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a b s t r a c t

In distance-based localization, estimating the position of a network of wireless sensors is not an easy
task. The problem increases when dealing with moving nodes and cluttered indoor environments. Many
algorithms have been proposed in the literature and, among them, the Multidimensional Scaling (MDS)
technique gained a lot of interest due to its resilience to flips ambiguities and easiness of use. Many
variants of MDS have been proposed to overcome issues such as partial connectivity or distributed
computation. In this context, it is common to place some anchors nodes to help in estimating the
coordinates of the network correctly. However, instead of using the anchor’s positions directly during the
minimization of theMDS cost function,most approaches act on the estimated coordinates at the end of the
MDS computation without fully utilizing the knowledge about anchors. In this work, the classic MDS and
DynamicMDS have been reformulated to utilize the anchor’s position inside theminimization function. A
set of real experiments in 3Dwith Ultrawide-band devices show that our approach considerably improves
the accuracy of localization with respect to the usual MDS techniques.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In a wireless sensor network, estimating the positions of the
nodes is of primary importance in many distributed systems. In
indoor environments, where the GPS is not available, distance-
based localization is typically used to derive the node coordinates
by measuring inter-nodes distances. Node coordinates can be es-
timated from distance measurements using different techniques,
such as trilateration, multilateration, and Multidimensional Scal-
ing (MDS). MDS [1,2] aims at visualizing a set of objects in an n-
dimensional space. It takes as input a Dissimilarity Matrix that
expresses how much two objects are dissimilar along one quality
and finds a set of coordinates such that the distance between each
couple of objects is proportional to the value of dissimilarity. MDS
has been used for plotting sets of data in many application fields,
such as economics and psychology. In the last decades, MDS has
also been used for localization, where the objects are the nodes,
and the dissimilarity matrix contains the inter-node distances.

Using anchor nodes in wireless sensor networks significantly
improved the accuracy of localization [3]. However, in the MDS
formulation the notion of anchor nodes is missing since this tech-
nique was designed for plotting generic objects with qualitative
characteristics. Moreover, some limitations such as partial con-
nectivity [4,5] and different type [6] of noise are peculiar for
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network localization. For this reason, many variants of MDS have
been proposed in the literature. To take anchors into account,
some authors proposed solutions for incorporating the known
coordinates into the MDS algorithm [7]. Such variants of MDS can
be distinguished into distributed and centralized approaches. In
distributed solutions the computation of the algorithm is shared
among the components of the network.

In centralized approaches, a common solution is to apply a
roto-translation transformation after the MDS computation and
superimpose the estimated coordinates over the anchors [4,5,8,9].
Biaz and Ji [7] used a different method consisting of updating the
anchor’s positions during the minimization procedure. However,
contrarily to the current MDS versions, the positions of the anchor
nodes should not be modified during the minimization. For all
these cases, the coordinates of the anchors slightly change due
to the minimization procedure, leading to a position error that
reduces the overall accuracy of the system. Also, in the case where
the anchor coordinates are modified at the end of the minimiza-
tion, the output is not exact since the anchor’s coordinates are not
entirely used for finding the best estimation.

Fig. 1 shows a trivial example that highlights the drawbacks
described above. In this example, the network is composed of three
anchors and two nodes that are localized with the classical MDS
and the use of a roto-translation applied to the output.

The figure exhibits that the classical MDS formulation does
not benefit from the anchor information. Although the anchors’
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Fig. 1. Estimated coordinates computed with the classical MDS. The red dots
represent the coordinates during the algorithm iterations.

positions are known, their coordinates are subject to a not required
minimization. Moreover, the algorithm introduces noise on the
anchors’ coordinates. As shown in Fig. 1, the anchors’ locations are
not precisely reconstructed, even if such information is known a-
priori.

A distributed version of MDS, called distributed weighted Mul-
tidimensional Scaling (dwMDS), was proposed by Costa et al. [10].
They successfully included the notion of anchors and were able to
consider them in the MDS formulation since they split the compu-
tation on each node without modifying the anchor’s coordinates.
However, a distributed approach takes a lot of time to converge
to a single agreed set of coordinates since all the network has to
converge to a unique solution through wireless communication
messages. For this reason, such an approach is usually suited for
large static sensor networks with low computation capabilities.
Instead, centralized approaches are usually preferred in small net-
works and in applications which consider node mobility, e.g., in
the case of a small team of robots [11]. Another application case in
which a centralized approach is commonly used includes indoor
people tracking [3].

A previous work [12] proposes a theoretical generalization of
the classical MDS algorithm, named MDS with Anchors (MDS-
A), which uses the coordinates of some nodes (e.g., anchors) to
improve the accuracy of the estimation. The approach presented
in this paper extends the one proposed in [12] to the more general
case of Dynamic Multidimensional Scaling (DMDS) – a technique
used for applications that include node mobility such as indoor
people tracking – by proposing Dynamic MDS with Anchors
(DMDS-A) that, similarly to MDS-A, incorporates the concept of
anchors in the minimization. A set of real experiments employing
Ultra-wide Band (UWB) devices has been performed to validate
both MDS-A and DMDS-A. Moreover, is also proposed a modifi-
cation of MDS for 3D applications using the apriori knowledge of
the height of the nodes. The development of such an approach
has been encouraged by those applications in which nodes are
attached at a fixed height (e.g., the belt of a walking person, shoes,
a moving robot) and this knowledge can be used to improve the
overall accuracy.

The rest of the paper is structured as follow: Section 2 provides
an overview of the state of the art in MDS-based localization.
Then, in Section 3 the addressed problem will be formalized. Sec-
tion 4 will review the MDS and DMDSmathematical formulations.

In Section 5, MDS-A, DMDS-A, and the MDS with heights con-
straints (MDS-Z) will be described. Experimental results will be
provided and discussed in Section 6. Finally, Section 7will state the
conclusions.

2. Related work

Multidimensional Scaling (MDS) is a technique that represents
a set of elements in an r-dimensional space using the similari-
ties/dissimilarities between pairs of elements as distance informa-
tion. There exist several variants of MDS such as Classical MDS,
Metric MDS, Non-Metric MDS, depending on the characteristics
of the distance information. The technique initially was meant
for visualizing a set of objects in a 2-D (or 3-D) space. Also, a
particular formulation for visualizing data with a correlation over
time, called Dynamic Multidimensional Scaling (DMDS) has been
proposed byAmbrosi andHansohm [13] in 1987. In the last decade,
it has been extensively used in distance-based localization for its
elegant formulation, resilience to flip ambiguities, and easiness
of use. However, in order to be used in practical scenarios, many
variants have been proposed to overcome issues such as partial
connectivity and node mobility. These techniques usually do not
modify the MDS formulation but change the algorithm input (dis-
tance measurements) or adjust its output.

Many variants have been introduced in literature, and some of
them used misleading acronyms that can be confused with the
original approach. For example, Garimella, in hismaster thesis [14],
proposed an MDS variation that involves the localization of ‘‘vir-
tual’’ nodes apart from the original nodes. He named the pro-
posed approach with the same name as the original DMDS. Cabero
et al. [3] proposed a variant of MDS and named their approach
dynamic weighted MDS (dwMDS), which is the same acronym of
the well known distributed weighted MDS (dwMDS) proposed by
Costa [10]. For the sake of clarity, in the rest of the paper, the name
DMDS refers to the original approach proposed by Ambrosini and
Hansohm [13]. All the other techniques will be defined as variants
or modifications of MDS.

In Xu et al. [15], the authors use DMDS for visualizing the
temporal evolution of dynamic networks. Beck and Baxley [16]
proposed to use DMDS as a methodology to track nodes over time
by exploiting odometry information. Among the other approaches
that use MDS for tracking mobile nodes, Cabero et al. [3] proposed
an extension of MDS that finds the embedding of people’s trajec-
tories by using a set of connectivity matrices through time. For this
reason, they put particular attention in understanding how their
approach behaves with respect to varying connectivity. Moreover,
they make an extensive use of anchors conveniently fixed at the
borders of a rectangle area to track the dynamic of peoples inside
the hull. In Jamâa et al. [17], the authors proposed a modified ver-
sion of the classical MDS approach, i.e., coordinate are computed
with eigenvalues decompositions, to introduce a cooperative mo-
bile network tracking algorithm. They changed the matrices con-
taining the orthonormal eigenvectors and proposed two different
algorithms also considering partial connectivity. In the particular
context of mobile robot localization without anchors, Oliveira and
Almeida [18] proposed a technique that gives confidence values to
position estimates obtained by MDS at successive instants. In [19]
the authors proposed a modification to MDS, which includes the
notion of nodes velocities to solve the ambiguities generated by
two consecutiveMDS outputs. However, the approach does not use
the standard SMACOF minimization being more computationally
expensive.

The presented works from literature do not try to exploit the
knowledge of anchor positions in theminimization but apply some
filtering techniques to theMDS output. Hence, most of such exten-
sions suffer from two drawbacks: the MDS minimization does not
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benefit from anchors information, and the algorithm introduces
noise on the coordinates.

The different approaches that have been used to fix the problem
described above can be divided into twomain classes: those apply-
ing a roto-translation to the MDS coordinates, and those operating
in the minimization process by adding constraints or modifying
the cost function. In the remaining of the section is explained why
both approaches do not solve the problem efficiently. This work
refers only to centralized approaches; a distributed solution has
been proposed by Costa et al. [10].

2.1. Applying a roto-translation transformation

The first class of works separates the localization algorithm in
two steps: first, the relative coordinates are computed through
MDS; then, a roto-translation transformation is applied at the
end of the minimization to align the estimated coordinates of the
anchors to their real positions.

For example, Ji and Zha [8] align the relative positions of the
nodes to their real ones by computing a shift, rotation, and reflec-
tion of the coordinates. They calculate the rotation and translation
matrices by the aid of at least three nodes. Similarly, in the MDS-
MAP algorithm [4], the authors transform the global map to an
absolute map based on the absolute positions of the anchors. They
state that the complexity of this step is O(m3

+ n) form anchors.
Latsoudas and Sidiropoulos [20] avoid the problem of aligning

the relative positions of the nodes to the actual location of the
anchors by carefully placing the anchors to form an orthogonal
triangle, and the orthogonal sides of this triangle are chosen as
coordinate basis vectors. Then, all the projections are computed
directly onto the native coordinate basis, thus, avoiding the need
of applying a roto-translation. This approach has the drawback that
the anchor nodes need to be placed in the environment according
to a specific pattern.

Cheung and So [21] proposed an approach that employs the
anchor coordinates to compute the rotation matrix. Their solution
is initially similar to the one proposed in this paper. However, their
MDS formulation is specific to the case in which only one node has
to be located through the use ofm anchors.

2.2. Modifying the MDS minimization or adding constraints

Biaz and Ji [7] described a way of updating the anchor’s po-
sitions during the minimization procedure. The authors first run
the MDS step and then update the anchors’ location, after a check
of communication constraints. Note that this procedure is only
a workaround since all nodes are treated as unknown, and the
MDS minimization is also performed on the anchors. After the
minimization, the position of the anchors is updated, but this also
requires to adjust the distances between the anchors and the nodes
to maintain consistency.

Another technique that exists in the literature on MDS consists
in applying generic restrictions to the variables [22]. In particular,
information regarding the anchors’ locations can be included as a
constraint of MDS. However, such an approach increases the space
of the variables and leads to higher complexity and computational
cost. Conversely, reducing the space of the variables to only the
unknown nodes and consider the anchors as a constant value, not
only improves the precision but also reduces the complexity of
the algorithm. Such an intuition is behind the approach proposed
in this paper. With respect to the related work, the proposed
approach provides a mathematical formulation to estimate only
the nodes coordinates. Since the anchor’s coordinates are used to
estimate the node positions, the two presented drawbacks do not
subsist, leading to a higher accuracy in the localization.

3. Problem formulation

Consider a collection of N = n + m nodes with position X =
[x1, . . . , xN ]T ∈ RN×r where r = 2,3 (2D or 3D). The first n nodes
have unknown coordinates while the last m are anchors whose
position is known a-priori. Each node i can estimate the distance
d̂ij from any other node j in the range of communication and the
estimated distance is affected by noise. Also, dij(X) =

xi − xj
 is

the Euclidean distance between node i and j.
Each node continuously estimates all the inter-node distances

and exchanges this information with the other nodes on the net-
work. At time tk the network performs the kth step and each node
receives all the distance pairs and stores them in a Matrix, called
Distance Matrix, that is defined as follows:

D =

⎡⎢⎢⎢⎣
0 d̂12 · · · d̂1N
d̂21 0 · · · d̂2N
... · · ·

. . .
...

d̂N1 · · · · · · 0

⎤⎥⎥⎥⎦
During the interval ∆t between two consecutive iterations,

each node may have traveled a certain distance ∆̂di ∈ R+.
Nodes will measure their traveled distance through dead reck-
oning techniques (e.g., pedestrian step detection, odometry) and
will exchange this information to the other nodes together with
collected distances.

Problem (distance based-localizationwithmobile and anchor nodes).
At each time step k, given

(a) range measurements d̂ij(k), | i, j ∈ {1, . . . ,N},
(b) odometry of the mobile nodes ∆̂di(k), | i ∈ {1, . . . , n},
(c) and anchor positions xi, | i ∈ {n+ 1, . . . ,N},

or a subset of them, determine the coordinates of the unknown
nodes X(k).

4. Multidimensional scaling overview

Given a network composed ofN nodes in a r-dimensional space,
whose coordinates X = [x1, . . . , xN ]T ∈ RN×r are unknown, the
algorithm recovers the coordinates of the elements by minimizing
the mismatch of the following function

min
X

S(X) = min
X

∑
i<j≤N

wij

(
d̂ij − dij(X)

)2
(1)

where wij is a weight defining the quality of the measurement d̂ij.
The objective function S , also called stress-function, can be

minimized in different ways, such as using the steepest descent
approach. De Leeuw [23] proposed an iterative method that at
each stepminimizes a simple convex functionwhichmajorizes the
complex function. This approach is called ‘‘Scaling by MAjorizing
a COmplicated Function’’ (SMACOF) and it was proved to perform
significantly better with respect to other approaches [23], in terms
of guarantees and rate of convergence.

The non linear least squares problem in Eq. (1) is solved mini-
mizing iteratively a convex function T (X, Z) ≥ S(X). T bounds S
from above and touches the surface of S at point Z. The iterative
procedure is summarized in Algorithm 1 .
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Algorithm 1 Scaling by MAjorizing a COmplicated Function (SMA-
COF)
input: initial position estimate X(0)

stress function S
majorizing function T

repeat
Z = Xk−1

Xk
← min

X
T (X, Z)

until S(Xk−1)− S(Xk) < ϵ

4.1. The majorization function

The stress function S can be expanded as follows:

S(X) =
∑
i<j≤N

wij

(
d̂ij − dij(X)

)2
=

=

∑
i<j

wijd̂2ij +
∑
i<j

wijd2ij(X)− 2
∑
i<j

wijd̂ijdij(X).

Note that the first term is a constant and the second term is
quadratic inX and therefore relatively easily solved. The third term
is bounded using the Cauchy–Schwarz inequality using the fact
that:

dij(X) =
xi − xj

 = xi − xj
 zi − zj

zi − zj
 ≥

(xi − xj)T (zi − zj)zi − zj
 (2)

where Z = [z1, . . . , zN ]T ∈ RN×r . Hence, the third term can be
bounded by:∑
i<j

wijd̂ijdij(X) ≥
∑
i<j

wijd̂ij
(xi − xj)T (zi − zj)
∥zi − zj∥

(3)

Thus, there is a simple quadratic function T (X, Z) thatmajorizes
the stress:

S(X) ≤ T (X, Z) =
∑
i<j

wijd̂2ij +
∑
i<j

wijd2ij(X)

− 2
∑
i<j

wijd̂2ij
(xi − xj)T (zi − zj)
∥zi − zj∥

(4)

T (X, Z) can be written in matrix form:

T (X, Z) = C+ tr(XTVX)− 2 tr(XTB(Z)Z) (5)

where V and B(Z) are two matrices whose elements are defined as
follow:

vij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N∑
k=1,k̸=j

wkj if i ̸= j,

N∑
k=1,k̸=j

vkj if i = j.

bij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N∑
k=1,k̸=j

wkj
d̂ij

dij(Z)
if i ̸= j,

N∑
k=1,k̸=j

bkj if i = j.

Thus, the minimum of the function can be computed as:

X = min
X

T (X, Z) = V−1B(Z)Z (6)

4.2. Dynamic multidimensional scaling

DMDS is a particular formulation of MDS that consider the
problem of estimating the positions not only for the current kth
step but also the p instants before it. In order to maintain invari-
ant the MDS formulation, the coordinates vector is redefined as
X = [Xk−p, . . . ,Xk

] variables to find having as an input a ‘‘super-
dissimilarity’’ matrix that contains the distances measurements as
follow:

D =

⎡⎢⎣ Dk−p
· · · Rk−p,k

...
. . .

...

Rk,k−p
· · · Dk

⎤⎥⎦
where Rk−p,k contains the information of the displacement be-
tween node i at the (k− p)-th step and node j at the kth step. Note
that, in the context of localization, the only measurable informa-
tion is the distance dk−p,kii that is, in practice, the odometry of the
node. Hence, Rk−p,k will be defined as follow:

Rk−p,k
=

⎡⎢⎢⎢⎢⎣
d̂11

k−p,k
0 · · · 0

0 d̂22
k−p,k

· · · 0

· · · · · ·
. . . 0

0 · · · · · · d̂nn
k−p,k

⎤⎥⎥⎥⎥⎦ .

Note that, in order to discard the zeros introduced in the matrices,
the corresponding weights wij

k−p,k must be set to zero.
The choice of the value of p varies according to the context of the

applications. For offline trajectory reconstruction, a high number
of p steps (p = 10) should improve the accuracy, but it inevitably
increases the computational complexity since it is linear with p.
For online tracking, p should be set as a low value such as p = 2, or
p = 3, as suggested in [16].

5. Proposed approach

This section describes the proposed extension to the MDS algo-
rithm to include information on the anchors. First, is presented the
improvement for the classic MDS, then is described the extension
for the DMDS algorithm.

5.1. MDS with anchors constraints (MDS-A)

Let us consider a set of N = n + m nodes where the first n
nodes have unknownpositions and the lastm are the anchor nodes.
Referring to the matrices in Eq. (6), X and Z can be partitioned as
follows:

X =
[
Xu
Xa

]
, Z =

[
Zu
Za

]
, with

Xu = [x1, . . . , xn]T ∈ Rn×r

Xa = [xn+1, . . . , xn+m]T ∈ Rm×r

Zu = [z1, . . . , zn]T ∈ Rn×r

Za = [zn+1, . . . , zn+m]T ∈ Rm×r .

Similarly, V and B(Z) can be partitioned in blocks as follow:

V =
[
V11 V12

VT
12 V22

]
,B(Z) =

[
B11 B12

BT
12 B22

]
, (7)
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Fig. 2. Estimated coordinates computed with the proposed formulation of MDS
with anchors. Only the unknown node coordinates are estimated leading to a
reduction of the overall error.

where matrices V11 and B11 are of size n × n, V12,B12 are n × m,
and V22,B22 arem×m.

The following theorem provides a way for computing Xu as a
function of the anchors coordinates Xa.

Theorem 1. Given the stress function T (X, Z) of Eq. (5), if the exact
value of the subset Xa ∈ Rm×r of X is known, it is possible to compute
the remaining unknown values Xu as a function of Xa:

Xu = V−111 (B11Zu + B12Za − V12Xa) , (8)

with V11, V12, B11, and B12 matrix block defined in (7).

Proof. See Appendix.

The major practical benefit deriving from Theorem 1 is the
possibility to extend any variant of MDS that uses the SMACOF
implementation to support the notion of anchors by merely mod-
ifying the computation of X. Note that, Eq. (8) reduces to Eq. (6)
in the absence of anchors (i.e., m = 0). Hence, the approach
is not limited to the a-priori knowledge on the anchors, but can
straightforwardly be used also when their number varies.

By applying such an approach to the motivational example
showed in Fig. 1, the node coordinates can be estimated by ex-
ploiting the knowledge of the anchor nodes, as shown in Fig. 2.
Moreover, as it can be seen, only the unknown coordinates are
computed during the minimization while the anchor nodes are at
their fixed position from the beginning.

5.2. DMDS with anchors constraints (DMS-A)

This section extends the formulation ofMDSwith anchors to the
more general DMDS technique. Similarly to the previous approach,
it splits the matrices X, Z, V, and B(Z) as follow:

X =
[
Xk−p

u ,Xa, . . . ,Xk
u,Xa

]T
, Z =

[
Zk−p
u , Za, . . . , Zk

u, Za
]T

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

V11 V12 V13 V14 · · · · · ·

V21 V22 V23 V24 · · · · · ·

V31 V32 V33 V34 · · · · · ·

V41 V42 V43 V44 · · · · · ·

...
...

...
...

. . . · · ·
...

...
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

B(Z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

B11 B12 B13 B14 · · · · · ·

B21 B22 B23 B24 · · · · · ·

B31 B32 B33 B34 · · · · · ·

B41 B42 B43 B44 · · · · · ·

...
...

...
...

. . . · · ·
...

...
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(9)

where the dimension of thematrix blocks are defined as in (7). The
problem can hence be extended to the general case. The following
corollary provides a way for computing Xk

u at different time steps
k as a function of the anchors’ coordinates Xa.

Corollary 1 (of Theorem 1). Given the stress function T (X, Z)
of Eq. (5), if the exact values of the subset Xa ∈ Rm×r of X are known,
it is possible to compute the remaining unknown valuesXk

u at different
time steps k as a function of Xa:

Xk
u = V−1k k

⎛⎝ p∑
j=1

Bi j Zj
u +

p∑
j=1

(Bi 2j − Vi 2j)Za −

p∑
j̸=i

Vi jXj
u

⎞⎠ ,

with i = 2k− 1 (10)

with Vij and Bij matrix blocks defined in (9).

5.3. 3D localization with known heights

In indoor localization, anchor nodes are positioned in a 3D
space, and they are usually placed in order to increase the coverage
and accuracy of the localization.Mobile nodes can be either robotic
units or tracked persons. In both cases, the height of the range
sensor may be known. For example, the sensor may be attached
to the belt of a person or at a specific position of the robot. In
these cases, when localization is in 3D, the error in the resulting
computed positions will also affect the height of the nodes that in
this case are known. Hence, such information can be used to force
the algorithm to provide the correct height and reduce the final
error. The following section proposes a modification of the MDS
algorithm that can be used when one (or more) partial coordinates
are known.

Let us consider a set of nodes X = [x1, . . . , xN ]T ∈ RN×r with
x = [x y z]whose 3th component z is known. It is possible towrite
X as X = [Xxy Xz] and rewrite the trace in Eq. (5) as follows:

tr(XTVX) = tr
([

Xxy
Xz

]
V
[
Xxy Xz

])
=

= tr

([
XxyVXT

xy XT
xyVXz

XT
zVXxy XT

zVX
r

])
=

= tr(XxyVXT
xy)+ tr(XT

zVXz).

Following the same decomposition on the second term, Eq. (5)
can be rewritten as:

T (Xxy, Z) = C′ + tr(XT
xyVXxy)− 2 tr(XT

xyB(Z)Zxy) (11)

where C′ = C+ tr(XT
zVXz)− 2 tr(XT

z B(Z)Zz) is constant.



C. Di Franco et al. / Robotics and Autonomous Systems 108 (2018) 28–37 33

Fig. 3. (a) Pozyx device on top of an Arduino Board. (b) Laboratory in which the real experiment has been performed. In green the Area of coverage of the Vicon system. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The modification can be employed on any variant of MDS since
it is directly applied to the Scaling by MAjorizing a COmplicated
Function (SMACOF) approach. The solutions obtained extending
the previously proposed approaches (i.e., MDS-A and DMDS-A) are
called MDS with Anchors and heights constraints (MDS-ZA) and
Dynamic MDS with Anchors and heights constraints (DMDS-ZA),
respectively.

6. Experimental evaluation

The two proposed formulations, MDS-A and DMDS-A, have
been evaluated in comparison with the generic MDS and DMDS
approaches that apply a roto-translation transformation to the
coordinates estimated by the minimization. It is worth noting that
the different techniques presented in the related work mainly
differ in the way they compute the roto-translation matrix. Even
if different methods lead to different accuracy, the two drawbacks
highlighted in Section 2 are common to all those approaches de-
spite the specific algorithm used to align the coordinates.

To evaluate the goodness of the approaches with respect to
the real coordinates the Root Mean Square Error (RMSE) between
actual and estimated node positions is used as ametric, defined as:

RMSE
(
X, X̂

)
:=

√1
n

n∑
i=1

∥xi − x̂i∥2. (12)

Note that, the computation of the RMSE considers only mobile
nodes and explicitly excludes the anchors, even if anchors’ coordi-
nates computedwith standard approaches such as roto-translation
are affected by an error.

The rest of the section will first describe the hardware used and
the experiment setup. Then, results for the proposed approaches
(MDS-A, DMDS-A, MDS-ZA, and DMDS-A) will be provided.

6.1. Experimental platform and setup

The experiments are performed using a set of commercial
devices developed from Pozyx Labs [24]. The Pozyx system is a
hardware solution that provides accurate positioning and motion
information, and its development kit is composed of 5 mobile
devices, named tags, and 4 anchors. Each node (anchor or tag)
relies on a UWB transceiver for accurate distance estimation. The
accuracy is in the order of centimeters when two devices are in
line of sight, or up to 2 m with the presence of obstacles, walls or
electronic interference. Tags also have a 9-axis IMU sensor that can
be used to acquiremotion information and canwork both attached
to an Arduino board or remotely triggered by other tags. In the
first option, a tag can be handled through an open-source Arduino
library. Fig. 3a shows the Pozyx tag used as a shield for an Arduino
Uno.

The 4 anchors are placed at the borders of a room with size
20 × 15 meters. Three tags were located at a fixed static known
position and can act as anchors (i.e., the 3D coordinates are known)
or tags depending on the specific experiment. The remaining two
tags were attached to the belt of two walking persons. In order to
provide the ground truth for the evaluation, a Vicon System able of
tracking a portion of the roomof 6×4meters has beenused. Fig. 3b
shows the laboratory highlighting (in green) the area tracked by
the Vicon system.

6.2. Experimental results

The results presented in this section are obtained from one
of the experiments in which two people walking inside the area
covered by the Vicon Systemwere tracked. All the following results
are computed by using the log collected in this experiment by
varying the anchors setup or changing the MDS algorithm.

To better explain the trial, Fig. 4 presents the snapshot of the
entire experiment, showing the setup together with the ground
truth and the estimation obtained with one of the approaches
(i.e., DMDS-ZA) when all the seven static nodes act as anchors. The
black line represents the ground truth of the first person walking
along one direction back and forth, while the red line shows the
ground truth of the second one performing circles around the area.
The blue and magenta dots shows the coordinates estimated by
DMDS-ZA of the first and second person, respectively. The black
dots are the tag nodes, in this case, all acting as anchors (known 3D
location).

6.2.1. MDS vs MDS-A
The first experiment presents the advantages in term of ac-

curacy obtained through the inclusion of the knowledge about
anchors, and in particular the effects of the number of them. The
network has N = 9 nodes and the number of anchors m varied
from 3 to 7, while the two moving nodes acquire distance infor-
mation with the enabled nodes and compute their position.

The first experiment presents the advantages in term of ac-
curacy obtained through the inclusion of the knowledge about
anchors, and in particular the effects of the number of them. The
network has N = 9 nodes and the number of anchors m varied
from 3 to 7, while the two moving nodes acquire distance infor-
mationwith the enabled nodes and compute their position. Results
are presented in Fig. 5, which shows the Cumulative Distribution
Function (CDF) of the RMSE error of MDS and MDS-A for m = 3
and m = 7, while the values of the CDF are showed in Table 1).

As expected, MDS-A (blue lines) has a lower mean error than
MDS (red lines). The benefits of the anchors are more relevant
whenm = 3 (dashed lines), butMDS has significantly highermean
error even withm = 7 (solid lines).
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Fig. 4. Snapshot of the trial. The black and red lines represent the ground truth of
two walking persons and the blue and magenta dots their estimated coordinates
with the proposed approach. The black dots are the tag nodes that act as anchors.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 5. CDF of the RMSE error of MDS and MDS-A for m = 3 and m = 7. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 1
Mean error and standard deviation of the CDFs showed in Fig. 5.

Approach µ σ

MDS withm = 3 2.8860 0.8258
MDS-A withm = 3 1.8847 0.5345
MDS withm = 7 1.4282 0.5406
MDS-A withm = 7 1.1350 0.4596

Among the reasons behind the quite high mean error, there is
the presence of possible flips around the Z-plane (i.e., some nodes
may have a negative z-coordinate). If the nodes heights are known,
such a problem can be eliminated applying the MDS-Z extension
proposed in Section 5.3.

6.2.2. MDS vs MDS-Z
In the second experiment, the same scenario of the previous

experiment was repeated, but the nodes coordinates have been
computed taking into account with MDS-Z and MDS-ZA, which

Fig. 6. CDF of the RMSE error of MDS-Z and MDS-ZA for m = 3 and m = 7. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 2
Mean error and standard deviation of the CDFs showed in Fig. 6.

Approach µ σ

MDS-Z with m = 3 2.0539 0.8193
MDS-Z with m = 3 0.5882 0.4152
MDS-ZA withm = 3 0.5705 0.4010
MDS-ZA withm = 7 0.5358 0.3780

take into account the knowledge about nodes height. The elevation
of the two nodes attached to the belt of the walking persons
are subjected to a variation of few centimeters and hence can be
considered as fixed and known apriori. Results are shown in Fig. 6,
while the values of the CDF are showed in Table 2.

Fig. 6 clearly highlights the benefits of the knowledge of the
height of the nodes. MDS-ZA (blue lines) presents similar perfor-
mance with m = 3 (dashed line) and with m = 7 (solid lines).
Moreover, even without anchors constraints, MDS − Z (red lines)
shows great improvements with a number of anchors m = 7. This
effect is due to the zth constraints forcing theminimization to align
the nodes over a specific plane Z-plane. Then the roto-translation
shifts the coordinates to the correct position nullifying the flips on
the z-plane. Note that, even if this result is significant, MDS-Z with
m = 7 has a CDF that is lower than MDS-ZA with m = 3, proving
the necessity of using the anchor’s constraints.

Fig. 7 shows the norm of the error on the z-coordinate of the
mobile nodes computed with MDS-A (red line) and MDS-ZA (blue
line), when the number of anchorsm is equal to 7.

Since the nodes are attached to the belt, considering a fixed
height in the approach leads to a minimal error. On the contrary,
when the height is not constrained, the error can reach high values
(almost up to 2 m).

Similar results can be obtained by filtering the coordinates
obtained as output. However, similarly to the idea of using the an-
chors’ nodes directly in the minimization, to use the z-information
inside the MDS algorithm reduces the error at the minimization
level, making the successive filtering even more accurate.

6.2.3. MDS-ZA vs DMDS-ZA
The last experiment analyzes the benefits of the anchors’ con-

straints on DMDS. The nodes communicate using a TDMA mech-
anism with 9 slots of 0.1 s each. Thus, the value of ∆t is equal
to the resulting TDMA wheel period, that is 0.9 s. In order to



C. Di Franco et al. / Robotics and Autonomous Systems 108 (2018) 28–37 35

Fig. 7. Norm of the error on the z-coordinate of the mobile nodes computed with
MDS-A andMDS-ZA, computed withm = 7. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. (From top to bottom) Yaw, roll, pitch, and step detection algorithm. Roll,
pitch, and yaw are measured with the Pozyx devices at a frequency of 12 Hz. The
step detection algorithm uses the linear accelerations measured by the IMU for
estimating the number of steps and their frequency (red dots).

measure the traveled distance needed to populate the Distance
matrix for DMDS, a step counter algorithm has been implemented
by following the approach proposed in [25]. The sampling rate of
the IMU Hz is configured to 12 Hz.

Fig. 8 shows the roll, pitch, and yaw measured with the Pozyx
devices on the nodemonitoring the personwalking back and forth.
Also, the last sub-figure shows the step detection algorithm,where
the curve is computed from the sum of all the accelerations, and
the red dots are the detected steps. Implementation details can be
found in [25].

In order to provide a bound on the accuracy of the DMDS
approach, we also applied DMDS to the real traveled distance,

Fig. 9. CDFs of MDS-ZA, DMDS-ZA using the ground truth to measure the traveled
distance, and DMDS-ZA with a pedestrian step detection algorithm.

Table 3
Mean error and standard deviation of the CDFs showed in Fig. 9.

Approach µ σ

DMDS-ZA with Gth 0.45 0.104
DMDS-ZA 0.51 0.185
MDS-ZA 0.47 0.171

measured with the Vicon System (i.e., the ground truth). The ac-
curacy found with this approach not only can be used as a bound
but avoid that a bad dead-reckoning technique will impact on the
strategy lowering the performances. Fig. 9 shows the results of
the comparison between MDS-ZA, DMDS-ZA, and DMDS-ZA (with
ground truth) and the values of the CDF are reported in Table 3.

The DMDS approach with p = 2 has a limited impact on the
minimization since only two more data are added to the Distance
Matrix (i.e., the traveled distance of the two mobile nodes). How-
ever, despite the fact that the mean error is only slightly lower
than MDS-ZA, the primary benefit of DMDS can be seen in the
very low standard deviation. Our DMDS-ZA implementation with
pedestrian step detection reaches the performance of MDS-ZA
with a slightly higher mean error and standard deviation. Note
that, the system used a low acquisition rate (caused by the Pozyx
APIs) and the parameters used in the step detection were not
optimal. The results of DMDS-ZA with the ground truth, instead,
are encouraging, since the low standard deviation suggest that the
DMDS-ZA approach can be very efficient and further improve the
already accurate MDS-ZA.

7. Conclusion

This work proposes a generalized formulation of the standard
MDS and DMDS techniques that actively consider the knowledge
of the anchors coordinates in theminimization. Furthermore, MDS
has also been modified to include the concept of heights con-
straints when this information is known. Real experiments show
that the anchored versions of the algorithms (MDS-A and DMDS-
A) outperform the respectiveMDS andDMDS approaches, showing
evident improvements in the accuracy of estimation. Moreover,
such improvements increase even more when also using the in-
formation of the node heights.

The results on DMDS-ZA show that it can improve the already
accurate MDS-ZA if accurate odometry is given, making such an
approach promising in the context of node mobility. Other future
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works concern a more in-depth analysis and more experiments on
the effect of a varying ∆t and the use of DMDS with o number of
steps greater than two.

Appendix. Proof of Theorem 1

The trace of amatrix is defined as the sumof the elements along
the diagonal. Hence, the trace of the r×r matrixXTVX of (5) is equal
to

tr(XTVX) =
r∑

k=1

XT
(k)VX(k)

with X(k) ∈ RN×1 being the kth column vector of X. Hence, Eq. (5)
can be rewrite as follows:

T (X, Z) = C+ tr(XTVX)− 2 tr(XTB(Z)Z)

= C+
r∑

k=1

XT
(k)VX(k) − 2

r∑
k=1

XT
(k)B(Z)Z(k).

By partitioning in block the above expression, is possible to
obtain

T (X, Z) = C+
r∑

k=1

XT
(k)VX(k) − 2

r∑
k=1

XT
(k)B(Z)Z(k)

= C+
r∑

k=1

(
XT

u(k)V11Xu(k) + 2XT
u(k)V12Xa(k) + XT

a(k)V22Xa(k)

)
− 2

r∑
k=1

(
XT

u(k)B11Zu(k) + 2XT
u(k)B12Za(k) + XT

a(k)B22Za(k)

)
.

(A.1)

By differentiating the expression of T (X, Z) of Eq. (A.1) with
respect to the unknowns Xu(k) only, can be obtained that:

∂T (X, Z)
∂Xu(k)

= 2(V11Xu(k) + V12Xa(k) − B11Zu(k) − B12Za(k)), (A.2)

and by setting it equal to 0 it is possible to find the unknowns Xu(k),
which are

Xu(k) = V−111

(
B11Zu(k) + B12Za(k) − V12Xa(k)

)
,

or, equivalently, in a matrix form

Xu = V−111 (B11Zu + B12Za − V12Xa) . (A.3)
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