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Abstract

Engine control applications require the execution of tasks

activated in relation to specific system variables, such as the

crankshaft rotation angle. To prevent possible overload condi-

tions at high rotation speeds, such tasks are designed to vary

their functionality (hence their computational requirements) for

different speed ranges. Modeling and analyzing such a type of

tasks poses new research challenges in the schedulability analysis

that are now being addressed in the real-time literature. This

paper advances the state of the art by presenting a method for

computing the exact worst-case interference of such adaptive

variable-rate tasks under fixed priority scheduling, enabling a

tight analysis and design of engine control applications.

1. Introduction

A large variety of real-time task models have been proposed

in the literature to analyze the schedulability of different types

of embedded systems. The classical Liu and Layland periodic

task model [13] captures the typical structure of control loops

providing an implementation for discrete-time controllers. The

sporadic task model introduced by Mok [14] captures the intrinsic

irregular arrival sequence of external events, while providing a

bound on the worst-case arrival rate necessary to derive an off-

line schedulability analysis.

A rate-based execution abstraction was introduced by Jeffay

et al. [10], [11] to generalize the classical periodic and sporadic

scheme. According to such a model, a task specifies its expected

rate as the maximum number x of executions expected to be

requested in any interval of length y, however the maximum

computation time required for any job of the task is fixed, while

the actual distribution of events in time is arbitrary.

The multi-frame model proposed by Mok and Chen [15]

provides the additional expressivity to capture conditional exe-

cutions and execution patterns. In this model, tasks are activated

periodically, but the execution time of each job varies according

to a predefined pattern. Such a model has been later generalized

by Baruah et al. [2] to allow jobs to be separated by a varying

interarrival time. However, in both cases the activation pattern is

known a priori and does not depend on any state variable.

An elastic model has been presented by Buttazzo et al. [3], [5]

to tolerate and handle permanent overload conditions in periodic

real-time systems. According to this model, a task has a fixed

computation time, but a variable period, which can be varied in

a given range. An overload condition is then handled by properly

compressing task utilizations as if they were elastic springs with

given elastic coefficients, expressing the capability of each task

to change its period.

More recently, the consideration of a fuel injection systems,

as representatives of a possibly larger class of applications, has

highlighted the limitations of the existing approaches and the need

for a new type of task model and analysis.

The general goal of a fuel injection system is to determine

the point(s) in time and the quantity of fuel to be injected

in the cylinders of an engine, relative to the position of each

piston, which is in turn a function of the angular position of

the crankshaft. In a reciprocating engine, the dead centre is the

position of a piston in which it is farthest from, or nearest to, the

crankshaft. The former is the top dead centre (TDC) while the

latter is the bottom dead centre (BDC), as illustrated in Figure

1. In a four-cylinder engine, the pistons are paired in phase

opposition, so that, when two of them are in a TDC, the others

are in a BDC. The TDC is the typical reference point, in the

controller activities, for the functions and actions that need to take

place within the rotation. These action include (among others)

computing the phase (time relative to the TDC) of the injection

and the quantity of fuel to be injected, but also checking whether

the combustion occurred properly. Depending on the structure of

the engine control application, these functions are implemented in

tasks that are activated at each TDC, that is twice every crankshaft

rotation (pseudo-cycle) or even more frequently (half-TDC).
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Figure 1: Relationship among engine phases and reference points

in the crankshaft rotation period.

The problem with this type of tasks is that the time between

two activations (at the TDC) is not constant, nor arbitrary, but

depends on the rotation speed of the engine, which can vary
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within given ranges with a certain maximum acceleration. Thus,

the acceleration bounds define a space of possible activation

times which is not easy to capture and analyze without incurring

in excessive pessimism (as it would, for example, if using the

sporadic model).

To further complicate the treatment, the (worst-case) execution

time of the functions executed by such tasks is typically not

constant. At low revolution rates, the time interval between

two reference points (the TDC for a set of cylinders) is large

and allows the execution of sophisticated controls (and possibly

multiple fuel injections). The same algorithm cannot be executed

at higher revolution rates, because it would lead to an overload,

generating several deadline misses. The typical approach adopted

by the automotive industry [6] is to select the functions to be

executed depending on the rotation speed. For most cars, the rota-

tion speed typically varies between 600 and 6000 revolutions per

minute (rpm), which maps to activation intervals between 100 and

10 ms, for a complete revolution. A simplified implementation of

such an adaptive behavior is shown in Figure 2.

#define omega1 1000

#define omega2 2000

#define omega3 4000

#define omega4 6000

task sample_task {

omega = read_rotation_speed();

f0();

if (omega ≤ omega4) f1();

if (omega ≤ omega3) f2();

if (omega ≤ omega2) f3();

if (omega ≤ omega1) f4();

}

Figure 2: Typical implementation of a task with a functionality

variable with the rotation speed of the crankshaft.

In this paper, the model proposed to describe such a type

of engine control tasks is referred to as Adaptive Variable Rate

task model, or AVR-model. Overall, a subset of the system tasks

can be characterized as AVR tasks, typically executing together

with classical periodic tasks under the control of a fixed-priority

scheduler, as established in the automotive AUTOSAR standard.

Adaptivity of execution times can also be captured by con-

sidering that tasks may exhibit different execution modes. Note

however, that mode change analysis [17], [18], [20] is not suited

for analyzing AVR tasks, since their activation period is changing

continuously, thus an infinite number of modes would be required

to describe all possible situations.

1.1. Related work

In the real-time community, the problem related to AVR tasks

was first presented by Buttle [6], as a common practice adopted

in automotive applications to adapt the functionality and the

computational requirements of engine control tasks for different

rotation speeds.

A suitable model for AVR tasks with activation rates and

execution times depending on the angular velocity of the engine

has been proposed for the first time by Kim, Lakshmanan, and Ra-

jkumar [12], who derived preliminary schedulability results under

very simple assumptions. In particular, their analysis applies to

a single AVR task with a period always smaller than the periods

of the other tasks, and running at the highest priority level. In

addition, all relative deadlines are assumed to be equal to periods

and priorities are assigned based on the rate-monotonic algorithm.

Pollex et al. [16] also presented a sufficient schedulability anal-

ysis under fixed priorities, but they assumed that all the tasks with

a variable rate depend on the same angular velocity, which can

be arbitrary, but fixed. Moreover, the analysis is formulated using

continuous intervals, hence it cannot be immediately translated

into a practical schedulability test, whose complexity has not been

evaluated.

The schedulability analysis of a generic set of AVR tasks under

steady-state and dynamic conditions (considering a maximum

acceleration of the engine) has been addressed by Buttazzo, Bini,

and Buttle [4] under Earliest Deadline First (EDF) scheduling.

They also provided a design method that allows computing the

set of switching rotation speeds that keep the overall utilization

below a desired bound.

The dynamic analysis of AVR tasks under fixed-priority

scheduling has been considered by Davis et al. [7]. After dis-

cussing the complexity of the problem, they presented a sufficient

test based on an Integer Linear Programming (ILP) formulation.

Besides being only sufficient, their approach is based on a

quantization of the instantaneous crankshaft rotation speed, which

may introduce additional pessimism in the analysis to guarantee

the safety of the test.

1.2. Contributions and structure

This paper provides the following novel contributions:

1) it presents an exact analysis of the worst-case interference

generated by an AVR task in dynamic situations, under fixed

priority systems and arbitrary deadlines, assuming realistic

acceleration bounds derived from the automotive industry;

2) it discusses an efficient method for reducing the worst-case

complexity of the exact analysis by identifying a set of

cases that dominate the others, thus avoiding the need of

a quantization of the engine state variable;

3) it presents a set of simulation experiments to compare the

proposed analysis with the ILP-based test proposed by Davis

et al. [7], showing that the interference computed by the

ILP-based approach is always greater or equal to the one

computed by our method.

The rest of the paper is organized as follows: Section 2

introduces the system model; Section 3 defines the interference

of an AVR task and presents a brute force approach to compute

it; Section 4 illustrates an efficient method for computing the

exact interference by taking advantage of a pruning rule; Section

7 evaluates the performance of the proposed approach against the

ILP-based test proposed by Davis et al. [7]; Section 8 states our

conclusion and future work.



2. System model and notation

This section presents the model for the task set and for the

engine dynamics.

2.1. Task model

This paper considers a computing system running a set of

N preemptive real-time tasks Γ = {τ1, τ2, . . . , τN} under fixed

priorities and constrained deadlines. Each task τi generates an

infinite sequence of jobs, Ji,1, Ji,2, . . . and can be either a periodic

task, characterized by a fixed worst-case execution time (WCET)

Ci, period Ti, and relative deadline Di, or an AVR task, where

all three of Ci, Ti, and Di are variable. For the sake of clarity,

whenever needed, a rate-adaptive task may also be denoted as τ∗i .

The peculiarity of an AVR task τ∗i is that its activation pattern

and functionality are determined by the physical evolution of the

engine. In particular, a generic job Ji,k of an AVR task is activated

when the crankshaft reaches predefined angular positions, thus

the interarrival time between Ji,k and Ji,k+1, denoted as period

Ti,k, is a function of the crankshaft rotation speed. The sequence

of activation times of the jobs of τi is denoted as ti,1, ti,2, . . .,
and we assume that activations are triggered at angular intervals

of ∆θi. The relative deadline Di,k of job Ji,k can be set as a

non-decreasing function of Ti,k, with Di,k ≤ Ti,k.

The engine speed at time t is denoted as ω(t) and, as a

notation shortcut, the instantaneous speed at the activation time

of the generic k-th job is indicated by ωk = ω(tk). The speed is

bounded in the interval [ωmin, ωmax], where the minimum speed

ωmin defines the longest task period Tmax = ∆θ/ωmin, while

the maximum speed ωmax defines the smallest period Tmin =
∆θ/ωmax related to the first mode. The engine acceleration at

time t, denoted by α(t), is assumed to be bounded between a

maximum deceleration α− and a maximum acceleration α+, so

that α(t) ∈ [α−, α+].
An AVR task τ∗i is typically implemented as a set Mi of Mi

different modes

Mi = {(C
m
i , ωm

i ),m = 1, 2, . . . ,Mi},

each characterized by a certain functionality and WCET, kept

constant when job activation speeds fall in the range (ωm
i , ωm+1

i ],

where ωMi+1
i = ωmin and ω1

i = ωmax represent respectively the

minimum and the maximum speed allowed by the system. Hence,

the computation time of a generic AVR job Ji,k can be expressed

as a non-increasing step function C of the instantaneous speed

ωi,k at its release, that is,

Ci,k = C(ωi,k) ∈ {C
1
i , . . . , C

Mi

i }. (1)

An example of C function is illustrated in Figure 3.

In the following sections, we are interested in computing the

contribution to the interference of each individual AVR task (for

periodic tasks the computation is trivial). To simplify the notation,

the task index will be omitted from the task parameters whenever

we refer to a single AVR task.

Ci(ωi)

C1
i

C2
i

Cm
i

C
Mi
i

ωiωmin
i ω

Mi
i ωm

i ω2
i ω1

i

Figure 3: Computation time of an AVR task as a function of the

speed.

2.2. Engine dynamics and task activations

To perform schedulability analysis in the presence of AVR

tasks, it is important to characterize the relation between the

engine dynamics and the task parameters. Given the current

engine state (ωk, αk) at time tk, the time to the next job release

is modeled (assuming a constant acceleration αk) as [4]:

T (ωk, αk) =

√
ω2
k + 2αk∆θ − ωk

αk

, (2)

where ∆θ is the angular displacement that determines two con-

secutive job activations. Similarly, the instantaneous engine speed

at the next job release is modeled (under the same assumption of

constant acceleration) as Ω(ωk, αk) = ωk +αkT (ωk, αk), which

gives:

Ω(ωk, αk) =
√
ω2
k + 2αk∆θ. (3)

Given a job Ji,k released with instantaneous speed ωk, the

minimum interarrival time T̃m(ωk) to have the next job Ji,k+1

released in mode m (if reachable with the acceleration bounds),

can be computed by Equation (2), substituting αk obtained by

Equation (3), which gives:

T̃m(ωk) =
2∆θ

ωk + ωm
. (4)

Similarly, given a job Ji,k released with instantaneous speed

ωk having period T , we define Ω̃(ωk, T ) as the instantaneous

speed at the release of the next job Ji,k+1, which from Equation

(4) results to be:

Ω̃(ωk, T ) =
2∆θ

T
− ωk. (5)

In addition, we denote as Ωn the engine speed after n job

releases following the kth job, computed as Ωn(ωk, αk) =
Ω(Ωn−1(ωk, αk), αk), where Ω0(ωk, αk) = ωk.

Figure 4 illustrates a range of possible scenarios that may de-

termine the next activation for different speeds and accelerations.

In particular, the figure shows the simultaneous evolution of the

system state in terms of angular distance and angular speed, and

the task activation pattern depending on the system state. In the

interval [tk, tk+1], an angular distance of ∆θ is covered, while

the angular speed is decreasing.



The angular speed ωk at time tk determines the activation of

a new job Jk with computation time Ck = C(ωk). The dashed

lines in the figure represent the cones within which the angular

distance and speed may vary, determined by the extreme values

of acceleration α+ and α−. The dashed upward arrows in the

bottom part of the figure represent the earliest and the latest

activation for the subsequent job Jk+1, depending on the value

of the acceleration α+ and α−, respectively.
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Figure 4: Dependency of task parameters from the system state.

3. Characterizing the interference

The interference caused by an AVR task τh on a lower priority

task depends on the speed of the engine when the critical instant

occurs. Hence, the interference is a function of the dynamics of

the engine and should be computed for any initial speed ω0.

Let Iω0
(t) denote the worst-case interference generated by an

AVR task in the interval [0, t], assuming that the critical instant

occurs at time 0, when the speed of the engine is ω0.

For each initial engine speed ω0, we determine Ω(ω0, α) and

T (ω0, α), considering a generic acceleration α. A brute-force

approach requires considering all possible values of α ∈ [α−, α+]
to determine all possible subsequent job releases occurring in the

interference window. Let us consider a job J0 released at t0,

when the instantaneous speed is ω0. Such an activation gives

rise to a family of possible instances of J1, with period in the

range [T (ω0, α
+), T (ω0, α

−)] and corresponding engine speed

ω1 in the range [Ω(ω0, α
−),Ω(ω0, α

+)], according to the model

described in Section 2.

Similarly, the next activation gives rise to a set of possible

job instances with period in [T (ω1, α
+), T (ω1, α

−)] and speed

ω2 ∈ [Ω(ω1, α
−),Ω(ω1, α

+)]. This reasoning applies recursively

for each subsequent activation, until the end of the interference

window, leading to a tree of possible job releases, as depicted in

Figure 5.

Assuming the acceleration to vary continuously, the number

of branches at each recursive step is theoretically infinite, but

tim
e
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Figure 5: Tree of possible job releases of an AVR task.

1: procedure INTERFERENCE(ω,C, t)
2: if t > MAXTIME then return ;

3: end if

4: UPDATEINTERFERENCEFN(C, t);
5: for α = α− to α+ step ∆α do

6: ωnext ← Ω(ω, α);
7: T next ← T (ω, α);
8: Cnext ← C + C(ωnext);
9: INTERFERENCE(ωnext, Cnext, t+ T next);

10: end for

11: end procedure

Figure 6: Procedure for computing the interference of an AVR

performing an exhaustive tree-search.

can be bounded by making the acceleration range discrete with a

given granularity. Of course, any quantization of the acceleration

domain makes the analysis approximate, and a large granularity,

while reducing the search complexity, increases the pessimism.

The pseudocode in Figure 6 summarizes the recursive proce-

dure for computing the maximum interference following a brute-

force approach. The procedure is called by passing the initial

engine speed ω0, the initial computation time C0 = C(ω0), and

the current time instant.

At each recursive step, until the maximum deadline of any task

(i.e. the largest length of the interference window that needs to

be considered by the analysis, also denoted as MAXTIME, as in

lines 2-3), we must:

• update the worst case interference function for a given value

of t (line 4);

• for each acceleration:

– compute the speed and the period related to the next

job (lines 6-7);

– accumulate the overall computational request (line 8);

– recursively call the function INTERFERENCE (line 9).

The maximum interference function is a stepwise function

storing the maximum interference time for each possible value t.
The procedure UPDATEINTERFERENCEFN at line 4 simply saves

the maximum cumulative value of the computational demand for

the time instant passed as argument.

In summary, for a given ω0, the procedure generates a tree

of job releases. Hence, computing the interference Iω0
(t) is a

search problem in the speed domain, and requires a complete visit



of the tree. The interference Iω0
(t) corresponds to the maximum

among the interferences generated from all possible job sequences

starting with speed ω0. This procedure is very expensive in terms

of computational complexity, and intractable for most practical

uses. The next section determines a pruning rule that cuts a

significant number of branches, while still guaranteeing an exact

interference analysis.

4. Single-job interference

To cut redundant branches in the search tree, we note that

for each job release after the critical instant, only a finite set

of critical job releases must be taken into account to derive the

maximum interference. We explain how to compute such critical

job releases, and then derive a pruning rule for the search problem

presented in the previous section.

First of all, we construct the interference generated by an AVR

task as the sum of the possible contributions of its individual

jobs. To determine the potential interference generated by a single

job Ja, it is necessary to consider all possible releases of Ja+1

compatible with the given acceleration α ∈ [α−, α+].
Definition 1: Given a job Ja of an AVR task activated in mode

m at time ta, the single-job interference iωa,m(δ) of Ja is the

maximum computational request generated by Ja and Ja+1, in the

interval [0,δ], for all possible releases of Ja+1 at ta+1 = ta + δ.

As explained in Section 3, job releases depend on the engine

dynamics, and the future release times and modes of Ja+1

are constrained by the maximum/minimum acceleration of the

engine. At time ta, iωa,m(0) = Cm, since Ja is released in mode

m. Considering the maximum acceleration α+, it is easy to see

that no job release can occur in the interval 0 < δ < T (ωa, α
+);

therefore, in this interval iωa,m(δ) = Cm.

For T (ωa, α
+) ≤ δ ≤ T (ωa, α

−), an additional job release

must be considered: the earliest considering the maximum ac-

celeration α+, the latest considering the maximum deceleration

α−. Depending on the engine dynamics, the released job can

belong to a number of different modes. The larger the accel-

eration/deceleration range, the greater the number of possible

modes. Since we are modeling the worst-case interference of an

AVR task, we have to take into account all possible job releases

for each possible mode m′ with ωm′

∈ [Ω(ωa, α
−),Ω(ωa, α

+)].
Finally, for δ > T (ωa, α

−), no release of Ja+1 can occur;

hence, iωa,m(δ) = C(Ω(ωa, α
−)) is the computational request

of the latest possible job release time. Overall, iωa,m(δ) is a

non-decreasing stepwise function, where each step represents the

release of a different mode m′.

Figure 7 shows an example of single-job interference assuming

that the engine dynamics allows releasing jobs of two different

modes in acceleration, and one in deceleration. As explained in

Section 3, the interference Iω0
(t) of an AVR task is the maximum

sum of all its possible job requests. Therefore, it is possible to

express Iω0
(t) as the sum of time-shifted single job interferences.

The following theorem allows identifying the job instances for

which the interference dominates the one for job instances at

iωa,m(δ)

Cm+Cm−1

2Cm

Cm+Cm+1

Cm+Cm+2

Cm

δ0 T (ωa, α
+) T̃m+1 T̃m T̃m−1 T (ωa,α

−)

Figure 7: single job interference of a job activated at time ta in

mode m.

other release times and therefore it can be used as a pruning rule

to reduce the search space.

Theorem 1: Let Ja and Jb be two jobs released in mode

m, and let ωa and ωb be the instantaneous engine speeds at

their respective release times. If ωa ≥ ωb and C(Ω(ωa, α
−)) =

C(Ω(ωb, α
−)), then ∀δ ≥ 0 iωa,m(δ) ≥ iωb,m(δ).

Proof: The proof is trivial for ωa = ωb, therefore in the

following we assume ωa > ωb. Since, for a given α, T (ω, α+)
and T (ω, α−) are both monotonic decreasing functions in ω, we

have:

(i) T (ωa, α
+) ≤ T (ωb, α

+);
(ii) T (ωa, α

−) ≤ T (ωb, α
−).

From (i) we can derive that iωa,m(δ) = iωb,m(δ) = Cm for

δ < T (ωa, α
+). For T (ωa, α

+) ≤ δ < T (ωb, α
+) we have

iωb,m(δ) = Cm (job releases after Jb cannot occur before

T (ωb, α
+)), while iωa,m(δ) can be larger because of the possible

job releases following Ja. Hence, in the range T (ωa, α
+) ≤ δ <

T (ωb, α
+), we have iωa,m(δ) > iωb,m(δ).

For δ ≥ T (ωb, α
+) two scenarios are possible:

• T (ωb, α
+) ≤ T (ωa, α

−), i.e., the two single-job interfer-

ences are overlapped in time. In this case, for T (ωb, α
+) ≤

δ ≤ T (ωa, α
−), we have Ω̃(ωa, δ) < Ω̃(ωb, δ), then

iωa,m(δ) ≥ iωb,m(δ). In fact, fixing a generic time instant

δ in this range, the single-job interference of Ja is con-

sidering a lower instantaneous speed than the one of Jb,
therefore it is modeling a greater or equal computational

demand. In other words, since C(ω) is non-increasing, then

C(Ω̃(ωa, δ)) > C(Ω̃(ωb, δ));
• T (ωb, α

+) > T (ωa, α
−), i.e., the two single-job inter-

ferences are non-overlapped in time. In this case, for

T (ωb, α
+) ≤ δ ≤ T (ωa, α

−), we have iωa,m(δ) ≥ iωb,m(δ)
since iωb,m(δ) = Cm.

In both cases, for δ > T (ωa, α
−), we have

iωa,m(δ) = iωb,m(δ). This follows from (ii) and the hypothesis

C(Ω(ωa, α
−)) = C(Ω(ωb, α

−)), since iω,m(δ) is non-decreasing.

Having shown that iωa,m(δ) ≥ iωb,m(δ) in each possible time

interval, the theorem follows.

Figure 8 shows a typical scenario in which Theorem 1 holds,

related to the case T (ωb, α
+) ≤ T (ωa, α

−).



0

Cm

iωa,m(δ)

iωb,m(δ)

δ
T (ωa, α

+) T (ωb, α
+) T (ωa, α

−) T (ωb, α
−)

Figure 8: Example of a scenario for applying Theorem 1.

5. Computing the exact interference

In this section, Theorem 1 is used to build a pruning rule for

reducing the search space. The complexity is reduced by finding

a subset of potential job interferences that contribute to the exact

interference Iω0
(t).

Pruning rule properties. Consider a generic job Ji−1, and its

immediate follower Ji. The release time of Ji is variable and

depends on the engine acceleration. Let Ji,(t) be the instance of

Ji released at time t (t is one of the activation times allowed

by the acceleration range of the engine). The objective of the

pruning rule is to identify a limited set P of critical job instances

satisfying the following properties:

(i) for each Ji,(s) /∈ P , there must exist a Ji,(t) ∈ P for which

the single job interference of Ji,(t) dominates the one of

Ji,(s);
(ii) for each Ji,(s) /∈ P , there must exist a Ji,(t) ∈ P such

that the interference generated by all job releases following

Ji,(s) is dominated by the interference of at least one set of

possible job instances following Ji,(t).

Property (i) allows to eliminate all the job instances Ji,(s) /∈ P ,

while property (ii) allows to discard the entire sub-tree of job

instances released after Ji,(s).

5.1. Job instances for property (i)

Suppose that the critical instant occurs when the instantaneous

engine speed is ω0 and the AVR task is in mode m. The single

job interference iω0,m(t) is the initial value of Iω0
(t). Using

Theorem 1, it is possible to identify a set P(i) ⊂ P of job releases

for which their single job interference dominates the others.

Theorem 1 only applies to jobs activated in the same mode.

Hence, the set P(i) includes at least one job instance for each

mode m such that T̃m(ω0) ∈ [T (ω0, α
+), T (ω0, α

−)]. For each

mode, we need to consider the earliest job release, in order to

satisfy the theorem hypothesis ωa ≥ ωb. Formally, we refer to

such job releases as the earliest distinct mode changes (EDMCs).

EDMCs can also be defined as the set of the job instances Ji,(t)
for which their current period Ti belongs to the set TEDMC, which

includes the period corresponding to the earliest possible arrival

of a job instance (max acceleration) and all the periods that

correspond to mode changes, that is

TEDMC = {T (ω0, α
+)} ∪ {T | T ∈ [T (ω0, α

+), T (ω0, α
−)]

such that T = T̃m(ω0) for some m ∈ 1, . . . ,M}.

In the example of Figure 7, the set TEDMC is given by the time

instants on the x-axis corresponding to the steps of iω0,m(t).
However, the set P(i) needs to include other job instances

besides those in EDMCs, since there can be job instances Ji,(q)
that are not dominated by any of the instances in EDMC. This

can happen because the instances in EDMC do not necessarily

guarantee the last hypothesis of Theorem 1. For these job releases

Ji,(q), there is no Ji,(t) having period Ti,(t) ∈ TEDMC with

C(Ω(ωi,(t), α
−)) = C(Ω(ωi,(q), α

−)).
The set EDMC needs to be extended to include other instances.

Hence, the set EDMC = {Ji,(t1), Ji,(t2), . . . Ji,(tz)} is sorted by

increasing arrival times. Ji,(t1) is the earliest possible instance.

Then, for every interval [Ji,(tm), Ji,(tm+1)] we need to look for

an intermediate time point (arrival time) tq that corresponds

to an instance not dominated by the endpoint Ji,(tm) because

C(Ω(ωi,(tm), α
−)) 6= C(Ω(ωi,(tq), α

−)).
The candidate time instants tq can be computed by consid-

ering that they can only belong to the set of points for which

Ω(ωi,(tq), α
−) = ωm for one of the modes m.

If such tq exists, it is added to the set and the test con-

tinues in the interval [Ji,(tq), Ji,(tm+1)]. When all points in

[Ji,(tm), Ji,(tm+1)] are checked, the algorithm moves to the next

time interval in the original set EDMC until all the dominant job

instances are found.

5.2. Job instances for property (ii)

Unfortunately, Theorem 1 is not sufficient to discard all the

single-job interferences generated by the jobs following Ji,(s).
For example, as illustrated in Figure 9, consider a generic job

instance Ji,(s) for which the single job interference is dominated

by Ji,(t) ∈ P
(i). Since by hypothesis we have ωi,(s) ≤ ωi,(t),

a job Ji+1,(s′) immediately following Ji,(s) could have a lower

speed than all the possible jobs instances Ji+1,(t′) immediately

following Ji,(t). Formally, the maximum speeds for Ji+1,(t′) and

Ji+1,(s′) are respectively ωi+1,(t′) = Ω(Ω(ωi,(t), α
−), α−) and

ωi+1,(s′) = Ω(Ω(ωi,(s), α
−), α−) < ωi+1,(t′). Hence, Ji,(s) can-

not be pruned, since it could be that C(ωi+1,(s′)) > C(ωi+1,(t′)).
The following theorem addresses this issue. To compact the

readability of the theorem, we define the following set:

N = {k ∈ N
+|min(Ωk(ωa, α

−),Ωk(ωb, α
−)) ≤ ωmin}.

Theorem 2: Let Ja and Jb be two jobs released in mode

m, and let ωa and ωb be the instantaneous engine speeds

at their respective release times. If ωa ≥ ωb and ∀n ∈ N

C(Ωn(ωa, α
−)) = C(Ωn(ωb, α

−)), then ∀t ≥ 0 Iωa
(t) ≥ Iωb

(t).
Proof: The proof is trivial for ωa = ωb, therefore in the

following we assume ωa > ωb. We must show that, for each
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Figure 9: Example in which Theorem 1 is not sufficient to

discard all the interferences generated by the jobs following

Jb. The function t∗(ω) in the graph is defined as t∗(ω) =
T (ω, α−) + T (Ω(ω, α−), α−).

possible job Jb+n following Jb there exists a job Ja+n following

Ja such that the single job interference of Jb+1 is dominated by

that of Ja+1. To do this, we apply Theorem 1 by induction.

Since Ωn(ω, α) is a monotonic increasing function, we have

∀n ∈ N Ωn(ωa, α
−) ≥ Ωn(ωb, α

−);

∀n ∈ N Ωn(ωa, α
+) ≥ Ωn(ωb, α

+).

For each n, two scenarios are possible as shown in Figure 10:

a) Ωn(ωa, α
−) > Ωn(ωb, α

+); in this case, to apply Theorem 1

on each Jb+n, it is sufficient to take Ja+n having ωa+n =
Ωn(ωa, α

−). Let then ωb+n ∈ [Ωn(ωb, α
−),Ωn(ωb, α

+)].
This choice makes the three hypotheses satisfied, since:

• ωa+n ≥ ωb+n follows from Ωn(ωa, α
−) > Ωn(ωb, α

+);
• C(Ω(ωa+n, α

−)) = C(Ω(ωb+n, α
−)) follows from the

hypothesis C(Ωn(ωa, α
−)) = C(Ωn(ωb, α

−)) ∀n. This

can be shown by replacing the definition of the func-

tion Ωn+1(ω, α) obtaining C(Ω(Ωn(ωa+n, α
−), α−)) =

C(Ω(Ωn(ωb+n, α
−), α−)). Since C(ω) is a monotonic

non-decreasing function, the hypothesis is verified for all

ωb+n.

• Ja+n has the same mode as Jb+n: again this is en-

sured by considering the hypothesis C(Ωn(ωa, α
−)) =

C(Ωn(ωb, α
−)) ∀n.

b) Ωn(ωa, α
−) ≤ Ωn(ωb, α

+); in this case, for each possible job

Jb+n having ωb+n ∈ [Ωn(ωa, α
−),Ωn(ωb, α

+)] there exists

a job Ja+n having ωa+n ∈ [Ωn(ωa, α
−),Ωn(ωa, α

+)], with

ωa+n = ωb+n. This result implies directly C(Ω(ωa+n, α
−)) =

C(Ω(ωb+n, α
−)). Since in this interval also the periods for

Jb+n and Ja+n are overlapped, each Jb+n can be mapped to

Ja+n having the same mode. The application of Theorem 1

is then straightforward.

On the other hand, for each possible job Jb+n having ωb+n ∈
[Ωn(ωb, α

−),Ωn(ωa, α
−)], the same considerations made for

the upper case hold. Hence, it is sufficient to take Ja+n having

ωa+n = Ωn(ωa, α
−).

Hence the theorem follows.
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Figure 10: Possible scenarios for Theorem 2.

By using Theorem 2, it is possible to obtain the complete set

P required by the pruning rule. To identify critical job releases

belonging to P we proceed in the same way as for P(i): the only

difference is that Theorem 2 is applied in place of Theorem 1.

5.3. Dominant initial velocities

Theorem 2 can also be exploited to find a reduced set of initial

instantaneous speeds that must be considered for the interference

computation. Let ωa and ωb be two instantaneous speeds at which

the critical instant may occur. If the hypotheses of Theorem 2 are

verified, then we can conclude that ∀t Iωa
(t) ≥ Iωb

(t), that is,

the interference for ωb is entirely dominated by the one for ωa.

It follows that, given a range of possible engine speeds, we can

compute a set of dominant speeds in this range in the very same

way as we identified critical job releases applying the pruning

rule in the range of speeds determined by α− and α+.

In the following,

• Λi(ω1, ω2) denotes the set of dominant speeds for an AVR

task τ∗i when the engine speed can vary in the range (ω1, ω2].

• Λ∗
i = Λi(ω

min
i , ωmax

i ) denotes the set of dominant speeds

of task τ∗i for all possible speeds.

• Λm
i denotes the set of dominant speeds of task τ∗i when the

engine speed can vary in the range compatible with mode

m; that is,

Λm
i = Λi(ω

m, ωm+1).

This is a key point to simplify the analysis with respect to the

brute-force approach described in Section 3, and also to the ILP

formulation proposed by Davis et al. [7], since both approaches

require to consider the complete range of possible initial speeds.

6. Tight schedulability analysis

In this section we show how to use the interference of an AVR

task τ∗H (IH,ω0
) to perform a response time analysis [1] of a

generic task set consisting of AVR and periodic/sporadic tasks.

The proposed analysis is based on the interference Iω(t),
which is the envelope of all the possible sequences of single-

job interferences in [0, t]. As shown by Stigge and Yi [19], the

use of an interference envelope in response-time analysis can lead

to an over-approximation of the exact response time, hence the

proposed schedulability tests are only sufficient.



To better explain this fact, consider the example shown in

Figure 11, where ia(t) and ib(t) are two time-shifted single-

job interferences (remember that Iω(t) can be expressed as the

sum of time-shifted single job interferences). As shown in the

figure, the interference envelope Iω(t) leads to a response time

R (corresponding to the first point in which Iω(t) matches

the processor supply). Please note that the response time R is

originated by interference values of ia(t); however, the schedule

represented by ia(t) has response time Ra < R. In other words,

the response time R is over-approximated since the schedule that

originate it has experienced an idle-time before t = R. Overall,

we can conclude that the use of an interference envelope allows

deriving safe upper-bounds on the response time, but introduces

pessimism by losing information related to each single schedule

potentially contributing to the envelope.
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Figure 11: Example of a scenario in which the use of an

interference envelope leads to an over-approximated response

time.

We consider two cases to compute:

• the interference of an AVR task τ∗H on a periodic/sporadic

task τL with lower priority;

• the interference of an AVR task τ∗H on another AVR task τ∗L
with lower priority.

When computing the interference of τ∗H on a periodic/sporadic

task or an AVR task with an independent source of activation

events (independent ω0), the worst-case combination for any

initial speed of τ∗H needs to be considered. To do so, the

envelope IH(t) has to be computed as the maximum among

the interference functions IH,ω0
(t) for each initial speed. Using

Theorem 2, it is sufficient to consider only the dominant speeds

in Λ∗
H , hence

IH(t) = max
ω0∈Λ∗

H

{IH,ω0
(t)}. (6)

To simplify the notation of the test, we also define the (finite)

set IH(t) of time points less than or equal to the argument t, in

which the step function IH() changes its value.

6.1. AVR Interference on a periodic task

To analyze the interference of an AVR task τ∗H on a lower

priority periodic/sporadic task τL, every possible initial speed ω0

of τ∗H has to be considered at the beginning of the critical instant

of τL. Therefore, the feasibility condition for τL becomes:

∀ω0 ∃t ≤ DL : CL + IH,ω0
(t) ≤ t,

which is the same as

∃t ≤ DL : CL +max
ω0

{IH,ω0
(t)} ≤ t.

which, using Theorem 2 and Equation (6), reduces to

∃t ≤ DL : CL + IH(t) ≤ t. (7)

6.2. AVR Interference on an AVR task

When analyzing the interference of an AVR-task τ∗H over an-

other lower priority AVR task τ∗L, two cases can be distinguished.

Let ωH and ωL be the variables describing the speeds of the

activation sources for τ∗H and τ∗L, respectively. As a first case we

consider the two speeds to be independent, while in the second

case we consider them related.

When rotation speeds are independent, the low-priority task τ∗L
is schedulable if

∀ωHωL ∃t ≤ DL(ωL) : CL(ωL) + IH,ωH
(t) ≤ t. (8)

Since the WCET of τ∗L depends on its execution mode, Equa-

tion (8) must be true for all modes. In addition, the full set of

speeds of τ∗H can be considered using Equation (6), thus τ∗L is

feasible if ∀m = 1, . . . ,ML and ∀ωL ∈ (ωm+1
L , ωm

L ]

∃t ≤ DL(ωL) : Cm
L + IH(t) ≤ t.

The previous formula should be evaluated for the full set of

deadlines for mode m, denoted as Dm
L :

Dm
L = {t | t ∈ (DL(ω

m−1
L ), DL(ω

m
L )] }.

Note however, that we do not need to consider an infinite number

of points in Dm
L , since IH(t) only changes its value in the finite

set of time points IH(max{Dm
L }) (up to the maximum deadline

for the mode). Therefore, τ∗L can be feasibly scheduled if ∀m =
1, . . . ,ML and ∀t ∈ Dm

L ∩ IH(max{Dm
L })

Cm
L + IH(t) ≤ t. (9)

When ωH and ωL are related to a common speed ω0, the

previous analysis is pessimistic and needs to be refined. The

response time analysis is a function of ω0 and τ∗L can be feasibly

scheduled if

∀ω0 ∃t ≤ DL(ω0) : CL(ω0) + IH,ω0
(t) ≤ t. (10)

Considering each mode separately we have:

∀m = 1, . . . ,ML ∀ω0 ∈ (ωm+1
L , ωm

L ]

∃t ≤ DL(ω0) : Cm
L + IH,ω0

(t) ≤ t.



To compute the interference of the high priority task, we con-

sider the set of its dominant speeds within the speed range

of every mode for τ∗L. The range of speeds for each mode is

partitioned in the intervals defined by the dominant speeds of

τ∗H . Let (ωdi−1 , ωdi ] be the generic interval between two of

such dominant speeds (ωdj ∈ Λ∗
H), and let pm be the number

of such intervals for mode m. For each interval (ωdi−1 , ωdi ],
since the deadline is a non-increasing function of the speed,

the shortest deadline for τ∗L (replacing the term DL(ω0) in the

formula) corresponds to the dominant ωdi at the highest end of

the interval. ωdi also allows to upper bound the interference term

IH,ωdi (DL(ω
di)) ≥ IH,ω0

(DL(ω0)) for every ω0 ∈ (ωdi−1 , ωdi ].
Hence, the schedulability of τ∗L can only be tested in pm points:

∀m = 1 . . .ML, i = 1 . . . pm

∃t ≤ DL(ω
di) : Cm

L + IH,ωdi (t) ≤ t. (11)

7. Evaluation

This section presents an evaluation of the proposed analysis

method carried out on task data that are representative for an

engine control system. The application was provided in the

context of the INTERESTED EU project [9] and consists of a

set of periodic and AVR tasks. One of these tasks is activated

at the TDC mark and is characterized by 6 execution modes,

reported in Table 1, and by a maximum period Tmax = 120 ms

(corresponding to 500 rpm).

mode 1 2 3 4 5 6

rpm 6500 5500 4500 3500 2500 1500

Tm (ms) 9.23 10.91 13.33 17.15 24 40

Cm (µs) 246 277 343 424 576 965

Table 1: Task parameters used in the evaluation.

Such a task is used to compare the accuracy and performance

of the proposed approach with respect to the sufficient ILP-based

method proposed by Davis et al. [7]. Note, however, that while

in [7] the instantaneous speed is estimated as the average speed

in the previous interarrival time, in our model the instantaneous

speed is assumed to be known.

Before describing the results of the experiments, a few con-

siderations are necessary to explain the terms of the comparison.

The interference analysis is a function of two variables: the initial

engine speed ω0 and the length t of the interference window. The

ILP method can only compute the interference for a set of discrete

values of t and ω0. Our analysis, thanks to the derivation of

the dominant speeds, can actually compute the exact interference

function for all the values t and ω0 in their continuous ranges.

To run the experiments, the ILP method has been implemented

on a CPLEX solver running on an 8-core Intel Xeon at 2.8 GHz,

while our algorithm was implemented as MATLAB code on a

dual-core laptop Intel i7 at 2.5 GHz. The run time of the two

algorithms resulted in the order of few seconds to compute the

maximum interference with the ILP algorithm, and about one

minute to characterize the interference in the whole time interval

with our algorithm.

Two experiments have been carried out. The first experiment

is meant to compare the quality of the analysis in the domain

of the initial speed ω0. Figure 12 plots the interference Iω0
(t)

generated by the AVR task in a time interval of 100 ms for a set

of initial engine speeds ω0 between 1500 rpm and 6500 rpm and

a maximum acceleration of 1.6210−4 rev/msec2. As suggested

by Davis at al. [7], a quantization step of 100 rpm was used to

define the set of discrete values for ω0. As shown in the figure,

our analysis is able to achieve an improvement of 20 percent, or

higher, for specific speeds, exhibiting an average improvement of

about 10 percent.

The ILP formulation proposed in [7] presents some inconsis-

tencies when low initial speeds are considered, leading to an

incorrect interference for low values of the initial speed ω0. Such

a problem has been fixed by the authors in a technical report [8],

which is taken as a reference for our comparison.
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Figure 12: AVR Interference for different initial engine speeds,

in a time interval of 100 ms.

In a second experiment, we evaluated the pessimism of the

ILP method in the dimension of time, for an initial engine speed

ω0 = 5600 rpm. Figure 13 illustrates the interference function

computed by the two algorithms when the interference interval is

varied from 30 ms to 75 ms. In this time range, the pessimism of

the ILP method remains of approximately 10 percent, and tends

to increase for larger values of t.

8. Conclusions

This paper presented an exact analysis of the worst-case inter-

ference generated by an adaptive variable-rate task under fixed-

priority scheduling and arbitrary deadlines. The work advances

the state of the art, since previous papers on fixed-priority AVR

tasks either focused on special simplified cases [12] or proposed

an approximate ILP test [7] based on a quantization of the state

variable (i.e., the crankshaft rotation speed in engine control

applications) determining the task activation rate.
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Figure 13: AVR Interference for different time intervals, with ω0

= 5600 rpm.

The second contribution of this work has been the identification

of a finite subset of dominant speeds that determine the exact

worst-case interference of an AVR task. Thanks to this result,

the interference analysis does not need to be performed for all

possible values of the engine speed, with a given quantization,

but can be determined by considering only the set of dominant

speeds.

It is worth observing that the set of dominant speeds is not

only important for reducing the complexity of the search, but

also because it allows getting rid of the quantization of the state

variable, which can make the schedulability analysis unsafe. In

fact, by quantizing the state variable, the schedulability test is

performed only in a subset of all possible values, so there can

be points (not considered in the test) in which the schedulability

test is not satisfied.

The simulation results reported in Section 7 confirm that the

interference computed by the ILP approximated method in the

discrete values of the initial speed ω0 is always higher or equal

to the interference computed by the approach proposed in this

paper, in the same points.

As future work, we plan to extend the task model to consider

more realistic design solutions considered in the automotive

application domain, like AVR tasks with an initial phase and

mode transitions with hysteresis.
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