,
but rather will lessen the Quality of Service (QoS) of the system.
For example, a multimedia application that needs to periodically

A. Mascitti, T. Cucinotta, M. Marinoni et al. The Journal of Systems & Software 173 (2021) 110886

p
t
r
w
g

s
d
e
w
b
t

(
I
F
s
a
d
d
t
t
t
t
b
t
t
a
f∑
w

i
r
u

(
i
t
a
t
i
t
e
s
f
l
i
o
f
1
w
a
i

4

o
t

t
o{
T
c

s
a
s

T

t

erform buffering, decoding and visualization of frames, needs
o complete each activation by a precise deadline. However, a
elatively small percentage of deadline misses can be tolerated,
ith the user perceiving a degraded quality as said percentage
rows.
As many real-time tasks may be concurrently active on the

ame CPU, they interfere with each other, jeopardizing their
eadlines. Therefore, we make use of resource reservations to
nforce temporal isolation among tasks. Each task τi is associated
ith its own reservation (Qi, Pi), meaning that τi is guaranteed to
e scheduled on the CPU for Qi time units (a.k.a., budget) in every
ime interval of length Pi (a.k.a., reservation period).

In this paper, we use the Constant Bandwidth Server (CBS)
Abeni and Buttazzo, 1998) as a resource-reservation mechanism.
n CBS, reservations are realized by means of the Earliest Deadline
irst (EDF) scheduler, which schedules tasks {τi} based on their
cheduling deadlines {di}, assigned by the CBS algorithm. When
new job Ji,j arrives, the server checks whether the current
eadline is sufficient to schedule it, otherwise it assigns a new
eadline equal to ri,j + Pi. While the job executes, the budget of
he associated CBS is decreased. If it executes for more than Qi
ime units, its scheduling deadline is postponed by Pi. Therefore,
he job is prevented from executing more than Qi time units with
he same scheduling deadline, and it is guaranteed a computation
andwidth of Bi = Qi/Pi regardless of the behaviour of the other
asks. This ensures temporal isolation, preventing a misbehaving
ask to cause deadline misses on jobs of other tasks with farther
way deadline. To guarantee the schedulability of each task, the
ollowing schedulability condition must hold:

i

Bi ≤ Umax (1)

ith Umax = 1 in case of EDF.
A CBS server may be associated with many tasks. However,

n this paper, each one will have its own CBS server. For the
eader’s convenience, Table 1 summarizes the notation symbols
sed throughout this paper.
An energy-aware extension of the CBS server is GRUB-PA

Greed Reclamation of Unused Bandwidth — Power Aware), integrat-
ng the ability to reclaim unused processor capacity (bandwidth)
hat is not used because some of the servers may have no jobs
waiting execution and exploiting the hardware DVFS capabilities
o reduce the cores frequency. GRUB-PA has been implemented
n the mainline Linux running SCHED_DEADLINE CBS reserva-
ions, starting from version 4.13 released in September 2017. Its
nergy-related behaviour on multiprocessor platforms could be
ummarized as follows. When a new task instance Ji,j arrives, the
irst free core is selected if available; otherwise, the core with the
atest-deadline task is chosen and the new task is dispatched onto
t. Then, in the case of ARM big.LITTLE, the highest-utilization core
f each island is used to determine the frequency (or the highest
requency is picked if the busiest core has utilization greater than
.0). When a task in a server ends, leaving its core idle, the task
ith closest deadline is pulled onto it and the islands frequencies
re adjusted. The reader can find more details about the GRUB-PA
n Scordino and Lipari (2004).

. Notation and energy model

This section presents the models and notation used through-
ut the paper to represent the underlying processing platform,
he energy model, and the scheduled task sets.
4

4.1. Platform model

The processing platform under study is composed of two core
islands, where each island s (s ∈ I ≜ {L, B}) has ms identical cores
hat can (all together) be switched among a set of ks possible
perational performance points (OPPs) with different frequencies
fs,1, . . . , fs,ks

}
, ordered from the minimum to the maximum one.

he per-core power consumption at frequency fs,j is ps,j when
omputing, or pidles,j < ps,j when staying idle, where ∀j1, j2 ∈

{1, . . . , ks}, j1 < j2 H⇒ ps,j1 < ps,j2 ∧ pidles,j1
< pidles,j2

. For the sake
of simplicity, in this work, we ignore the existence of multiple
deep-sleep idle modes of the CPU(s) with different associated
power consumptions, postponing their proper integration in our
technique to future work.

We define the maximum speed xs ≤ 1 of a core of an island s
to be the ratio between the processing time C of a task deployed
on a core of the big island at maximum frequency fB,kB and its
processing time Cs,ks , when deployed on that core at maximum
frequency fs,ks : xs =

C
Cs,ks

.
A core of the island s, running at OPP j < ks, has a reduced

peed xs,j < xs, where a common assumption is that xs,j = xs
fs,j
fs,ks

,
lbeit the approach of this paper relies on arbitrary processing
peed factors {xs,j} (monotonically increasing with j), being in-
spired by the capacity matrix as available in the device tree in
the Linux kernel supporting EAS.

4.2. Task model

Each task τi is assumed to be a periodic task with known period
i, or equivalently a sporadic task with minimum inter-arrival

time among two subsequent activations of Ti, and with a known
nominal WCET Ci, being the WCET of the task when running on a
big core at maximum frequency. Similarly, the nominal utilization
Ui is defined as Ui ≜

Ci
Ti
. Whenever the task is running on a core

of an island s at an OPP j, its timing is characterized by the scaled
WCET C̃i,s,j and scaled utilization Ũi,s,j, defined as:

C̃i,s,j =
Ci

xs,j

[
=

Ci

xs

fs,ks
fs,j

]
; Ũi,s,j ≜

C̃i,s,j

Ti
≡

Ui

xs,j
. (2)

Our task model comprises a few common task states: a task
arrives or activates, becoming ready to run, periodically (or with
a minimum periodicity), generating a sequence of jobs. When the
ask is selected for execution on a CPU then it becomes running,
and its current job starts being executed. While running, a task
may be preempted by another task just arrived (or migrated from
another CPU) with an earlier deadline, causing the former task
to go back to the ready state. Each job completes with the task
suspending, waiting for the next activation, when the task will
wake-up and become again ready to run, then its next job will
start executing when it is scheduled.

This paper focuses on approaches where the set of scheduled
tasks Γ = {τ1, . . . , τn} can be partitioned among the available
cores, so that, at any time, each core h of an island s hosts a
subset of tasks Γs,h ⊆ Γ meeting some schedulability condition.
For example, if EDF is used, the well-known EDF schedulability
condition has to be met on the scaled utilizations, considering the
OPP j at which the island is configured:∑
i∈Γs,h

Ũi,s,j ≤ 1 ⇐⇒

∑
i∈Γs,h

Ui ≤ xs,j ∀h ∈ {1..ms} . (3)

However, the proposed method assumes to have no prior
knowledge of what real-time tasks will appear in the scheduler
queue over time; thus, it focuses on an adaptive, on-line approach
(details in Section 5).

A. Mascitti, T. Cucinotta, M. Marinoni et al. The Journal of Systems & Software 173 (2021) 110886

j
i
a

E

o
c
s
d
o

E

C
e
p

P

Table 1
Summary of the symbols used in the paper. Some terms are introduced in the following sections.
Symbol Meaning

τi ith task (i = 1, . . . , n)
Γ Set of tasks Γ = {τi}i=1,...,n
Ci Nominal worst-case execution time (WCET) of τi
Ti Period of the instances of τi
di Scheduling deadline of τi
Ui = Ci/Ti Nominal utilization of task τi with WCET Ci and period Ti
ks Number of OPPs for island s
fs,j CPU frequency for island s when running at OPP j (j = 1, . . . , ks)
ps,j Per-core power consumption at frequency fs,j
xs,j Speed of island s at OPP j
xs Maximum speed each core of island s can reach
Ũi,s,j Scaled utilization of τi on island s with OPP j
C̃i,s,j Scaled WCET of τi on island s with OPP j
Ẽi,s,j Energy consumption over its period Ti of τi on island s with OPP j
ẼΓ ,s,j Energy consumption over the hyperperiod of tasks in Γ on island s with OPP j
P̃Γ ,s,j Power consumption over the hyperperiod of tasks in Γ on island s with OPP j
Ũs,js Scaled utilization of the tasks on all cores of island s running at OPP js
ms Number of cores in island s
Γs,h Set of tasks on core h of island s
Vs,h =

∑
i∈Γs,h

Ui Overall nominal utilization of tasks on core h of island s
Vs =

∑ms
h=1 Vs,h Overall nominal utilization of tasks on all cores of island s
4.3. Energy consumption model

A task τi deployed alone on a core of an island s at frequency
keeps the core busy for a time C̃i,s,j and idle for a time Ti − C̃i,s,j
n each time window with a duration of its period Ti, resulting in
n overall energy consumption over its period equal to:

i,s,j = ps,jC̃i,s,j + pidles,j

(
Ti − C̃i,s,j

)
.

Similarly, for a schedulable set of tasks Γ deployed on a core
f island s at frequency j, we can compute the overall energy
onsumption over the hyperperiod HΓ ≜ LCMi {Ti | τi ∈ Γ }, con-
idering that each task τi will have HΓ

Ti
instances over a time

uration of HΓ (with reference to a schedule with null initial
ffsets):

Γ ,s,j = ps,j
∑
i∈Γ

C̃i,s,j
HΓ

Ti
+ pidles,j

(
HΓ −

∑
i∈Γ

C̃i,s,j
HΓ

Ti

)
.

For any practical calculation, it is convenient to divide the above
equation by HΓ , obtaining the average power consumption PΓ ,s,j
(over the hyperperiod) of a schedulable task set Γ deployed on a
core of an island s at frequency j:

PΓ ,s,j ≜
EΓ ,s,j

HΓ

= ps,j
∑
i∈Γ

Ũi,s,j + pidles,j

(
1 −

∑
i∈Γ

Ũi,s,j

)
.

onsidering a system where each island s is running at OPP js and
ach core h on island s is hosting a task set Γs,h, the overall average
ower consumption for the system is defined as:

≜
∑
s∈I

ms∑
h=1

PΓs,h, s, js

=

∑
s∈I

ms∑
h=1

⎡⎣ps,js
∑

τi∈Γs,h

Ũi,s,js + pidles,js

⎛⎝1 −

∑
τi∈Γs,h

Ũi,s,js

⎞⎠⎤⎦
=

∑
s∈I

[
ps,js Ũs,js + pidles,js

(
ms − Ũs,js

)]
, (4)

where Ũs,js ≜
∑ms

h=1
∑

τi∈Γs,h
Ũi,s,js is the overall scaled utilization

of the tasks hosted on all cores of island s when running at OPP
js.

The metric P defined in Eq. (4) is the main driver for our
proposed task placement algorithm that will be presented next.
5

5. Proposed approach

In the proposed approach, real-time tasks are dynamically
partitioned among the available cores and they are scheduled
on the assigned cores using the CBS scheduling policy, based on
EDF. In the rest of the paper, a common practice is applied that
assigns a single task to each CBS server, setting the server budget
equal to the task WCET Ci and the server period equal to the task
minimum inter-arrival time Ti. Migrations of tasks among CPUs
can dynamically occur at job-level, whenever a task suspends
(i.e., its current job ends), and its active utilization expires, or a
task wakes up (i.e., a new job begins).

In order to decide the CPU on which to place a new task that
becomes ready-to-run, and at what CPU frequency, we propose a
greedy algorithm aiming at minimizing the average power consump-
tion P as defined in Eq. (4). The heuristic is based on choosing
on a task wake-up (bringing it back into the scheduler queue of
ready tasks) a core placement decision that causes the minimum
P increase, among all the possible moves that keep the schedu-
lability of all the tasks. Also, whenever the active utilization of a
task expires on a core, the frequency of the corresponding island
is lowered to the minimum one that keeps the schedulability of
all the tasks on the island.

Whenever multiple choices are available, bringing the same
difference in the average power consumption, we give preference
to spreading and balancing the workload across the available
cores, adopting a worst-fit strategy.

In the following, we start from important observations on
the power consumption of a single task in Section 5.1, a set
of tasks across single-core islands in Section 5.2 and multi-core
islands in Section 5.3. Then, the overall placement algorithm is
presented in Section 5.4. Additional implementation details and
observations are discussed in Section 7, including the discussion
of possible efficiency issues and the computational complexity of
the proposed algorithm.

5.1. Single-task placement

Proposition 1. A set of tasks Γs,h can be hosted on any core of
an island s at a given OPP j only if their overall nominal utilization
does not exceed a maximum value Umax

s, j equal to the speed xs,j
corresponding to the OPP j.

A. Mascitti, T. Cucinotta, M. Marinoni et al. The Journal of Systems & Software 173 (2021) 110886

t

h

P

t
S
t

a
l
i
e
X
o
u
m
o
e
a

a
m
b
c
c

a
d

5

a
t
n

Fig. 1. Contribution to the average power consumption (on the Y axis) due to a single core as a function of the aggregated nominal utilization of the hosted tasks
(on the X axis), for LITTLE cores (left plot) or big ones (right plot).
I
c
j
w
c
a
L
h
m
a
m
a
8

s
I
t
p
a
t
a
i
0
e
a
c
L
i
w
U
L

s
a
u
i
i
o
s
(
u
t
t
s
C
i
O
s

Proof. This follows easily from the schedulability condition in
Eq. (3) and the scaled WCET definition in Eq. (2):∑
i∈Γs,h

Ũi, s, j ≤ 1 ⇐⇒

∑
i∈Γs,h

Ci/xs, j
Ti

≤ 1

∑
i∈Γs,h

Ci

Ti
≡

∑
i∈Γs,h

Ui ≤ xs, j ≜ Umax
s, j . □

Note that the xs, j ≡ Umax
s, j are monotonically increasing with

he OPP j.
Highlighting the role of the nominal utilizations in Eq. (4), we

ave:

=

∑
s∈I

[
ps,js Ũs,js + pidles,js

(
ms − Ũs,js

)]
=

∑
s∈I

[
mspidles,js +

(
ps,js − pidles,js

) Vs

xs,js

]
(5)

where we introduced the aggregated nominal utilization Vs of the
asks ∪

ms
h=1Γs,h in all cores of an island s: Vs ≜

∑ms
h=1

∑
τi∈Γs,h

Ui.
imilarly, we use Vs,h to refer to the aggregated nominal utiliza-
ion of the tasks Γs,h currently on core h: Vs,h ≜

∑
τi∈Γs,h

Ui.
Eq. (5) states that the power consumption of an island running

t a given OPP is linearly dependent on the overall nominal uti-
ization deployed across the cores in the island. This is highlighted
n Fig. 1, reporting, for each available OPP (different curves) of
ither the big or the LITTLE island (different plots) of an ODROID-
U3 board, the contribution to the average power consumption
f each core (Y axis) as a function of the aggregated nominal
tilization hosted on the core (X axis). Due to Proposition 1, the
aximum nominal utilization that can be hosted on a single core
f island s at OPP j cannot exceed the associated speed xs,j, thus
ach line in Eq. (5) is only displayed in the range [0, xs,j] of the X
xis.
Looking at the power curves in Fig. 1, it is clear that, given
single real-time task with a given nominal utilization Ui, the
inimum average power consumption on each island is attained
y using the minimum OPP with speed xs,j ≥ Ui. By taking such a
hoice for each possible Ui, we obtain the thick power-utilization
urves labelled as ‘‘Lowest power’’.
However, optimum placement decisions need to take into

ccount the multitude of tasks and cores in the platform, as
iscussed next.

.2. Multi-task placement

The minimum among the thick curves in the plots in Fig. 1
llows us to decide, given a single task with a utilization Ui, where
o place and schedule it in the most energy-efficient way, so that
o deadlines can be missed.
 t

6

However, our real system has a number of real-time tasks.
n order to highlight how the problem becomes more complex,
onsider a simple conceptual example. Imagine a system with
ust one core for the big and one core for the LITTLE islands;
e have already placed one lightweight task τ1 on the LITTLE
ore, with a nominal utilization of U1 = 0.2296, which is just
tiny bit below a relatively big power consumption jump for
ITTLE cores, as shown in Fig. 1(a); also, we already placed a
eavyweight task τ2 with nominal utilization above the LITTLE
aximum speed of xL = 0.345328, for example U2 = 0.71,
s shown in Fig. 1(b). Clearly, both cores are running at the
inimum frequency guaranteeing schedulability, i.e., the big core
t a frequency of 1400 MHz, and the LITTLE one at a frequency of
00 MHz.
Under said conditions, if a very lightweight task τ3 with a

mall U3 arrives, placing it on the LITTLE core is not optimal.
ndeed, to preserve schedulability, such a placement would force
o bump the LITTLE core frequency up one step, adding to the
ower consumption P a fixed term ∆P = 0.0372 W, plus an
dditional increment per nominal utilization unit of 0.355 W. On
he other hand, the big core is in a status in which it would be
ble to host τ3 without any frequency change, causing an increase
n P of just a (steeper) increment per nominal utilization unit of
.855 W. Therefore, with sufficiently small U3 values, the most
nergy efficient action is achieved by placing τ3 on the big core,
longside τ2. Fig. 2 shows the total increase in the average power
onsumption achieved by placing τ3 on either the big or the
ITTLE core, as a function of the new task utilization U3. As visible,
t is more convenient to place τ3 on the big core if U3 ≤ ∼ 0.034,
hile the LITTLE core is a better choice for U3 > ∼ 0.034 and
3 < ∼ 0.116. Beyond this last utilization, it cannot fit on the
ITTLE core and the only choice is an assignment on the big one.
The above reasoning introduces the motivations behind our

cheduling strategy design, based on two points. First, every time
task enters the ready queue (i.e., at task creation or wake-
p time) it is placed on the core causing the minimum possible
ncrease in the overall average power consumption P as defined
n Eq. (5), also considering the potential need for increasing the
perating frequency of the destination island, in order to preserve
chedulability. Second, every time a task exits the ready queue
i.e., it goes to sleep or terminates), a pull operation is sched-
led at the task active utilization expiry time (the task virtual
ime if other tasks are ready on the CPU, or the current time if
he CPU remains idle — this ensures that schedulability is pre-
erved, Scordino et al., 2019), which migrates a task from another
PU determining the move with the maximum possible decrease
n P , also considering the potential need for switching to a higher
PP for the destination island, and possibly the opportunity to
witch the big island to a lower OPP, in case we can pull from

here.

A. Mascitti, T. Cucinotta, M. Marinoni et al. The Journal of Systems & Software 173 (2021) 110886

h
s
t
T
c
i
p
e
O

g

j

p
d

∆

g
o
t
a
d

5

w
r
c
w
m
i
i

i
I

t

c

Fig. 2. Increase in average power consumption (on the Y axis) due to placing
a new task on the big vs LITTLE core (different curves) as a function of its
utilization U3 (on the X axis), in a sample scenario.

5.3. Placement for multi-core islands

Focus on an island s with ms cores. First, we observe that, as
ighlighted in Eq. (5), a multi-core island s has a power con-
umption that depends on the OPP js currently being used, and
he aggregated nominal utilization Vs of all cores in the island.
herefore, while a single-core contribution to the overall power
onsumption P is well captured by a point on one of the segments
n Fig. 1, the contribution of a whole island to P is captured by a
oint that stays on the same curves, but likely residing on the
xtension of the segment beyond the maximum speed xs,j of the
PP js, up to a maximum per-island utilization Vs of msxs,j (e.g., 4

times as much, in the case of our ODROID-XU3 platform with 4
cores per island). The average power consumption curve, for each
island s and OPP j, as a function of the overall nominal utilization
hosted on the island, will be denoted by Ps,j(·).

Whenever a task τi with nominal utilization Ui becomes ready,
we need to compare what increase in the power consumption P
would arise from hosting the task on each of the islands.

On an island s, τi can easily be hosted at the same frequency if
there is at least a core h with nominal utilization that, increased
by Ui, does not exceed the CPU speed xs, js due to the current
island frequency js (see Proposition 1). However, whenever more
than one core satisfies this requirement, we propose to adopt a
worst-fit (WF) placement strategy, that tries to fit the task into
the least-loaded core, i.e., the one with the minimum overall
nominal (and scaled) utilization among the hosted tasks. This
choice is motivated by the need to try to keep each island OPP
at a value that is as small as possible, and this is achieved by
spreading the workload as evenly as possible across the cores
of each island. Note that such a placement is also the one that
minimizes the variance in the nominal utilization among cores
in the same island. However, any placement over any other core
in such a way that the total achieved nominal utilization on the
core does not exceed xs, js brings the same identical increase in
power consumption, so these are all equivalent solutions, includ-
ing widely known alternatives like: first-fit (FF), choosing the first
core with enough free utilization; or best-fit (BF), choosing the
core with the smallest free utilization greater than, or equal to,
the one of the task to be placed.

If we cannot place the task preserving the current island OPP
js, we need to factor the increase in power consumption P due
to each possible OPP switch. Here, our WF-based choice allows
us to search for the minimum OPP j∗s with an associated speed
reater than or equal to the sum of the nominal utilization Uh′

s
of

the least-loaded core h′
s, plus the one of τi:

∗

s = min
{
j | Uh′ + Ui ≤ xs,j

}
. (6)
j>js∧j≤ks s

7

Then, in order to decide what island to deploy τi to, we com-
are the increase ∆Ps in the power consumption P due to a
eployment as from Eq. (6), for each island s ∈ I:

Ps = Ps (Vs + Ui) − Ps (Vs) (7)

where Ps(·) is the min-power curve obtained by combining to-
ether all the ‘‘lowest power’’ segments highlighted in the plots
f Fig. 1, computed according to Eq. (5). When implementing
he Ps(·) function in software, a few alternatives are possible
chieving different speed vs memory consumption trade-offs, as
iscussed later in Section 7.

.4. Placement algorithm

Putting together the building blocks from the above sections,
e obtain the overall algorithm that is summarized in Algo-
ithm 1, to be run every time a task enters the ready queue (task
reation time or new job arrival). The procedure finds the core
here the task fits according to Eq. (3) and for which ∆Ps is
inimum. Notice that this pseudo-code is not efficient and it

s presented this way for the sake of clarity, while its efficient
mplementation is discussed in Section 7.

Algorithm 1 Placement of a new task τi.
1: // Return minimum OPP j of island s needed for per-core utilizations {Ui}

2: procedure minOPP(island s, utilizations {Ui})
3: return min

{
j ≤ ks | xs,j ≥ maxi{Ui}

}
4: end procedure
5:
6: // Return island and core where to place τi with nominal utilization Ui
7: procedure Place(utilization Ui)
8: for each island s ∈ I do
9: choose h∗

s | Vs,h∗
s = minh{Vs,h}

10: if Vs,h∗
s + Ui ≤ xs then

11: set W := {Vs,h}h where Vs,h∗
s is increased by Ui

12: set j∗ := minOPP(s,W)
13: set ∆Ps := Ps,j∗(Vs + Ui) − Ps,js (Vs)
14: else
15: set ∆Ps := +∞

16: end if
17: end for
18: choose s∗ | ∆Ps∗ = mins∈I{∆Ps}
19: return (s∗, h∗

s∗)
20: end procedure

When a task running on a core cempty goes to sleep (or ter-
minates) and its virtual time expires, a pull operation is needed.
We distinguish pull operations into (i) pull of a task from another
core of the same island; and (ii) pull of a task from the big to the
LITTLE island. At the moment, a pull operation is attempted only
if cempty is left idle. The possibility to pull tasks also if cempty is not
idle is left as future work. Running tasks are not pulled to avoid
compromising their real-time guarantees, since pulling a task in
the middle of a job may imply a non-negligible increase of its
execution time, especially for a migration across islands.

In our proposed strategy, summarized in Algorithm 2, if cempty
s a LITTLE core, then we try first to pull a task from the big island.
f this is not possible, or cempty is a big core, then we try to pull
from the same island (Lines 2–9). Assume by now that U infl

i ≡ Ui,
his will be clarified at the end of this section.

While pulling a task from the big island to the LITTLE core
empty (Lines 10–29), we reduce as much as possible the big island
utilization, while trying to leave the overall load across the cores
balanced. To this end, we pull the ready task τi with the highest
utilization Ui from the busiest big core cmax that fits inside the
target CPU cempty and that produces energy saving.

In case there is no big task satisfying the just mentioned
condition, or c is a big core, then we pull from the busiest
empty

A. Mascitti, T. Cucinotta, M. Marinoni et al. The Journal of Systems & Software 173 (2021) 110886

1
1
1
1

1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3

3
3
3
3
3
3
3
3

4
4
4
4
4
4
4
4
4
4

a
t
o
m
L
i

p
i
m
m

U

P

n

f
f
n
m
t

Algorithm 2 Pull algorithm onto a core cempty that was left idle.
1: // B denotes big cores, L denotes LITTLE ones.
2: // Find a task to pull onto the empty core cempty from another core
3: procedure Pull(cempty)
4: set result := pullFromBig(cempty)
5: if result is NULL then
6: set result := pullFromSameIsland(cempty)
7: end if
8: return result
9: end procedure
10: // Return task to be migrated onto cempty and big core where to pull it from,

or NULL
1: procedure pullFromBig(cempty)
2: if cempty ∈ L then
3: choose cmax | Ucmax = maxc∈B {Uc}

4: set R := List of ready tasks τi in cmax , sorted by decreasing utilization
Ui .

5: for each τi ∈ R do
6: if U infl

i ≤ xL then
7: set WL := {VL,h} where VL,cempty is set to U infl

i
8: set j∗L := minOPP(L,WL)
9: set WB := {VB,h} where VB,cmax is decreased by Ui
0: set j∗B := minOPP(B,WB)
1: set ∆Ps := PB,j∗B (VB − Ui) + PL,j∗L (VL + Ui) −

(
PB,jB (VB) + PL,jL (VL)

)
2: if ∆Ps < 0 then
3: return (τi, cmax)
4: end if
5: end if
6: end for
7: end if
8: return NULL
9: end procedure
0: // Return task to be migrated onto cempty and same-island core where to

pull it from
1: procedure pullFromSameIsland(cempty)
2: set s := island of core cempty
3: set S := cores in island s
4: choose cmax | Ucmax = maxc∈S {Uc}

5: if cmax == cempty then
6: return NULL
7: end if
8: set R := List of ready tasks τi in cmax with Ui <

Ucmax
2 , sorted by

decreasing Ui .
39: for each τi ∈ R do
0: if U infl

i ≤ xL then
1: set W := {Vs,h} where Vs,cempty = U infl

i and Vs,cmax is decreased by Ui
2: set j∗ := minOPP(s,W)
3: if j∗ < js then
4: return (τi, cmax)
5: end if
6: end if
7: end for
8: return NULL
9: end procedure

core of the same island as cempty (Lines 30–49). This is done
iming at balancing the overall nominal utilization hosted on
he source core (whose utilization decreases) and the destination
ne (whose utilization increases) of the same island, in order to
aximize the possible OPP reduction. Therefore, as highlighted in
ine 38, Algorithm 2 tries to pull the biggest task with Ui <

Ucmax
2

n this case.
Note that, at any time t when we evaluate a pull operation,

it is necessary to consider that the task being pulled might have
already partially executed on the source CPU, so it has a leftover
(nominal) WCET ci ≤ Ci that has to be scheduled on the des-
tination CPU within the scheduling deadline di > t already in
lace for the task. Therefore, it is safe to migrate the task only
f its inflated utilization fits on cempty, which also impacts on the
inimum OPP needed on cempty in order to perform correctly the
igration:

infl
i ≜

ci
≥

Ci
. (8)
di − t Ti
8

This is why we need to use U infl
i instead of Ui in the pseudo-

code following Lines 16 and 40, to determine whether pulling τi
is safe. Estimating whether pulling a task is energetically conve-
nient, either from the same and the big island, is done by finding
the new speed of both islands after the pull and seeing if there is
a reduction of energy consumption in the whole system. In these
power consumption calculations, the real task utilization is used
(as argument to Ps,j(·)), but the actual OPP to be used on the island
of cempty needs to account for the inflated nominal utilization.

Additional notes about the above algorithm are reported in
Section 7, along with some implementation details.

6. Schedulable task sets

In this section, we present some of the theoretical conditions
under which a set of real-time tasks scheduled according to the
technique presented in Section 5 is expected to be schedulable,
namely to never miss a deadline. We anticipate that our set of
identified conditions is sufficient, not necessary, for schedulability
of the task sets. This allows us to have quick and easy-to-compute
admission tests to understand whether a new real-time task can
be safely admitted into the system guaranteeing timeliness of
execution for all the admitted tasks.

First, we need a preliminary result that can be formulated with
reference to a single island s of identical cores. Also, we start
enumerating these conditions under simplifying assumptions:

A1 the operation of frequency switch for a given island takes a
negligible time;

A2 the operation of context switch among tasks and with the idle
task takes a negligible time on any of the cores;

A3 tasks are only pushed according to the rule in Algorithm 1,
they are never pulled while running or ready to run.

At the end, we will discuss how to properly relax these as-
sumptions without breaking the schedulability properties. In the
following theorems and propositions, notice that the taskset Γ is
ordered in decreasing nominal utilization order and, for instance,
the highest-utilization task has utilization U1 ≡ Umax, while the
second highest-utilization task has utilization U2 ≡ Umax2

≤ U1.

roposition 2. A set of n tasks Γ = {1, . . . , n}, ordered from the
maximum to the minimum nominal utilization, is schedulable by the
technique presented in Section 5 on a platform having a multi-core
island s with ms cores if:

≤ ms

⌊ xs
Umax

⌋
(9)

where Umax ≜ maxτi∈Γ {Ui} is the maximum nominal utilization
among all the tasks in Γ , and xs is the speed of a core at the
maximum island OPP ks.

Proof. Whenever evaluating where to place a task, our proposed
heuristic applies a worst-fit strategy, where each placement takes
place on one of the least loaded cores h∗

s of the island (see
Algorithm 1). If the current frequency does not give h∗

s a suf-
icient computational capacity, we are ready to raise the island
requency to the minimum OPP such that the new task fits (its
ominal utilization, plus the one of the core, do not exceed the
aximum limit due to the OPP as from Proposition 1). Thanks

o the assumptions A1 and A2, this can all be done in zero time,
so a task is certainly schedulable if its utilization fits within the
least-loaded core when bumped-up at the maximum island OPP
ks. As the maximum utilization that can be safely hosted on any
core at max OPP is xs, our proposition proof is reduced to proving
that this is always the case under the assumptions in Eq. (9).

A. Mascitti, T. Cucinotta, M. Marinoni et al. The Journal of Systems & Software 173 (2021) 110886

τ
m

U⏐⏐
c
c
t

w
t
t
t
p

P
m
t
i

n

w

u

a
o

⏐⏐
n
t

|

w

P
s
c
t
x

w
m
i
P
o
l
r
t
b
f

This is trivially done by contradiction: assume we have a task
i that does not fit on any of the ms cores of the island. This
eans that ∀h ∈ [1, . . . ,ms],Us,h + Ui > xs. However, as each

task has a maximum utilization of Umax, then xs <
∑

j∈Γs,h
Uj +

i ≤ Umax
(⏐⏐Γs,h

⏐⏐+ 1
)
, therefore xs

Umax <
⏐⏐Γs,h

⏐⏐ + 1 H⇒

Γs,h
⏐⏐ ≥

⌊ xs
Umax

⌋
. Summing up this for all task-sets Γs,h of all

ores, along with the new task τi to be placed, which all together
onstitute a partitioning of Γ , we obtain an evident contradiction
o Eq. (9). □

In case of a particularly ‘‘nasty’’ task-set with only a heavy-
eight task with utilization Umax much higher than all other
asks, bringing down significantly the maximum number of tasks
hat could be hosted according to Proposition 2, we can iden-
ify an equally simple but more convenient condition to verify,
eeking at the second maximum utilization Umax2:

roposition 3. A set of n tasks Γ = {1, . . . , n}, ordered from the
aximum to the minimum nominal utilization, is schedulable by the

echnique presented in Section 5 on a platform having a multi-core
sland s with ms cores if:

≤ 1 +

⌊
xs − Umax

Umax2

⌋
+ (ms − 1)

⌊ xs
Umax2

⌋
. (10)

here Umax and Umax2 are the maximum and second-maximum
nominal utilizations among all the tasks in Γ , and xs is the speed
of the core at the maximum island OPP ks.

Proof. This is easily obtained again by contradiction, putting
ourselves into a scenario where we have a task τi ̸= τ1 whose
tilization Ui does not fit onto any core. This time, however,

we can put ourselves into a worst-case scenario where we have
one of the cores, say h̃, hosting the heavyweight utilization U1,
nd all other cores hosting tasks with a maximum utilization
f Umax2. Therefore, for the core h̃ we have: xs < Us,h̃ + Ui ≤

U1 +
(⏐⏐Γs,h̃

⏐⏐− 1
)
U2 + U2 ≡ U1 +

⏐⏐Γs,h̃

⏐⏐U2 H⇒
xs−U1
U2

<
⏐⏐Γs,h̃

⏐⏐
H⇒

⏐⏐Γs,h̃

⏐⏐ ≥

⌊
xs−U1
U2

⌋
+ 1. For any other core h ̸= h̃, we have

Γs,h
⏐⏐ ≥

⌊
xs
U2

⌋
. Putting tasks of all cores together, alongside the

ew task being placed τi, we conclude that the overall number of
asks must be

Γ | =
⏐⏐Γs,h̃

⏐⏐+(ms−1)
⏐⏐Γs,h

⏐⏐+1 ≥

⌊
xs − U1

U2

⌋
+(ms−1)

⌊
xs
U2

⌋
+2,

which is in contradiction with Eq. (10).
The case τi = τ1 can be handled in a very similar way. □

Generalizing, we can design an admission test peeking at the
2nd, 3rd, . . . , kth maximum utilization, but the test looses its
simplicity and its complexity grows in a combinatorial way. A dis-
cussion of these tests for SMP platforms can be found in Mascitti
et al. (2020).

We focus now on the general problem of admitting a set of
real-time tasks Γ into a big.LITTLE platform making use of the
scheduling strategy presented in Section 5. First, we need to
distinguish among possible heavyweight tasks ΓH with a too high
utilization that would not fit on any LITTLE core, from the other
lightweight tasks ΓL:

ΓH ≜ {τi ∈ Γ | Ui > xL} ; ΓL ≜ {τi ∈ Γ | Ui ≤ xL} . (11)

In our target scenarios, we do not expect to see many heavy-
weight tasks on the platform. However, whenever they are
present, we assume to be able to spread them out evenly on the
big cores, for simplicity in the analysis that follows. If heavy-
weight tasks can arrive dynamically, this means we should be
ready to migrate one or more lightweight tasks, to ensure this
 r

9

property. However, we omit here further details for the sake of
brevity.

Theorem 1. Given a big.LITTLE platform with mL and mB LITTLE
and big cores respectively, and a set of real-time tasks Γ = ΓH ∪ΓL
partitioned as heavyweight and lightweight ones as from Eq. (11),
with heavyweight tasks spread evenly on big cores and lightweight
ones placed according to the technique proposed in Section 5, then
we always manage to schedule them if the following conditions hold
true:⎧⎨⎩ |ΓH | ≤ mB

⌊
1

Umax
B

⌋
∨ |ΓH | ≤ 1 +

⌊
1−Umax

B
Umax2
B

⌋
+ (mB − 1)

⌊
1

Umax2
B

⌋
|ΓL| ≤ mL

⌊
xL

Umax
L

⌋
+

⌊
1−h×Umax

H
Umax
L

⌋
(mB − k) +

⌊
1−(h+1)Umax

H
Umax
L

⌋
k,

(12)

here h ≜
⌊

|ΓH |

mB

⌋
and k ≜ |ΓH | mod mB ≡ |ΓH | −

⌊
|ΓH |

mB

⌋
mB.

roof sketch. The upper condition in Eq. (12) derives from the
imple fact that heavyweight tasks can only be placed on big
ores, so the results of Propositions 2 and 3 can be directly applied
o the big island and the heavyweight tasks alone, observing that
B = 1.
The lower condition is obtained as the sum of three terms,

hich are explained as follows. The first term accounts for the
aximum number of lightweight tasks that can fit on the LITTLE

sland, again reusing the result in Proposition 2 (the one in
roposition 3 might be used as well, this is omitted for the sake
f simplicity). The second and third terms refer to how many
ightweight tasks can fit at most into the big island, using the
esidual space left by possible heavyweight tasks. Here, we need
o consider how the heavyweight tasks are spread throughout the
ig cores. Whenever we have |ΓH | heavyweight tasks, the worst-
it algorithm will cause

⌊
|ΓH |

mB

⌋
≡ h tasks in ΓH to be present

in each big core, however exactly (|ΓH | mod mB) ≡ k cores of
the big island will host one more heavyweight task. Therefore, a
corresponding maximum utilization of heavyweight tasks needs
to be subtracted from the maximum possible big cores capacity,
xB = 1, to obtain the nominal utilization available for lightweight
tasks to be hosted. □

7. Implementation details

BL-CBS has been implemented3 within RTSim (Palopoli et al.,
2002), a portable, open-source event-based simulator written in
C++ allowing to simulate the execution timing of real-time tasks
running on multi-processor platforms using various schedulers.
This section discusses a few implementation notes regarding an
efficient and sound implementation of various critical steps of the
algorithm introduced in Section 5.

7.1. Push algorithm

First, in the push algorithm in Algorithm 1, we need to find the
core with the minimum nominal utilization. Nowadays big.LITTLE
architectures present a small number of cores per island (typically
4), so it is easy to scan through the cores in an island to this
purpose. However, for bigger islands of possible future platforms,
we can use a min-heap to keep track of the lowest-utilization
core for each island. With such a solution, we can choose quickly
which core a newly arrived task fits into, with a logarithmic
complexity in the number of per-island cores.

Second, in order to evaluate what move is the most conve-
nient one from the average power consumption viewpoint, we

3 Source code is available at https://gitlab.retis.santannapisa.it/a.mascitti/
tsim-efficient-public-grub-pa.

https://gitlab.retis.santannapisa.it/a.mascitti/rtsim-efficient-public-grub-pa
https://gitlab.retis.santannapisa.it/a.mascitti/rtsim-efficient-public-grub-pa

A. Mascitti, T. Cucinotta, M. Marinoni et al. The Journal of Systems & Software 173 (2021) 110886

n
c
h
w
O
p
c
f
i
r
t
s
p
O
t
e
e
O

7

f
p
t
T
t
t

b
f
e
c
r
c

b
t
a
t
f

7

i
m
b
s
f
t

s
d
t
t
x
c
t
b
T
p

8

8

m
c
B
w
(
G
R
a
w
n
r
t
a
G
r
w
n
c

o
t
(
f
h

eeded to implement the function Ps(·) that is the min-power
urve obtained by combining all the ‘‘lowest power’’ segments
ighlighted in the plots of Fig. 1. From the in-kernel device tree,
e can extract the table reporting, for each available island s and
PP j, the corresponding power consumptions when computing
x,j and when idle pidlex,j , as introduced in Section 5.1. However, for
omputing the linear formula in Eq. (5), we need a data structure
or retrieving the correct power terms corresponding to the min-
mum OPP able to host a given total nominal utilization. This is
elatively expensive, so this search for the power terms related
o a nominal utilization can be accelerated keeping a sorted data
tructure, for example, a balanced binary tree, allowing us to
erform the look-up in O(log ks), with ks number of available
PPs. Alternatively, with a little waste of memory, it is possible
o store a sampled version of the same curve using a utilization
xpressed, for example, in 1024th, creating a table with 1024
ntries, so that the same look-up can be performed in constant
(1) time instead.

.2. Pull algorithm

The choice of which job to pull has an impact on how much
requencies can actually be reduced. In the proposed method, it is
ossible to choose a task from the big core with maximum utiliza-
ion if it fits into the destination core, as described in Section 5.
his strategy allows for achieving the best frequency reduction of
he big island since the core with maximum utilization is the one
hat constraints the island frequency.

For the just mentioned choice, we need to find the busiest
ig core. Similarly to the above observation, this is not difficult
or very small islands as in nowadays big.LITTLE platforms. How-
ver, in case of a big island with a relatively high number of
ores, it is always possible to implement a fast look-up by recur-
ing to a max-heap with alteration operations having logarithmic
omplexity in the number of cores per island.
After having identified the busiest core, we need to find its

iggest hosted task that fits into the destination core. If scanning
hrough the real-time ready tasks of the found core needs acceler-
tion, we can recur to a data structure sorted by (nominal) utiliza-
ion, like a red-black-tree, as used already in SCHED_DEADLINE
or implementing the EDF scheduler queue.

.3. Frequency switch delay/overhead

The assumption of negligible frequency switch time performed
n Section 5 can easily be relaxed considering that we can com-
only assume that the frequency switch takes a non-negligible
ut bounded time at most equal to δ, and that during the tran-
ition the CPUs in the island keep computing at an undefined
requency that is comprised between the current frequency and
he new frequency, till the new frequency is stable.

In this case, in our calculations in Section 5 and Section 6, it is
ufficient to inflate properly each task utilization Ui = Ci/Ti. In-
eed, even considering the scenario when the task is immediately
he earliest deadline one and it is readily scheduled on the CPU,
hen it will run for a maximum time δ at the minimum speed
∗ between the two under consideration, then it will run at the
orrect final CPU speed for the rest of the time. This means that
he correct scaled WCET to use for the task is not C̃i,s,j = Ci/xs,j,
ut rather δ/x∗

+ (Ci − δ)/xs,j (assuming Ci > δ for simplicity).
he full discussion of the impact of this relationship on the results
reviously presented is omitted for the sake of brevity.
10
. Simulation results

.1. Compared schedulers

We validated the BL-CBS algorithm described in Section 5 and
easured its performance and energy consumption through the
lass EnergyMRTKernel in RTSim with respect to: (i) a variant of
L-CBS based on a first-fit placement strategy, called EDF-FF in
hat follows, implemented in the same EnergyMRTKernel class;
ii) a similar variant based on best-fit, called EDF-BF below; (iii)
-EDF, as available through the class MRTKernel_Linux5_3_11 in
TSim, simulating the behaviour of the mainline Linux kernel
few years back, running SCHED_DEADLINE CBS reservations
ithout GRUB nor power awareness features; (iv) and MRTKer-
el_Linux5_3_11_GRUB_PA in RTSim, implementing the energy-
elated behaviour of GRUB-PA, i.e. decreasing the frequency to
he minimum required to sustain the utilization of every CPU,
nd reflecting (part of) the behaviour of the implementation of
RUB-PA in the mainline Linux running SCHED_DEADLINE CBS
eservations. In fact, a complete implementation of GRUB-PA
ould add the bandwidth reclaiming mechanism, which would
ot benefit our simulated scenarios since task overruns are not
onsidered.
Concerning our implementation of EDF-FF, this policy needs an

rdering of the cores, so we consider the LITTLE cores preceding
he big ones. When a task τi with nominal utilization Ui arrives
i.e., a job begins), it is dispatched to the first core h where it
its in the mentioned ordering, raising its OPP if needed, i.e.:
= min{k | Ui ≤ xsk −Vsk,k} (sk denotes the island of core k). Note

that, if Ui > xL, then only a big core can be chosen. Whenever a
core h is left idle, the first ready task fitting in h from the last
non-idle core k > h where there is one such task, is pulled onto
h, if any exists.

In our implementation of EDF-BF, when a task τi with nominal
utilization Ui arrives (i.e., a job begins), it is placed on the core
h of the same island s where it was located with minimum
residual capacity where it fits, raising the island OPP if needed:
h ∈ s s.t. xs − Vs,h =

min
k∈s {xs − Vs,k | Ui ≤ xs − Vs,k}.

However, if the current island has no core satisfying said con-
dition, then the other island is tried. Under EDF-BF, pulls are
disabled, i.e., when a job completes its execution or its virtual
time expires, leaving its core idle, no pull from the other cores
is performed.

8.2. Comparison results

The hardware energy consumption model is the one of the
ODROID-XU3 board, which uses the Samsung Exynos 5422 SoC.
This is an ARM big.LITTLE architecture with four Cortex-A15 and
four Cortex-A7 cores. The model has been taken from Balsini et al.
(2016), where it has been implemented in RTSim.

We performed a number of experiments with a total nominal
utilization in the range [1.6; 5.6] with spacing 0.4, for the reserva-
tions. This corresponds to an average per-core nominal utilization
in the range [0.2; 0.7] with spacing 0.05. Tasksets contain a total
of 24 tasks in each task set, and they have been generated with
a modified version of the Taskgen program4 by Emberson et al.
(2010), in which: (i) in order to represent a more realistic and
dynamic environment, each task (nominal) WCET has been sized
so as to be randomly distributed between 0.6 and 0.9 times
the budget of the CBS reservation wrapping it; (ii) the taskgen
algorithm is used to generate budgets and periods where periods
are randomly generated in the range [1; 100] ms with a relatively

4 Original version available at: http://retis.sssup.it/waters2010/tools.php.

http://retis.sssup.it/waters2010/tools.php

A. Mascitti, T. Cucinotta, M. Marinoni et al. The Journal of Systems & Software 173 (2021) 110886

G

1

r
l

v
B
b
i

t
e
b
t
p
c
d
i
E
o
t
f
t
w
w
s
t
F
t
u
o
o

Fig. 3. Left: total energy consumption for different total utilizations, considering 10 experiments for each utilization. Right: energy consumption ratio between (i)
-EDF, BL-CBS; (ii) GRUB-PA and BL-CBS; (iii) EDF-BF and BL-CBS; and (iv) EDF-FF and BL-CBS for different utilizations. Y axes are in logarithmic scale.
Fig. 4. Average frequency for different total utilizations for BL-CBS, EDF-BF, EDF-FF and GRUB-PA, for the big island (left) and the LITTLE island (right), considering
0 experiments for each utilization.
ough granularity of 0.5 ms, in order to keep under reasonable
imits the generated hyperperiod.

Each run has been repeated 10 times with different seed
alues for the taskset generator, running each taskset with either
L-CBS, EDF-BF, EDF-FF, GRUB-PA or G-EDF, then statistics have
een computed on the resulting values of the various metrics of
nterest throughout the different runs.

Fig. 3 (left) depicts the obtained overall energy consumption
hroughout the runs (on the Y axis, in logarithmic scale) for
ach total nominal utilization (on the X axis, divided by 8), and
oth for the proposed technique, GRUB-PA, EDF-BF, EDF-FF and
he G-EDF scheduler (different curves in the plot). Each reported
oint and its associated vertical bar represents the average energy
onsumption obtained for the 10 runs and its corresponding stan-
ard deviation. The obtained energy consumption with BL-CBS
s consistently lower than the one obtained with G-EDF, EDF-BF,
DF-FF and GRUB-PA. This was expected with G-EDF, as BL-CBS
n average keeps the frequencies of the islands on lower values
han G-EDF, which constraints the two islands to their maximum
requencies. Also, BL-CBS consumes less than GRUB-PA for each
otal utilization since at each job arrival BL-CBS chooses the core
ith the minimum power increase, while GRUB-PA picks the core
ith the latest deadline task, without taking into account the con-
equent energy consumption. Moreover, GRUB-PA consumes less
han G-EDF since the latter keeps the highest cores frequencies.
inally, BL-CBS consumes less than EDF-FF since the latter tends
o load the first cores in the ordering as much as possible before
sing a subsequent empty one, causing high loads on the first core
f an island, forcing its OPP to increase in presence of idle cores

n the same island. Similarly, BL-CBS consumes less than EDF-BF

11
since the latter does not spread the tasks on the cores of each
island, and thus tasks tend to be dispatched on fewer cores of
each island, which reduces the chances to reduce the island OPP
due to job completions. Generally speaking, as the total utilization
grows, the power consumption of all the considered algorithms
tends to grow, as the islands are kept for longer times at higher
frequencies. Overall, EDF-BF, EDF-FF and G-EDF consume more
than BL-CBS and GRUB-PA. BL-CBS achieves 15% of energy saving
with respect to GRUB-PA, on average across all the performed
experiments.

While Fig. 3 (left) takes into account experiments with differ-
ent hyperperiods (which can be very different among the exper-
iments), Fig. 3 (right) is hyperperiod-independent and shows the
ratio (on the Y axis) of the overall energy consumption between
both (i) GRUB-PA and BL-CBS; (ii) EDF-BF and BL-CBS; (iii) EDF-
FF and BL-CBS and (iv) G-EDF and BL-CBS (different curves) over
10 experiments for each total nominal utilization (on the X axis,
divided by 8). Also, the vertical bars represent the minimum and
the maximum ratios found among the experiments. While the
ratio between GRUB-PA and BL-CBS is quite stable throughout
the X axis, the ratio between G-EDF and BL-CBS is more marked
and decreases with the utilizations. In case of the highest total
nominal utilization U = 5.6, we found only 2 experiments where
BL-CBS consumes up to 20% more than GRUB-PA. As expected,
the ratio between BL-CBS and GRUB-PA is the minimum, and it
is similar to the one between BL-CBS and EDF-BF and between
BL-CBS and EDF-FF, while the gap between BL-CBS and G-EDF
is remarkable. Also, the ratio between BL-CBS and EDF-BF and

BL-CBS and EDF-FF is very close because both fill fewer cores

A. Mascitti, T. Cucinotta, M. Marinoni et al. The Journal of Systems & Software 173 (2021) 110886

E
o
f
u
a
t
a
h
f
a
i
d
B
a
w
(
i
o
u
P
a
o
B
w

p

Fig. 5. Comparison of power consumption over time for different utilizations (plots refer to just 1 run out of the 10 performed for each configuration).
firstly, before filling up the others, so their frequency and energy
consumption profiles are similar.

Fig. 4 reports time-statistics on the frequency that BL-CBS,
DF-BF, EDF-FF and GRUB-PA (different curves) have set through-
ut the performed simulations (on the Y axis), on the big (left
igure) and LITTLE islands (right figure), for each total nominal
tilization (on the X axis). Each reported point and its associ-
ted vertical bar represents the average frequency obtained for
he 10 runs and its corresponding standard deviation for each
lgorithm and island. As evident, with BL-CBS, the LITTLE island
as higher average frequency than the corresponding big one
or each total utilization because, in general, our technique is
ware of the difference in power consumption between the two
slands, while GRUB-PA is unaware of the said difference and
oes not distinguish explicitly among big and LITTLE cores. Also,
L-CBS performs an opportunistic pull operation whenever the
ctive utilization of a terminating job on a LITTLE core expires and
ould leave the core idle, favouring the usage of the LITTLE island
see Algorithm 2). GRUB-PA has the same trend, where the LITTLE
sland has higher average frequency than the corresponding big
ne for each total utilization. Moreover, for each island and total
tilization, BL-CBS keeps the average frequency lower than GRUB-
A. In general, BL-CBS uses lower frequencies than both EDF-BF
nd EDF-FF. In fact, BL-CBS tends to spread the jobs on the cores
f each island and thus the frequencies are lower, while EDF-
F and EDF-FF both prefer to use cores that are already loaded,
hich increases the frequencies of the islands.
Fig. 5 reports a visual comparison between the instantaneous

ower consumption (on the Y axis) obtained throughout one
simulation run when using the GRUB-PA scheduler, EDF-BF, EDF-
FF, and the one resulting from the application of the technique
proposed in this paper, highlighting the power consumption of
the LITTLE vs big islands (left vs right subplots), for two different
total utilizations (top vs bottom subplots). Figs. 5(b) and 5(d)
12
Fig. 6. Experimental global cumulative distribution function (CDF) for 10 exper-
iments with total cores utilization 0.25. Jobs take more to complete with BL-CBS
than with G-EDF, EDF-BF, EDF-FF and GRUB-PA, but all of them terminate before
their deadlines.

take into account only the big island and highlight how our
algorithm saves power throughout the whole simulations and
keeps the power consumptions always lower than GRUB-PA. In
fact, GRUB-PA does not reason on the impact on the energy
consumption when placing a task and only picks the core with
latest deadline, without even performing an EDF-based admission
test and setting the maximum frequency if the cores of an island
have utilization higher than the island maximum speed, which
instead we consider. As for the LITTLE island in Figs. 5(a) and 5(c),
the power consumptions of BL-CBS is generally lower than the
one of GRUB-PA. EDF-BF and EDF-FF show higher consumptions
over the considered simulations compared to BL-CBS and GRUB-
PA, with the exception of the big island for total utilization U =

A. Mascitti, T. Cucinotta, M. Marinoni et al. The Journal of Systems & Software 173 (2021) 110886

0
a
X

f
b
C
a
a
h
E
S
w
t
G
A
l
w
t
B
u
b

r
c
s
p
m
r
E

c
t
a
c
u
u
s
e
d
c
(
d
E

p
a
a
c
i

9

C
a
g
t
r
B
t
b
b

k

r
t
n
S

D

c
t

R

A

A

A

A

A

B

B

B

B

B

B

C

C

.25. Notice that the power consumptions of Fig. 5 also take into
ccount the power consumptions when the cores are idle on the
axis for both islands.
The power savings just discussed, obtained with CPUs at lower

requencies on average, impact on the response time experienced
y the real-time tasks. Fig. 6 reports the obtained experimental
DF of the response times relative to the periods (fi,j−ri,j

Ti
for

ll instances of all tasks), for BL-CBS, GRUB-PA, EDF-BF, EDF-FF,
nd G-EDF schedulers (different curves). Jobs response times are
igher with BL-CBS than with GRUB-PA, EDF-BF, EDF-FF, and G-
DF, where island frequencies are just kept at the maximum.
ince BL-CBS picks the core with the minimum power increase,
hile GRUB-PA simply picks the one with latest deadline, cores
end to be less loaded and frequencies lower in average than with
RUB-PA, which increases the jobs response times of BL-CBS.
lso, BL-CBS tends to spread the jobs on the cores of each is-
and, while EDF-BF and EDF-FF prefer the cores already occupied,
hich increases the frequencies and lowers the jobs response
ime. Jobs take less to terminate with GRUB-PA than with EDF-
F and EDF-FF, since GRUB-PA uses higher frequencies for total
tilization U = 2.0 (which the CDF refers to), especially on the
ig island as in Fig. 4.
Further experiments have been performed also with

andomly-generated tasksets with 16 and 32 tasks and, for each
onfiguration, the same total nominal utilization range. Results
how a behaviour similar in terms of energy saving to the ex-
eriments presented above and depicted in Fig. 3, i.e., G-EDF has
uch higher energy consumptions than the other three algo-

ithms, while BL-CBS consumes consistently less than GRUB-PA,
DF-BF, and -EDF-FF for each total nominal utilization.
In our experimentation, all tasksets respecting the theoretical

ondition of Eq. (12) did not experience any deadline miss during
heir execution. Furthermore, the simulated tasksets included
lso many ones that did not respect said condition, which is
learly pessimistic, as its result is heavily affected by the biggest-
tilization task in the set. Particularly, among the tasksets with
tilization from 0.25 onwards, we had many of them not re-
pecting the theoretical schedulability condition, yet they did not
xperience any deadline miss throughout the run, as expected
ue to the pessimism of the theoretical analysis. The only ex-
eption has been for the highest total utilization we considered
U = 5.6), where we found a 0.53% of jobs having missed their
eadline at the end of the simulation (for a taskset not respecting
q. (12)).
Finally,5 our implementation of the proposed algorithm, as

rovided in the RTSIM simulator, has been measured to take on
verage 0.8 us (and a maximum of 16.43 us, when executing
routine to report that a job cannot be dispatched onto any

ore because the system is overloaded) when running on an Intel
7-8700 at 4.6 GHz and 16 GB RAM.

. Conclusions and future work

In this paper, we have presented and simulated big-LITTLE
onstant Bandwidth Server (BL-CBS), an adaptive partitioning
pproach to schedule energy-efficiently real-time tasks. This al-
orithm has been mainly designed for ARM big.LITTLE, exploiting
he underlying hardware architecture features to provide both
eal-time guarantees and energy saving. It has been shown that
L-CBS allows for guaranteeing timing constraints of real-time
ask sets that satisfy certain theoretical conditions. Simulations,
ased on experimental measurements made on the ODROID-XU3
oard, show that the algorithm is actually promising, allowing

5 It would be very interesting to have an implementation of BL-CBS in a real
ernel, such as in the SCHED_DEADLINE scheduler within the Linux kernel.
13
15% of energy saving in average with respect to the state of the
art GRUB-PA.

Concerning possible lines of future work on the topic, we plan
to increase the chances of migrations between the two islands
and, possibly, to balance the load of the cores in even more
situations, which opens many possibilities to decrease frequen-
cies further. Moreover, the pessimism of our admission test can
be reduced so that its usability can be expanded to a broader
set of scenarios. Moreover, we will consider more complex task
sets, with inter-tasks relationships (DAGs) and workload types.
We also plan to investigate on how to modify the proposed
mechanism in order to properly consider possible deep-idle states
of the CPU. Finally, we plan to realize BL-CBS within the cur-
rent SCHED_DEADLINE codebase in the Linux kernel, to perform
further experimentation and validation using real application
workloads on Linux/Android.

CRediT authorship contribution statement

Agostino Mascitti: Software, Writing - original draft, Data cu-
ation, Investigation. Tommaso Cucinotta: Supervision, Concep-
ualization, Methodology, Writing - original draft. Mauro Mari-
oni: Supervision, Conceptualization, Methodology. Luca Abeni:
upervision, Conceptualization, Methodology.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

eferences

beni, L., Buttazzo, G., 1998. Integrating multimedia applications in hard real-
time systems. In: Proc. 19th IEEE Real-Time Systems Symposium. pp.
4–13.

beni, L., Cucinotta, T., 2020. Adaptive partitioning of real-time tasks on multiple
processors. In: Proc. 35th Annual ACM Symposium on Applied Computing.
SAC’20, ACM, New York, NY, USA, ISBN: 9781450368667, pp. 572–579.

ndersson, B., Tovar, E., 2006. Multiprocessor scheduling with few preemp-
tions. In: 12th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications. (ISSN 2325-1271) pp. 322–334.

RM, 2019. ARM Technologies: Dynamiq. https://www.arm.com/why-arm/
technologies/dynamiq. (Accessed November 4 2019).

ydin, H., Melhem, R., Mossé, D., Mejía-Alvarez, P., 2004. Power-aware
scheduling for periodic real-time tasks. IEEE Trans. Comput. 53 (5), 584–600.

alsini, A., Cucinotta, T., Abeni, L., Fernandes, J., Burk, P., Bellasi, P., Ras-
mussen, M., 2019. Energy-efficient low-latency audio on android. J. Syst.
Softw. (ISSN: 0164-1212) 152, 182–195.

alsini, A., Pannocchi, L., Cucinotta, T., 2016. Modeling and simulation of
power consumption and execution times for real-time tasks on embedded
heterogeneous architectures. In: Proc. International Workshop on Embedded
Operating Systems. Torino, Italy.

ambagini, M., Bertogna, M., Marinoni, M., Buttazzo, G., 2013. An energy-aware
algorithm exploiting limited preemptive scheduling under fixed priorities. In:
2013 8th IEEE International Symposium on Industrial Embedded Systems. pp.
3–12.

ambagini, M., Marinoni, M., Aydin, H., Buttazzo, G., 2016. Energy-aware
scheduling for real-time systems: A survey. ACM Trans. Embed. Comput. Syst.
15 (1), 7.

aruah, S., Carpenter, J., 2003. Multiprocessor fixed-priority scheduling with
restricted interprocessor migrations. In: Proc. 15th Euromicro Conference on
Real-Time Systems. pp. 195–202.

urns, A., Davis, R.I., Wang, P., Zhang, F., 2012. Partitioned EDF scheduling for
multiprocessors using a C=D task splitting scheme. Real-Time Syst. 48 (1),
3–33.

asini, D., Biondi, A., Buttazzo, G., 2017. Semi-partitioned scheduling of dynamic
real-time workload: A practical approach based on analysis-driven load
balancing. In: 29th Euromicro Conference on Real-Time Systems. Dubrovnik,
Croatia.

heramy, M., Hladik, P., Deplanche, A., Dube, S., 2014. Simulation of real-
time scheduling with various execution time models. In: Proc. 9th IEEE
International Symposium on Industrial Embedded Systems. pp. 1–4.

http://refhub.elsevier.com/S0164-1212(20)30276-4/sb2
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb2
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb2
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb2
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb2
https://www.arm.com/why-arm/technologies/dynamiq
https://www.arm.com/why-arm/technologies/dynamiq
https://www.arm.com/why-arm/technologies/dynamiq
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb5
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb5
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb5
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb6
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb6
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb6
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb6
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb6
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb9
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb9
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb9
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb9
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb9
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb11
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb11
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb11
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb11
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb11

A. Mascitti, T. Cucinotta, M. Marinoni et al. The Journal of Systems & Software 173 (2021) 110886

C

C

E

F

G

G

I

L

L

L

M

M

M

N

hwa, H.S., Seo, J., Yoo, H., Lee, J., Shin, I., 2015. Energy and feasibility optimal
global scheduling framework on big. LITTLE platforms. In: Proc. Real-Time
Scheduling Open Problems Seminar. Lund, Sweden, pp. 1–11.

olin, A., Kandhalu, A., Rajkumar, R., 2014. Energy-efficient allocation of real-time
applications onto heterogeneous processors. In: Proc. 20th IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and
Applications. pp. 1–10.

mberson, P., Stafford, R., Davis, R.I., 2010. Techniques for the synthesis of
multiprocessor tasksets. In: Proc. 1st International Workshop on Analysis
Tools and Methodologies for Embedded and Real-Time Systems. Brussels,
Belgium, pp. 6–11.

unk, S., 2004. EDF Scheduling on Heterogeneous Multiprocessors (Ph.D. thesis).
University of North Carolina at Chapel Hill.

uo, Z., Bhuiyan, A., Liu, D., Khan, A., Saifullah, A., Guan, N., 2019. Energy-
Efficient real-time scheduling of DAGs on clustered multi-core platforms.
In: IEEE Real-Time and Embedded Technology and Applications Symposium.
pp. 156–168.

uo, Z., Bhuiyan, A., Saifullah, A., Guan, N., Xiong, H., 2017. Energy-
efficient multi-core scheduling for real-time DAG tasks. In: 29th Euromicro
Conference on Real-Time Systems. Dubrovnik, Croatia, pp. 156–168.

mes, C., Hoffmann, H., 2015. Minimizing energy under performance constraints
on embedded platforms: Resource allocation heuristics for homogeneous and
single-ISA heterogeneous multi-cores. ACM SIGBED Rev. 11 (4), 49–54.

i, T., Zhang, T., Yu, G., Song, J., Fan, J., 2019. Minimizing temperature and energy
of real-time applications with precedence constraints on heterogeneous
MPSoC systems. J. Syst. Archit. 98, 79–91.

iu, D., Spasic, J., Chen, G., Stefanov, T., 2015. Energy-efficient mapping of real-
time streaming applications on cluster heterogeneous MPSoCs. In: 13th IEEE
Symposium on Embedded Systems for Real-Time Multimedia. ESTIMedia. pp.
1–10.

iu, D., Spasic, J., Wang, P., Stefanov, T., 2016. Energy-efficient scheduling of real-
time tasks on heterogeneous multicores using task splitting. In: IEEE 22nd
International Conference on Embedded and Real-Time Computing Systems
and Applications. pp. 149–158.

ascitti, A., Cucinotta, T., Abeni, L., 2020. Heuristic partitioning of real-time tasks
on multi-processors. In: 2020 IEEE 23rd International Symposium on Real-
Time Distributed Computing. ISORC. pp. 36–42. http://dx.doi.org/10.1109/
ISORC49007.2020.00015.

ascitti, A., Cucinotta, T., Marinoni, M., 2020. An adaptive, utilization-based
approach to schedule real-time tasks for ARM big.LITTLE architectures. In:
Proc. International Workshop on Embedded Operating Systems, vol. 17. ACM,
New York, NY, USA, pp. 18–23,

oulik, S., Devaraj, R., Sarkar, A., 2019. HEALERS: A heterogeneous energy-aware
low-overhead real-time scheduler. IET Comput. Digit. Tech. 13 (6), 470–480.

ogues, E., Pelcat, M., Menard, D., Mercat, A., 2016. Energy efficient scheduling of
real time signal processing applications through combined DVFS and DPM.
In: 2016 24th Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing. IEEE, pp. 622–626.
14
Palopoli, L., Lipari, G., Abeni, L., Di Natale, M., Ancilotti, P., Conticelli, F., 2001.
A tool for simulation and fast prototyping of embedded control systems.
In: Proc. 2001 ACM SIGPLAN Workshop on Optimization of Middleware and
Distributed Systems. Snow Bird, Utah, USA, pp. 73–81.

Palopoli, L., Lipari, G., Lamastra, G., Abeni, L., Bolognini, G., Ancilotti, P., 2002.
An object-oriented tool for simulating distributed real-time control systems.
Softw. - Pract. Exp. 32 (9), 907–932.

Perret, Q., 2018. Energy aware scheduling. https://lwn.net/Articles/760647.
Pillai, A.S., Isha, T.B., 2013. ERTSim: An embedded real-time task simulator

for scheduling. In: 2013 IEEE International Conference on Computational
Intelligence and Computing Research. Chennai, India, pp. 1–4.

Pillai, P., Shin, K.G., 2001. Real-Time dynamic voltage scaling for low-power
embedded operating systems. In: Proc. 18th ACM Symposium on Operating
Systems Principles. vol. 35. Banff, Canada, pp. 89–102.

Qin, Y., Zeng, G., Kurachi, R., Li, Y., Matsubara, Y., Takada, H., 2019a. Energy-
efficient intra-task DVFS scheduling using linear programming formulation.
IEEE Access 7, 30536–30547.

Qin, Y., Zeng, G., Kurachi, R., Matsubara, Y., Takada, H., 2019b. Execution-
variance-aware task allocation for energy minimization on the big. LITTLE
architecture. Sustain. Comput. Inform. Syst. 22, 155–166.

Saewong, S., Rajkumar, R., 2003. Practical voltage-scaling for fixed-priority
RT-Systems. In: Proc. 9th IEEE Real-Time and Embedded Technology and
Applications Symposium. pp. 106–114.

Scordino, C., Abeni, L., Lelli, J., 2018. Energy-aware real-time scheduling in the
Linux Kernel. In: Proc. 33rd Annual ACM Symposium on Applied Computing.
Pau, France, pp. 601–608.

Scordino, C., Abeni, L., Lelli, J., 2019. Real-time and energy efficiency in Linux:
Theory and practice. ACM SIGAPP Appl. Comput. Rev. (ISSN: 1559-6915) 18
(4), 18–30.

Scordino, C., Lipari, G., 2004. Using resource reservation techniques for power-
aware scheduling. In: Proc. 4th ACM International Conference on Embedded
Software. EMSOFT ’04, ACM, New York, NY, USA, ISBN: 1581138601, pp.
16–25.

Scordino, C., Lipari, G., 2006. A resource reservation algorithm for power-aware
scheduling of periodic and aperiodic real-time tasks. IEEE Trans. Comput. 55
(12), 1509–1522.

Thakare, G.S., Deshmukh, P.R., 2017. EERTSS: An energy efficient real-time
task scheduling simulator. In: 2017 International Conference on Computing,
Communication, Control and Automation. pp. 1–4.

Thammawichai, M., Kerrigan, E.C., 2018. Energy-efficient real-time scheduling for
two-type heterogeneous multiprocessors. Real-Time Syst. 54 (1), 132–165.

Zahaf, H., Lipari, G., Bertogna, M., Boulet, P., 2019. The parallel multi-mode
digraph task model for energy-aware real-time heterogeneous multi-core
systems. IEEE Trans. Comput. 68 (10), 1511–1524.

Zhu, Y., Mueller, F., 2004. Feedback EDF scheduling exploiting dynamic voltage
scaling. In: 10th IEEE Real-Time and Embedded Technology and Applications
Symposium. Toronto, Canada, pp. 84–93.

Zhu, Y., Mueller, F., 2007. Exploiting synchronous and asynchronous DVS for
feedback EDF scheduling on an embedded platform. ACM Trans. Embed.
Comput. Syst. (ISSN: 1539-9087) 7 (1), 3:1–3:26.

http://refhub.elsevier.com/S0164-1212(20)30276-4/sb17
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb17
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb17
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb20
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb20
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb20
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb20
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb20
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb21
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb21
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb21
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb21
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb21
http://dx.doi.org/10.1109/ISORC49007.2020.00015
http://dx.doi.org/10.1109/ISORC49007.2020.00015
http://dx.doi.org/10.1109/ISORC49007.2020.00015
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb25
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb25
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb25
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb25
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb25
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb25
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb25
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb26
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb26
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb26
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb27
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb27
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb27
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb27
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb27
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb27
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb27
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb29
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb29
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb29
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb29
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb29
https://lwn.net/Articles/760647
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb33
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb33
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb33
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb33
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb33
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb34
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb34
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb34
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb34
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb34
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb37
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb37
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb37
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb37
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb37
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb38
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb38
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb38
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb38
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb38
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb38
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb38
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb39
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb39
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb39
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb39
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb39
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb41
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb41
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb41
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb42
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb42
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb42
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb42
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb42
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb44
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb44
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb44
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb44
http://refhub.elsevier.com/S0164-1212(20)30276-4/sb44

	Dynamic partitioned scheduling of real-time tasks on ARM big.LITTLE architectures
	Introduction
	Paper contributions
	Paper organization

	Related work
	Background
	Notation and energy model
	Platform model
	Task model
	Energy consumption model

	Proposed approach
	Single-task placement
	Multi-task placement
	Placement for multi-core islands
	Placement algorithm

	Schedulable task sets
	Implementation details
	Push algorithm
	Pull algorithm
	Frequency switch delay/overhead

	Simulation results
	Compared schedulers
	Comparison results

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	References

