
Adaptive DVS Management through Elastic Scheduling∗

Mauro Marinoni and Giorgio Buttazzo
University of Pavia, Italy

Email: {mauro.marinoni, giorgio.buttazzo}@unipv.it

Abstract

Dynamic voltage scaling (DVS) is a technique used
in modern microprocessors operated by battery to set
voltage and frequency levels at proper values that meet
performance requirements while minimizing energy con-
sumption. Most of the present work on DVS manage-
ment, however, is based on simplistic assumptions about
the hardware characteristics that limit the real applica-
bility of the proposed algorithms. Typical simplifying
assumptions consider continuous processor speed, negli-
gible overhead during voltage switching, task execution
time linear with frequency, and tasks with equal power
consumption. In this work, we enhance the task model to
consider some of the real CPU characteristics, and inte-
grate energy-aware algorithms with elastic scheduling to
improve control performance of embedded systems run-
ning on architectures offering a limited number of oper-
ating modes. Implementation issues and experimental re-
sults for the proposed algorithm are also discussed.

1 Introduction

Most of modern embedded systems are operated by
batteries, hence reducing energy consumption is one of
the major issues to be solved. When such systems have
also real-time requirements, then the issue of reducing en-
ergy consumption must be considered in conjunction with
the one of meeting timing constraints. The problem of
minimizing energy consumption while guaranteeing real-
time constraints has been widely considered in the real-
time literature [1, 2, 10], however most of the achieved
results assume that the processor can continuously adapt
its voltage and frequency to vary its power consumption.

Unfortunately, commercial processors only provide a
limited number of operating modes, each characterized by
a given voltage, clock frequency, and power consumption.
Adapting a continuous model to a discrete DVS system

∗This work has been partially supported by the Italian Ministry of
University Research under contract 2003094275 (COFIN03) and con-
tract 2004095094 (COFIN04).

clearly causes a waste of computational resource, because,
in order to guarantee the feasibility of the task set, the
processor speed must be set to the nearest level greater
than the optimal one.

Recently, some authors proposed solutions for proces-
sors having discrete speed levels. For example, Mejia-
Alvarez et al. [9] proposed an approach where a different
frequency is assigned to each task; however, their proces-
sor model is simpler than the one used in this paper and
the assignment problem is NP-hard, thus it can be solved
on line only by a heuristic algorithm. More recently, Bini
et al. [3] presented a method for approximating any speed
level with two given discrete values, which are properly
switched as a pulse width modulation signal to obtain its
average value. Schedulability analysis to guarantee the
feasibility of real-time task sets running under this mode
was also presented.

In this paper, we present a novel DVS management al-
gorithm that integrates energy-aware with elastic schedul-
ing to cope with processors with a limited number of op-
erating modes. To avoid wasting processing time due
to speed quantization, we consider a more flexible task
model, in which tasks can operate within a given range
of periods, with different performance. Whenever the se-
lected (discrete) speed level leaves some free processor
bandwidth, elastic scheduling is invoked to reduce task
periods to fully utilize the processor and increase the con-
trol performance. The algorithm allows the application
to select between energy-oriented, performance-oriented,
and user-defined strategies.

To better consider the effects of the hardware architec-
ture on task execution times, we enhance the execution
time model by splitting the code in two parts: one that
varies with speed and one that is speed independent.

The proposed algorithm has been implemented in the
Shark real-time operating system as a new scheduling
module, and experimental results have been derived on an
Athlon64 3000+ processor.

The rest of the paper is organized as follows. Section 2
presents the models used to describe the execution time
and the energy consumption of a task. Section 3 describes

Administrator
Proc. of the 10th IEEE Int. Conference on Emerging Technologies and Factory Automation (ETFA 2005), Catania, Italy, Sept. 2005.



the integrated DVS-elastic algorithm. Section 4 describes
some experimental results, and Section 5 states our con-
clusions and future work.

2 Models

This section presents the models used throughout the
paper for task execution times and power consumption. In
addition, the elastic model is briefly recalled for the sake
of completeness. To simplify the comparison between
processors with different frequency range[fmin, fmax],
all the quantities of interest (power, computation times,
etc.) will be expressed as a function of speed, defined as
the normalized frequencys = f/fmax. Hence, the valid-
ity range for the normalized speed is[smin, smax], where
smin = fmin/fmax andsmax = 1. As for the voltage,
the rule adopted in the algorithm is to select the minimum
voltage level compatible with the frequency represented
by the resulting speed. This approach is in line with the
CPUFreq driver used in Linux, which leads to a simple
and fast implementation.

2.1 Execution Time Model
Typically, task execution times are considered to be in-

versely proportional to the clock frequency and are mod-
eled asCi(s) = Cimax/s, whereCimax is the task exe-
cution time at the maximum processor speed. Extensive
experiments on real hardware, however, show that this as-
sumption is not correct. A more accurate model is to split
the execution time in two parts: one dependent on the
CPU frequency, and one independent. While the former
part is due to the code that works with the processor or
with the hardware running at the CPU frequency, the lat-
ter part comes from the code that uses hardware devices
that are not affected by frequency changes. For example,
the video output operates at the frequency of the PCI bus,
so its execution time does not change with the CPU speed.

Let Cimax be the execution time evaluated at the max-
imum processor speed, and letφi be the percentage of
code which deals with the frequency-dependent hardware.
Then, the task execution time can be modeled as

Ci(s) =
φiCimax

s
+ (1− φi)Cimax . (1)

Unfortunately, classifying the code in the two parts de-
scribed above is not easy, because the actual execution
times depend on the architecture on which the task is run-
ning. For example, operations that rely on RAM mem-
ory are frequency-dependent if running on ARM proces-
sors and frequency-independent if running on x86 archi-
tectures.

The value ofφi can be estimated experimentally by
measuring the execution time of a task at the maximum

frequency (Cimax = Ci(1)) and at the minimum fre-
quency (Cimin = Ci(smin)). In fact, since by equation
(1),

Cimin
=

φiCimax

smin
+ (1− φi)Cimax

thenφi can be computed as

φi =
Cimin − Cimax

Cimax

smin

1− smin
. (2)

Figure 1 shows the functionC(s) for a set of different
values ofφ. It can be seen that the simplified model that
considers the execution time inversely proportional to the
frequency (equivalent to the caseφ = 1) gets worse as the
frequency decreases.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

4

4.5

5

S

C

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 1. C(s) as a function of the φ param-
eter.

2.2 Energy Consumption Model
In CMOS integrated circuits, the dominant component

of power consumption is the dynamic power dissipation
due to switching, which is given by

P = CeffV 2
ddf

whereCeff is the effective capacity involved in switching,
V 2

dd is the supply voltage andf is the clock frequency. The
value of the capacityCeff depends on two factors: the
load capacityC being charged/discharged and the activity
weightα, which is a measure of the actual switching ac-
tivity. Thus,Ceff = α∗C. Moreover, a voltage reduction
causes an increase of the delays in the gates, according to
the following formula:

D = k
Vdd

(Vdd − Vt)2

wherek is a constant andvt is the threshold voltage. Ob-
serving that the processor speed is directly proportional



to the clock frequencyf and inversely proportional to the
gate delay, it turns out that the power consumption of a
processor grows with the cube of its speed. The overall en-
ergy consumption of the system, however, also depends on
other components of lower grade. Martin et al. [7, 8, 11]
derived the following relation to describe the power con-
sumption as a function of the speed:

P (s) = K3s
3 + K2s

2 + K1s + K0. (3)

TheK3 term is the coefficient related to the consumption
of those components that vary both voltage and frequency.
TheK1 coefficient is related to the hardware components
that can only vary the clock frequency, whereasK0 rep-
resents the power consumed by the components that are
not affected by the processor speed. Finally, the second
order term (K2) describes the non linearities of DC-DC
regulators in the range of the output voltage.

2.3 Elastic Task Model

In our framework, each task is considered as flexible
as a spring, whose utilization can be modified by chang-
ing its period within a specified range. More specifically,
each task is characterized by four parameters: a worst-
case computation timeCi, which depends on the proces-
sor speed according to equation (1), a minimum period
Timin (considered as a nominal period), a maximum pe-
riod Timax , and an elastic coefficientEi. The elastic coef-
ficient specifies the flexibility of the task to vary its utiliza-
tion for adapting the system to a new feasible rate config-
uration: the greaterEi, the more elastic the task. Hence,
we consider a set ofn elastic tasks, where each task is
indicated by:

τi(Ci, Timin , Timax , Ei).

In the following,Ti will denote the actual period of task
τi, which is constrained to be in the range[Timin , Timax ].
Moreover, we defineUimin = Ci/Timin as the nomi-
nal utilization of taskτi, Umax =

∑n
i=1 Ci/Timin and

Umin =
∑n

i=1 Ci/Timax .
Note that bothUmax and Umin depend on the pro-

cessor speed, hence any load variation due to a speed
change is always subject to anelasticguarantee and is ac-
cepted only if there exists a feasible schedule in which
all the periods are within their range. In our framework,
tasks are scheduled by the Earliest Deadline First algo-
rithm [6]. Hence, ifUmax ≤ Ud, all tasks can be created
at the minimum periodTimin , otherwise the elastic algo-
rithm is used to adapt the tasks’ periods toTi such that∑ Ci

Ti
= Ud ≤ 1, whereUd is some desired utilization

factor. It can easily been shown (see [4] for details) that a
solution can always be found ifUmin ≤ Ud.

As shown in [4], ifΓf is the set of tasks that reached
their maximum period (i.e., minimum utilization) andΓv

is the set of tasks whose utilization can still be com-
pressed, then to achieve a desired utilizationUd < Umax

each task has to be compressed up to the following utiliza-
tion:

∀τi ∈ Γv Ui = Uimax − (Uvmax − Ud + Uf )
Ei

Ev
(4)

where

Uvmax
=

∑

τi∈Γv

Uimax
(5)

Uf =
∑

τi∈Γf

Uimin
(6)

Ev =
∑

τi∈Γv

Ei. (7)

If there exist tasks for whichUi < Uimin , then the period
of those tasks has to be fixed at its maximum valueTimax

(so thatUi = Uimin ), setsΓf andΓv must be updated
(hence,Uf andEv recomputed), and equation (4) applied
again to the tasks inΓv. If there exists a feasible solution,
that is, if the desired utilizationUd is greater than or equal
to the minimum possible utilizationUmin =

∑n
i=1

Ci

Timax
,

the iterative process ends when each value computed by
equation (4) is greater than or equal to its corresponding
minimumUimin .

All tasks’ utilizations that have been compressed to
cope with an overload situation can return toward their
nominal values when the overload is over.

2.4 Overall task model

To integrate the execution time model with the elastic
one, each task will be denoted as follows:

τi(Cimax , φi, Timin , Timax , Ei)

where the meaning of the parameters has been explained
in the previous sections.

3 Algorithm Description

The algorithm proposed in this paper combines DVS
management with elastic scheduling to enhance perfor-
mance or reduce energy consumptions in systems with
discrete operating modes. In the following, we assume
that Umin(smax) ≤ Ud (whereUd ≤ 1), otherwise no
feasible solution can be found and the task set is rejected
by the feasibility test. TheUd parameter allows the user
to tune the effective load on the processor according to
the actual overhead introduced by the kernel, which can
be measured off line. A valueUd = 1 should never be



used, since other internal kernel activities (e.g., the inter-
rupt handlers for the network or other peripheral devices)
could create critical transient overload conditions.

At the application level, the user can choose among
three high level strategies:

• Energy saving: energy consumption is minimized
by selecting the lowest processor speedse that guar-
antees schedulability with the maximum periods;
then, if Umin(se) < Ud, periods are reduced by the
elastic algorithm to reach the desired utilizationUd,
thus improving the control performance.

• High performance: control performance is maxi-
mized by selecting the lowest processor speedsp

that provides full performance, that is, that guar-
antees schedulability with the minimum periods; if
sp > smax, that is, if Umax(smax) > Ud, thensp

is set tosmax and task periods are enlarged by the
elastic algorithm to reach feasibility with the desired
utilizationUd.

• User mode: this mode allows the user to manually
select a speed levelsu included in the range [se, sp]
defined by the two previous modes. IfUmax(su) >

Ud, periods are enlarged by the elastic algorithm to
reach feasibility with the desired utilizationUd.

The algorithm consists of three hierarchical levels. At
the top level, the power manager performs the acceptance
test and computes the working frequency according to the
selected strategy. At the medium level, the elastic sched-
uler computes the task periods and passes the task set to
the system scheduler at the bottom level (EDF in the spe-
cific case). We can see each level as a function that con-
verts the input task model into a new one accepted at the
lower level. The hierarchical structure of the algorithm is
illustrated in Figure 2.

The power manager is invoked every time a new task
enters/leaves the system or a new speed is selected by the
application. Task parameters used by this model are: task
execution time at maximum frequency (Cimax ), the per-
centage of frequency-dependent code (φi), parameters of
the task power model (K3,K2,K1,K0) and bounds of the
task periods (Timin , Timax ).

3.1 Computing the frequency bounds
Most commercial processors do not allow a continu-

ous variation of voltage and frequency, but only provide a
limited number of operating modes, each characterized by
specific values for supply voltage, frequency, and power
consumption.

Assuming that a single speed has to be used for
the whole application, if the selected strategy is energy

Elastic Scheduler

iT

max
iT

min
iTC

C i

i

U d sC i
max Φ i T T

max min
ii E i

Ei(s)

Power Manager

Scheduler

(s)

Figure 2. Block diagram of model flow.

oriented, then the minimum theoretical speeds∗e (i.e.,
in a continuous range) is computed as the speed that
minimizes energy consumption while guaranteeing the
schedulability of the task set.

Considering the computation time model expressed in
equation (1), the total processor utilization can also be ex-
pressed as a function of the processor speed:

U(s) =
n∑

i=1

Ci(s)
Ti

=
n∑

i=1

φiCimax

sTi
+

n∑

i=1

(1− φi)Cimax

Ti

=
UD

s
+ UF (8)

where UD is the processor utilization due to the
frequency-dependent code, estimated at the maximum fre-
quency, whereasUF is the one that is frequency indepen-
dent.

The minimum utilization computed with the maximum
periods can also be expressed as a function of speed:

Umin(s) =
n∑

i=1

φiCimax

sTimax

+
n∑

i=1

(1− φi)Cimax

Timax

=
UDmin

s
+ UFmin . (9)

ImposingUmin(s) = Ud (desired utilization), the re-
lated speed is given by

s∗e =

∑n
i=1

φiCimax

Timax

Ud −
∑n

i=1
(1−φi)Cimax

Timax

=
UDmin

Ud − UFmin

.

If s∗e is out of the range [0,1], the task set is not feasible
and it is rejected by the guarantee test.

In the performance-oriented strategy, if
Umax(smax) > Ud, the speeds∗p that guarantees



the best performance is clearlysmax. Otherwise, the
best theoretical speeds∗p to achieve full performance
is computed as the minimum speed that guarantees
schedulability with the nominal periods.

Considering thatUmax can be expressed as

Umax(s) =
n∑

i=1

φiCimax

sTimin

+
n∑

i=1

(1− φi)Cimax

Timin

=
UDmax

s
+ UFmax

(10)

imposingUmax(s) = Ud, the best theoretical speeds∗p is
given by

s∗p =

∑n
i=1

φiCimax

Timin

Ud −
∑n

i=1
(1−φi)Cimax

Timin

=
UDmax

Ud − UFmax

.

Hence, in general,

s∗p =

{
UDmax

Ud−UFmax
if Umax(smax) ≤ Ud

smax otherwise

3.2 Frequency selection and period adjustment

Due to the discrete range of frequencies, it may not be
possible to set the CPU speed ats∗e or s∗p. Hence, we set

se = min
k
{sk | sk ≥ s∗e} ; (11)

sp = min
k

{
sk | sk ≥ s∗p

}
. (12)

Once the speedsse andsp are computed and task set
schedulability is guaranteed in the worst case situation,
there can be some possible strategies to select the operat-
ing frequency as a function of the high level approach.

• If the objective is to minimize energy consumption,
the actual speed is set tose. If se > s∗e, then
Umin(se) < Ud. Hence, to fully utilize the proces-
sor, task periods are reduced through elastic schedul-
ing to bring the task set utilization at the desired level
Ud.

• If the objective is to improve performance, the actual
speed is set tosp. Note that, ifUmax(sp) ≤ Ud, all
tasks can run at their nominal period and the elas-
tic algorithm is not used, otherwise task periods are
expanded to reach the desired utilizationUd.

• Finally, if the user decides to select a specific speed
su ∈ [se, sp] (among the available levels), then the
elastic method is invoked to reach the desired utiliza-
tion Ud.

It is worth observing that, in the energy-oriented strat-
egy, the elastic mechanism is always used to reduce pe-
riods to bring the processor utilization up toUd, so im-
proving the control performance whenever possible. Such
an improvement is larger when the number of available
speeds is small. Clearly, the values of computation times
used in the elastic method are estimated using the speed
level computed by the power manager or selected by the
user.

Another advantage of using the elastic approach in this
context is that, if tasks have different power consumption,
elastic coefficients can be set to reduce the energy of the
tasks with higher power consumption. In fact, since the
energy consumed by a task in a given interval is propor-
tional to the number of jobs executed in that interval, elas-
tic coefficients can be assigned so that tasks with higher
power will be more compressed, that is are subject to a
larger period variation to decrease their energy consump-
tion. To obtain this result, the elastic coefficientEi can be
set as

Ei ∝ Pi(s)Ci(s). (13)

wherePi(s) is the power consumed by taskτi, as defined
in equation (3).

4 Experimental Results

The proposed algorithm has been implemented as a
scheduling module of the Shark real-time operating sys-
tem [5]. In this section we present two sets of experi-
ments: the first one is aimed at verifying the execution
time model introduced in Section 2, while the second one
presents some results related to the proposed algorithm as
a function of the workload. Experiments are performed
on an AMD Athlon64 3000+, whose clock can be set at
four frequencies: 1000, 1800, 2000 and 2200 MHz, cor-
responding to the following normalized speeds: 0.4545,
0.8181, 0.9090, 1. At the present stage, we were not able
to measure the actual system consumption, so we could
not present experimental values for the parameters of the
energy consumption model (see section 2.2) or some ex-
perimental results on the actual energy saving. This issue
will be addressed in the future.

4.1 Validating the execution time model

Experiments were carried out with a group of five peri-
odic tasks with different characteristics (i.e.,φ parameter),
and the execution time of each task was estimated for all
available speeds. The body of each task is composed as
follow:

• Integer (τ1): 7000000 operations on integer num-
bers;



• Float (τ2): 90000 floating point operations and
trigonometric functions;

• Text1 (τ3): 700000 integer operations mixed with
the output of 9000 characters in text mode without
screen scrolling;

• Text2 (τ4): same asτ3 but with 2100000 integer op-
erations and only 3000 characters;

• Graphics (τ5): like τ3 but with 1500000 integer op-
erations and 150 characters printed in graphics mode.

Results are shown in Table 1, which reports the mean ex-
ecution times (in milliseconds), each obtained on 10000
task activations.

speed
0.4545 0.8181 0.9090 1.0000

τ1: Integer 2.796 1.554 1.399 1.271
τ2: Float 2.752 1.529 1.376 1.251
τ3: Text1 2.309 2.158 2.097 2.078
τ4: Text2 2.727 1.794 1.678 1.582
τ5: Graphics 2.506 1.839 1.756 1.687

Table 1. Task execution times as a function
of normalized speed.

Then, theφi value of each task was computed using
Equation (2) and measured values were compared against
the theoretical values given by equation (1). Table 2 re-
ports theφ value for each task and the computation time
error of the measured value with respect to the theoretical
one. It is worth observing that, even thoughφ changes
from 0.0926 to 1 the relative error is less than 2%.

Figure 3 shows the measured values of the execution
times on the theoretical curves given by equation (1).

Notice that, using the simplified model of a fully
frequency-dependent task (C(s) = Cimax

s ), the error
would be much higher. For example, the theoretical ex-
ecution time of taskτ3 (Text1) running at the lowest fre-
quency would be 4572, while the real one is 2309 (98%
faster).

4.2 Experiments on the algorithm

In this experiment we tested the behavior of the DVS-
elastic algorithm as a function of the workload. The load
was generated using the same set of tasks described in
Section 4.1, and varied by scaling the execution times
to increase the maximum utilization (Umax(smax)) from
0.45 to 1.8. All elastic coefficients have been set to 1 for
simplicity, and the desired utilization was set toUd = 0.9
to take overheads into account. Figure 4 illustrates the

0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

S

C

1.000
0.0926
0.6031
0.4045
Integer
Float
Text 1
Text 2
Graphics

Figure 3. Comparison between actual exe-
cution times and theoretical values.

speed levelss∗e, s∗p, se and sp computed by the algo-
rithm as a function of load under the energy-aware and
the performance-oriented mode, respectively.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

U
max

(s
max

)

s

s
e
*

s
p
*

s
e

s
p

Figure 4. Speed bounds computed by the
algorithm as a function of the load for the
energy-aware and the performance-oriented
mode.

As clear from the graphs, when the load is less than
Ud, even the performance-oriented strategy is able to re-
duce energy consumption, by finding the minimum speed
that can guarantee all the tasks at their minimum periods.
On the other hand, the energy-aware strategy allows a re-
duction in terms of energy consumption up to an overload
of about 70% (i.e., load = 1.7), when the maximum over-
load that the classical elastic algorithm can manage is 80%
(i.e., load = 1.8), for the specific task set.

A significant improvement achieved with the integrated



speed
φ 0.4545 0.8181 0.9090 1.000

τ1: Integer 1.0000 2.797 0.04% 1.554 0 1.383 1.16% 1.271
τ2: Float 1.0000 2.752 0 1.529 0 1.376 0 1.251
τ3: Text1 0.0926 2.309 0 2.121 1.74% 2.097 0 2.078
τ4: Text2 0.6031 2.727 0 1.794 0 1.677 0 1.582
τ5: Graphics 0.4045 2.506 0 1.838 0.05% 1.755 0.06% 1.687

Table 2. φ values and estimation errors.

algorithm can be seen in Figure 4 forUmax(smax) = 1.1.
In fact, without elastic scheduling, the task set would not
be feasible with all tasks running at their nominal peri-
ods (Tmin), and the use of a pure energy-aware algorithm
with discrete speeds and maximum periods would waste
processor utilization, penalizing performance (since tasks
would run at the lowest possible rate). In fact, for this
value of Umax(smax), the utilization factor with maxi-
mum periods is 0.62, which is a lot less than the desired
valueUd = 0.9. Using the proposed approach, the de-
sired utilization can be reached with a normalized speed
s = 0.8181, and tasks can run with shorter periods com-
puted by the elastic algorithm, so improving the applica-
tion performance.

5 Conclusions

In this paper we presented an integrated approach that
combines DVS techniques with elastic scheduling to im-
prove control performance of embedded systems run-
ning on architectures with a limited number of operating
modes. The task execution time model was enhanced to
consider some real architecture characteristics, such the
access to peripherals, whose execution is not scalable with
the clock frequency.

Experimental results on an AMD Athlon64 3000+ with
four operating modes showed the validity of the proposed
execution model, and illustrated the advantage of the inte-
grated approach when the objective is to maximize system
performance or minimize energy consumption.

As a future work, we plan to integrate the proposed
methodology with a reclaiming mechanism that will be
able to take advantage of early completions to further re-
duce the processor speed. We also plan to apply our ap-
proach to prolong the battery lifetime of a team of mobile
robot systems that need to achieve a common goal under
stringent performance constraints.

References

[1] H. Aydin, R. Melhem, D. Mosśe, and P. Mejia Alvarez.
Determining optimal processor speeds for periodic real-
time tasks with different power characteristics. InPro-

ceedings of the Euromicro Conference on Real-Time Sys-
tems, Delft, Netherlands, June 2001.

[2] H. Aydin, R. Melhem, D. Mosśe, and P. Mejia Alvarez.
Dynamic and aggressive scheduling techniques for power-
aware real-time systems. InProceedings of the IEEE Real-
Time Systems Symposium, London, England, December
2001.

[3] E. Bini, G. Buttazzo, and G. Lipari. Speed modulation in
energy-aware real-time systems. InIEEE Proceedings of
the Euromicro Conference on Real-Time Systems, Palma
de Mallorca, Balearic Islands, Spain, July 2005.

[4] G. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. Elas-
tic scheduling for flexible workload management.IEEE
Transactions on Computers, 51(3):289–302, March 2002.

[5] P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo. A new kernel
approach for modular real-time system development. In
Proc. 13th IEEE Euromicro Conf. on Real-Time System,
Delft, The Netherlands, June 2001.

[6] C. Liu and J. Layland. Scheduling algorithms for multi-
programming in a hard real-time environment.Journal of
the ACM, 20(1):40–61, January 1973.

[7] T. Martin. Balancing Batteries, Power and Performance:
System Issues in CPU Speed-Setting for Mobile Comput-
ing. PhD thesis, Carnegie Mellon University, 1999.

[8] T. Martin and D. Siewiorek. Non-ideal battery and main
memory effects on cpu speed-setting for low power.IEEE
Transactions on VLSI Systems, 9(1):29–34, 2001.

[9] P. Mejia Alvarez, E. Levner, and D. Mossé. Adaptive
scheduling server for power-aware real-time tasks.ACM
Transactions on Embedded Computing Systems, 3(2):284–
306, May 2004.

[10] R. Melhem, N. AbouGhazaleh, H. Aydin, and D. Mossé.
Power Aware Computing, chapter Power Management
Points in Power-Aware Real-Time Systems. R. Graybill
and R. Melhem, Plenum/Kluwer Publishers, 2002.

[11] J. Wang, B. Ravindran, and T. Martin. A power aware
best-effort real-time task scheduling algorithm. InPro-
ceedings of the IEEE Workshop on Software Technologies
for Future Embedded Systems, IEEE International Sym-
posium on Object-oriented Real-time Distributed Comput-
ing, May 2003.




